Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.543
Filtrar
1.
Int J Mol Sci ; 22(12)2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34203691

RESUMO

Frailty is a geriatric syndrome associated with both locomotor and cognitive decline, typically linked to chronic systemic inflammation, i.e., inflammaging. In the current study, we investigated the effect of a two-month oral supplementation with standardized extracts of H. erinaceus, containing a known amount of Erinacine A, Hericenone C, Hericenone D, and L-ergothioneine, on locomotor frailty and cerebellum of aged mice. Locomotor performances were monitored comparing healthy aging and frail mice. Cerebellar volume and cytoarchitecture, together with inflammatory and oxidative stress pathways, were assessed focusing on senescent frail animals. H. erinaceus partially recovered the aged-related decline of locomotor performances. Histopathological analyses paralleled by immunocytochemical evaluation of specific molecules strengthened the neuroprotective role of H. erinaceus able to ameliorate cerebellar alterations, i.e., milder volume reduction, slighter molecular layer thickness decrease and minor percentage of shrunken Purkinje neurons, also diminishing inflammation and oxidative stress in frail mice while increasing a key longevity regulator and a neuroprotective molecule. Thus, our present findings demonstrated the efficacy of a non-pharmacological approach, based on the dietary supplementation using H. erinaceus extract, which represent a promising adjuvant therapy to be associated with conventional geriatric treatments.


Assuntos
Envelhecimento Saudável/fisiologia , Hericium/metabolismo , Neuroproteção , Animais , Ciclo-Oxigenase 2/metabolismo , Fragilidade/metabolismo , Fragilidade/fisiopatologia , Proteína Glial Fibrilar Ácida/metabolismo , Envelhecimento Saudável/efeitos dos fármacos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Inflamação/patologia , Interleucina-6/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , Neuroproteção/efeitos dos fármacos , Óxido Nítrico Sintase Tipo II/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Sirtuína 1/metabolismo , Superóxido Dismutase/metabolismo
2.
Int J Mol Sci ; 22(13)2021 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-34206850

RESUMO

Treating postoperative (PO) pain is a clinical challenge. Inadequate PO pain management can lead to worse outcomes, for example chronic post-surgical pain. Therefore, acquiring new information on the PO pain mechanism would increase the therapeutic options available. In this paper, we evaluated the role of a natural substance, epigallocatechin-3-gallate (EGCG), on pain and neuroinflammation induced by a surgical procedure in an animal model of PO pain. We performed an incision of the hind paw and EGCG was administered for five days. Mechanical allodynia, thermal hyperalgesia, and motor dysfunction were assessed 24 h, and three and five days after surgery. At the same time points, animals were sacrificed, and sera and lumbar spinal cord tissues were harvested for molecular analysis. EGCG administration significantly alleviated hyperalgesia and allodynia, and reduced motor disfunction. From the molecular point of view, EGCG reduced the activation of the WNT pathway, reducing WNT3a, cysteine-rich domain frizzled (FZ)1 and FZ8 expressions, and both cytosolic and nuclear ß-catenin expression, and the noncanonical ß-catenin-independent signaling pathways, reducing the activation of the NMDA receptor subtype NR2B (pNR2B), pPKC and cAMP response element-binding protein (pCREB) expressions at all time points. Additionally, EGCG reduced spinal astrocytes and microglia activation, cytokines overexpression and nuclear factor kappa-light-chain-enhancer of activated B cells (NFkB) pathway, downregulating inducible nitric oxide synthase (iNOS) activation, cyclooxygenase 2 (COX-2) expression, and prostaglandin E2 (PGE2) levels. Thus, EGCG administration managing the WNT/ß-catenin signaling pathways modulates PO pain related neurochemical and inflammatory alterations.


Assuntos
Analgésicos/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Catequina/análogos & derivados , Dor Pós-Operatória/tratamento farmacológico , Analgésicos/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Catequina/farmacologia , Catequina/uso terapêutico , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Receptores Frizzled/genética , Receptores Frizzled/metabolismo , Masculino , NF-kappa B/genética , NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Proteína Quinase C/genética , Proteína Quinase C/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Via de Sinalização Wnt , beta Catenina/genética , beta Catenina/metabolismo
3.
Int J Mol Sci ; 22(12)2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34204506

RESUMO

Ergosta-7, 9 (11), 22-trien-3ß-ol (EK100) was isolated from Cordyceps militaris, which has been used as a traditional anti-inflammatory medicine. EK100 has been reported to attenuate inflammatory diseases, but its anti-inflammatory mechanism is still unclear. We were the first to investigate the effect of EK100 on the Toll-like receptor 4 (TLR4)/nuclear factor of the κ light chain enhancer of B cells (NF-κB) signaling in the lipopolysaccharide (LPS)-stimulated RAW264.7 cells and the green fluorescent protein (GFP)-labeled NF-κB reporter gene of Drosophila. EK100 suppressed the release of the cytokine and attenuated the mRNA and protein expression of pro-inflammatory mediators. EK100 inhibited the inhibitor kappa B (IκB)/NF-κB signaling pathway. EK100 also inhibited phosphatidylinositol-3-kinase (PI3K)/Protein kinase B (Akt) signal transduction. Moreover, EK100 interfered with LPS docking to the LPS-binding protein (LBP), transferred to the cluster of differentiation 14 (CD14), and bonded to TLR4/myeloid differentiation-2 (MD-2) co-receptors. Compared with the TLR4 antagonist, resatorvid (CLI-095), and dexamethasone (Dexa), EK100 suppressed the TLR4/AKT signaling pathway. In addition, we also confirmed that EK100 attenuated the GFP-labeled NF-κB reporter gene expression in Drosophila. In summary, EK100 might alter LPS docking to LBP, CD14, and TLR4/MD-2 co-receptors, and then it suppresses the TLR4/NF-κB inflammatory pathway in LPS-stimulated RAW264.7 cells and Drosophila.


Assuntos
Anti-Inflamatórios/farmacologia , Drosophila/metabolismo , Receptores de Lipopolissacarídeos/metabolismo , Antígeno 96 de Linfócito/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo , Animais , Anti-Inflamatórios/química , Sobrevivência Celular/efeitos dos fármacos , Ciclo-Oxigenase 2/metabolismo , Citocinas/metabolismo , Mediadores da Inflamação/metabolismo , Receptores de Lipopolissacarídeos/química , Lipopolissacarídeos/química , Lipopolissacarídeos/imunologia , Antígeno 96 de Linfócito/química , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Modelos Moleculares , Conformação Molecular , Óxido Nítrico Sintase Tipo II/metabolismo , Fosforilação , Ligação Proteica , Relação Estrutura-Atividade , Receptor 4 Toll-Like/química
4.
Int J Mol Sci ; 22(12)2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34208719

RESUMO

Synovitis of the knee synovium is proven to be a precursor of knee osteoarthritis (OA), leading to a radiologically advanced stage of the disease. This study was conducted to elucidate the expression pattern of different inflammatory factors-NF-kB, iNOS, and MMP-9 in a subpopulation of synovial cells. Thirty synovial membrane intra-operative biopsies of patients (ten controls, ten with early OA, and ten with advanced OA, according to the Kellgren-Lawrence radiological score) were immunohistochemically stained for NF-kB, iNOS, and MMP9, and for different cell markers for macrophages, fibroblasts, leukocytes, lymphocytes, blood vessel endothelial cells, and blood vessel smooth muscle cells. The total number of CD68+/NF-kB+ cells/mm2 in the intima of early OA patients (median = 2359) was significantly higher compared to the total number of vimentin+/Nf-kB+ cells/mm2 (median = 1321) and LCA+/NF-kB+ cells/mm2 (median = 64) (p < 0.001 and p < 0.0001, respectively). The total number of LCA+/NF-kB+ cells/mm2 in the subintima of advanced OA patients (median = 2123) was significantly higher compared to the total number of vimentin+/NF-kB+ cells/mm2 (median = 14) and CD68+/NF-kB+ cells/mm2 (median = 29) (p < 0.0001). The total number of CD68+/iNOS+ cells/mm2 in the intima of both early and advanced OA patients was significantly higher compared to the total number of vimentin+/iNOS+ cells/mm2 and LCA+/iNOS+ cells/mm2 (p < 0.0001 and p < 0.001, respectively). The total number of CD68+/MMP-9+ cells/mm2 in the intima of both early and advanced OA patients was significantly higher compared to the total number of vimentin+/MMP-9+ cells/mm2 and CD5+/MMP-9+ cells/mm2 (p < 0.0001). Macrophages may have a leading role in OA progression through the NF-kB production of inflammatory factors (iNOS and MMP-9) in the intima, except in advanced OA, where leukocytes could have a dominant role through NF-kB production in subintima. The blocking of macrophageal and leukocyte NF-kB expression is a possible therapeutic target as a disease modifying drug.


Assuntos
NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Osteoartrite do Joelho/metabolismo , Osteoartrite do Joelho/patologia , Adulto , Biomarcadores , Feminino , Imunofluorescência , Humanos , Imuno-Histoquímica , Masculino , Metaloproteinases da Matriz/metabolismo , Osteoartrite do Joelho/etiologia , Índice de Gravidade de Doença , Membrana Sinovial/metabolismo , Membrana Sinovial/patologia , Adulto Jovem
5.
Jt Dis Relat Surg ; 32(2): 313-322, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34145806

RESUMO

OBJECTIVES: We aimed to investigate the radiological, biomechanical, histopathological, histomorphometric, and immunohistochemical effects of different doses of vardenafil on fracture healing. MATERIALS AND METHODS: Fifty-one rats were divided into three groups. Group V5 was given 5 mg/kg/day of vardenafil; Group V10 was given 10 mg/kg/day of vardenafil; and the control group was given the same volume of saline. Six rats from each group were sacrificed on Day 14 (early period) and the remaining rats were sacrificed on Day 42 (late period). Callus/femoral volume and bone mineral density were measured using micro-computed tomography. Five femurs from each group in the late period were examined by biomechanical tests. In addition to the histopathological and histomorphometric evaluations, immunohistochemical analyses were performed to examine the levels of inducible nitric oxide synthase (iNOS), transforming growth factor-3 (TGF-ß3), and nuclear factor kappa B (NF-κB) proteins. RESULTS: Both doses of vardenafil increased primary bone volume and maximal bone fracture strength in late period, compared to the control group (p<0.05). Histological healing scores of vardenafil groups were significantly higher in early period (p<0.001). While cartilaginous callus/total callus ratio in early period was higher, callus diameter/femoral diameter ratio in late period was lower in vardenafil groups (p<0.01). The NF-κB immunopositivity in V10 group decreased in early period, compared to control group (p<0.001). The TGF-ß3 and iNOS immunopositivity increased in both V5 and V10 groups, compared to the control group in early period, but returned to normal in late period. CONCLUSION: During the first period of fracture healing process in which vasodilation is mostly required with increasing inflammation, vardenafil has ameliorating effects on the bone union and supports fracture healing.


Assuntos
Fraturas do Fêmur/tratamento farmacológico , Consolidação da Fratura/efeitos dos fármacos , Inibidores da Fosfodiesterase 5/administração & dosagem , Dicloridrato de Vardenafila/administração & dosagem , Animais , Fenômenos Biomecânicos , Densidade Óssea/efeitos dos fármacos , Calo Ósseo/diagnóstico por imagem , Calo Ósseo/efeitos dos fármacos , Calo Ósseo/patologia , Modelos Animais de Doenças , Fraturas do Fêmur/diagnóstico por imagem , Fraturas do Fêmur/patologia , Fêmur/diagnóstico por imagem , Fêmur/patologia , Masculino , NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Ratos , Fator de Crescimento Transformador beta3/metabolismo , Microtomografia por Raio-X
6.
Molecules ; 26(10)2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-34066108

RESUMO

Lindera obtusiloba Blume (family, Lauraceae), native to Northeast Asia, has been used traditionally in the treatment of trauma and neuralgia. In this study, we investigated the neuroinflammatory effect of methanol extract of L. obtusiloba stem (LOS-ME) in a scopolamine-induced amnesia model and lipopolysaccharide (LPS)-stimulated BV2 microglia cells. LOS-ME downregulated the expression of inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2, inflammatory cytokines, and inhibited the phosphorylation of nuclear factor kappa-B (NF-ĸB) and extracellular signal-regulated kinase (ERK) in LPS-stimulated BV2 cells. Male C57/BL6 mice were orally administered 20 and 200 mg/kg of LOS-ME for one week, and 2 mg/kg of scopolamine was administered intraperitoneally on the 8th day. In vivo behavioral experiments (Y-maze and Morris water maze test) confirmed that LOS-ME alleviated cognitive impairments induced by scopolamine and the amount of iNOS expression decreased in the hippocampus of the mouse brain. Microglial hyper-activation was also reduced by LOS-ME pretreatment. These findings suggest that LOS-ME might have potential in the treatment for cognitive improvement by regulating neuroinflammation.


Assuntos
Amnésia/induzido quimicamente , Amnésia/tratamento farmacológico , Anti-Inflamatórios/administração & dosagem , Lindera/química , Microglia/efeitos dos fármacos , Fármacos Neuroprotetores/administração & dosagem , Fitoterapia/métodos , Extratos Vegetais/administração & dosagem , Escopolamina/efeitos adversos , Animais , Células Cultivadas , Ciclo-Oxigenase 2/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Regulação para Baixo/efeitos dos fármacos , Hipocampo/metabolismo , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico Sintase Tipo II/metabolismo , Transdução de Sinais/efeitos dos fármacos , Resultado do Tratamento
7.
J Med Food ; 24(6): 595-605, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34077680

RESUMO

Improvement of antioxidant and anti-inflammatory functions is believed to be an effective strategy for protection against various diseases such as cancer, aging, and neurodegenerative disease. This study focused on investigating antioxidant and anti-inflammatory abilities of Zingiber montanum oil (ZMO) extracted by the supercritical CO2 fluid system in HepG2 cells and lipopolysaccharide (LPS)-treated RAW 264.7 macrophages. Ten predominant constituents of ZMO were identified, in which triquinacene, 1,4-bis (methoxy), terpinen-4-ol, triquinacene, 1,4,7-tris (methoxy), α-terpinene, sabinene hydrate, and (E and Z)-1-(3,4-dimethoxyphenyl)butadiene account for 86.47%. ZMO exhibited anti-inflammatory capacity by inhibiting the formation of pro-inflammatory markers such as nitric oxide, inducible nitric oxide synthase, cyclooxygenase-2, interleukin (IL)-1ß, IL-6, and monocyte chemoattractant protein-1 in LPS-treated macrophages. The LPS-induced stimulation of nuclear factor-kappa B, signal transducer and activator of transcription 3 (Stat3) and mitogen-activated protein kinase (MAPK) pathways as evident from increased phosphorylation of IKKα/ß, IκBα, p65, Stat3, ERK, JNK, and p38 MAPK was also suppressed by ZMO pretreatment. Further, ZMO enhanced the expression of nuclear factor erythroid 2-related factor (Nrf2) and heme oxygenase-1 (HO-1), and concurrently, reduced intracellular reactive oxygen species accumulation in LPS-treated RAW 264.7 cells. In addition, ZMO treatment markedly upregulated the expression of Nrf2 as well as its target genes, HO-1 and NAD(P)H:quinone oxidoreductase 1 in HepG2 cells. These data propose that ZMO may be a potent candidate for prevention and/or treatment of inflammatory and oxidative conditions.


Assuntos
Lipopolissacarídeos , Doenças Neurodegenerativas , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Células Hep G2 , Humanos , Macrófagos/metabolismo , Camundongos , NF-kappa B/genética , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Células RAW 264.7
8.
Front Immunol ; 12: 550670, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34040600

RESUMO

Hibiscus sabdariffa calyx (HS) water decoction extract is a commonly consumed beverage with various pharmacological properties. This systematic review examines the possible effect of HS intake on immune mediators. The Scopus and PUBMED databases were searched for all human and animal studies that investigated the effect of HS administration on immune related biomarkers. For each of the immune biomarkers, the mean, standard deviation and number of subjects were extracted for both the HS treated and untreated group. These values were used in the computation of standardized mean difference (SMD). Statistical analysis and forest plot were done with R statistical software (version 3.6.1). Twenty seven (27) studies met the eligibility criteria. Twenty two (22) of the studies were used for the meta-analysis which included a total of 1211 subjects. The meta-analysis showed that HS administration significantly lowered the levels of TNF-α (n=10; pooled SMD: -1.55; 95% CI: -2.43, -0.67; P < 0.01), IL-6 (n=11; pooled SMD:-1.09; 95% CI: -1.77, -0.40; P < 0.01), IL-1ß (n=7; pooled SMD:-0.62; 95% CI: -1.25, 0.00; P = 0.05), Edema formation (n=4; pooled SMD: -2.29; 95% CI: -4.47, -0.11; P = 0.04), Monocyte Chemoattractant Protein -1 (n=4; pooled SMD: -1.17; 95% CI: -1.78, -0.57; P < 0.01) and Angiotensin converting enzyme cascade (n=6; pooled SMD: -0.91; 95% CI: -1.57, -0.25; P < 0.01). The levels of IL-10 (n=4; pooled SMD: -0.38; 95% CI: -1.67, 0.91; P = 0.56), Interleukin 8 (n=2; pooled SMD:-0.12; 95% CI: -0.76, 0.51; P = 0.71), iNOS (n=2; pooled SMD:-0.69; 95% CI: -1.60, 0.23 P = 0.14) and C- Reactive Protein (n=4; pooled SMD: 0.05; 95% CI: -0.26, 0.36; P = 0.75), were not significantly changed by HS administration. Some of the results had high statistical heterogeneity. HS may be promising in the management of disorders involving hyperactive immune system or chronic inflammation.


Assuntos
Hibiscus/química , Doenças do Sistema Imunitário/prevenção & controle , Imunidade/efeitos dos fármacos , Fatores Imunológicos/farmacologia , Extratos Vegetais/farmacologia , Animais , Proteína C-Reativa/metabolismo , Citocinas/metabolismo , Humanos , Doenças do Sistema Imunitário/imunologia , Doenças do Sistema Imunitário/metabolismo , Imunidade/imunologia , Fatores Imunológicos/administração & dosagem , Óxido Nítrico Sintase Tipo II/metabolismo , Extratos Vegetais/administração & dosagem
9.
Exp Gerontol ; 150: 111388, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-33957261

RESUMO

Pentagalloyl glucose (PGG) is a valuable natural compound with an array of biological activities, but the immunomodulatory effect and mechanism have not been fully validated yet. In this study, to elucidate comprehensively the function of immunomodulation and its underlying mechanism of PGG in vitro and in vivo, two model systems were conducted, which including lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages cells and Pseudomonas aeruginosa (PAO1)-induced Caenorhabditis elegans (C. elegans). Current results showed that PGG significantly inhibited secretions of tumor necrosis factor-α (TNF-α), interleukin-1 beta (IL-1ß), interleukin-6 (IL-6) and mediator nitric oxide (NO) in LPS-stimulated RAW264.7 cells. In addition, the expression of genes nitric oxide synthase (iNOS), TNF-α, IL-1ß and IL-6 in LPS- stimulated RAW264.7 cells was reduced by PGG. In vivo assay showed that lifespan of PAO1-induced C. elegans was enhanced significantly by 14.1% under the pre-treatment of PGG, which was abrogated in toxin sensitive mdt-15 mutant. Similarly, the PGG showed a benefit on 41.2% significant extension longevity in C. elegans under pathogenic PA14. And the nuclear localization of DAF-16 of strain TJ356 was significantly increased in PAO1-induced C. elegans by PGG. Further, PGG modulated several signaling pathways to enhance immunomodulation in C. elegans including DBL-1, DAF-2/DAF-16, and mitogen-activated protein (MAP) kinase pathways. Furthermore, other genes involved in immunomodulatory response in C. elegans were remarkably regulated such as lys-1, lys-2, spp-18, egl-9, and hif-1. Our study suggested that PGG have potential to develop into novel immunomodulatory nutraceutical.


Assuntos
Caenorhabditis elegans , Lipopolissacarídeos , Animais , Caenorhabditis elegans/metabolismo , Glucose , Imunomodulação , Lipopolissacarídeos/farmacologia , Macrófagos/metabolismo , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
10.
Toxicol Lett ; 349: 1-11, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34052309

RESUMO

Pesticides exposure can lead to damage of dopaminergic neurons, which are associated with increased risk of Parkinson's disease (PD). However, the etiology of PD remains poorly understood and no therapeutic strategy is available. Previous studies suggested the involvement of NLRP3 inflammasome in the onset of PD. This study was designed to investigate whether glibenclamide, an inhibitor of NLRP3 inflammasome, could offer a reliable protective strategy for PD in a mouse PD model induced by paraquat and maneb. We found that glibenclamide exerted potent neuroprotection against paraquat and maneb-induced upregulation of α-synuclein, dopaminergic neurodegeneration and motor impairment in brain of mice. Mechanistically, glibenclamide treatment blocked NLRP3 inflammasome activation evidenced by reduced expressions of NLRP3, activated caspase-1 and mature interleukin-1ß in glibenclamide co-treated mice compared with those in paraquat and maneb group mice. Furthermore, glibenclamide treatment mitigated paraquat and maneb-induced microglial M1 proinflammatory response and nuclear factor-κB activation in mice. Finally, the increased superoxide production, lipid peroxidation, protein levels of NADPH oxidase 2 (NOX2) and inducible nitric oxide synthase (iNOS) induced by paraquat and maneb were all attenuated by glibenclamide. Overall, our findings demonstrated that glibenclamide protected dopaminergic neurons in a mouse PD model induced by combined exposures of paraquat and maneb through suppression of NLRP3 inflammasome activation, microglial M1 polarization and oxidative stress.


Assuntos
Antiparkinsonianos/farmacologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Glibureto/farmacologia , Inflamassomos/antagonistas & inibidores , Atividade Motora/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Degeneração Neural , Fármacos Neuroprotetores/farmacologia , Transtornos Parkinsonianos/prevenção & controle , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Modelos Animais de Doenças , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Inflamassomos/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Maneb , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microglia/patologia , NADPH Oxidase 2/metabolismo , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Paraquat , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/metabolismo , Transtornos Parkinsonianos/patologia
11.
Mater Sci Eng C Mater Biol Appl ; 124: 112038, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33947538

RESUMO

Inflammatory Bowel Disease (IBD) is a complex inflammatory condition arising due to interactions of environmental and genetic factors that lead to dysregulated immune response and inflammation in intestine. Complementary and alternative medicine approaches have been utilized to treat IBD. However, chronic inflammatory diseases are not medically curable. Hence, potent anti-inflammatory therapeutic agents are urgently warranted. Melatonin has emerged as a potent anti-inflammatory and neuroprotective candidate. Although, it's therapeutic efficacy is compromised due to less solubility and rapid clearance. Hence, we have synthesized melatonin loaded chitosan nanoparticle (Mel-CSNPs) to improve drug release profile and evaluate its in-vitro and in-vivo therapeutic efficacy. Mel-CSNPs exhibited better anti-inflammatory response in an in-vitro and in-vivo IBD model. Significant anti-inflammatory activity of Mel-CSNPs is attributed to nitric oxide (NO) reduction, inhibited nuclear translocation of NF-kB p65 and reduced IL-1ß and IL-6 expression. In-vivo biodistribution study has shown a good distribution profile. Effective in-vivo therapeutic efficiency of Mel-CSNPs has been confirmed with reduced disease activity index parameters and inhibited neutrophilic infiltration. Histological evaluation has further proved the protective effect of Mel-CSNPs by preventing crypt damage and immune cells infiltration against Dextran Sodium Sulphate induced insults. Immuno-histochemical analysis has confirmed anti-inflammatory action of Mel-CSNPs with reduction of inflammatory markers, Nitric Oxide Synthase-2 (NOS2) and Nitro-tyrosine. Indeed, this study divulges anti-inflammatory activity of Mel-CSNPs by improving the therapeutic potential of melatonin.


Assuntos
Quitosana , Doenças Inflamatórias Intestinais , Melatonina , Nanopartículas , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Humanos , Doenças Inflamatórias Intestinais/tratamento farmacológico , Melatonina/farmacologia , Melatonina/uso terapêutico , Óxido Nítrico , Óxido Nítrico Sintase Tipo II/metabolismo , Distribuição Tecidual
12.
J Med Chem ; 64(11): 7760-7777, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-34019417

RESUMO

N-Phenylpropenoyl-l-amino acids (NPAs) are inducible nitric oxide synthase (iNOS) inhibitors possessing preventive effects for Parkinson's disease (PD). Here, structural modifications for improving the iNOS inhibitory activity and blood-brain barrier (BBB) permeability of NPAs were conducted, leading to 20 optimized NPA derivatives (1-20). Compound 18, with the most potent activity (IC50 = 74 nM), high BBB permeability (Pe = 19.1 × 10-6 cm/s), and high selectivity over other NOS isoforms, was selected as the lead compound. Further studies demonstrated that 18 directly binds to iNOS. In the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced acute PD model, the oral administration of 18 (1 and 2 mg/kg) exerted preventive effects by alleviating the loss of dopaminergic (DAergic) neurons. Notably, in the MPTP-/probenecid-induced chronic PD model, the same dose of 18 also displayed a therapeutic effect by repairing the damaged DAergic neurons. Finally, good pharmacokinetic properties and low toxicity made 18 a promising candidate for the treatment of PD.


Assuntos
Aminoácidos/química , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Propanóis/química , Aminoácidos/metabolismo , Aminoácidos/farmacologia , Animais , Sítios de Ligação , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Modelos Animais de Doenças , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Desenho de Fármacos , Meia-Vida , Humanos , Isoenzimas/antagonistas & inibidores , Isoenzimas/metabolismo , Intoxicação por MPTP/tratamento farmacológico , Intoxicação por MPTP/patologia , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Microglia/citologia , Microglia/efeitos dos fármacos , Microglia/metabolismo , Simulação de Acoplamento Molecular , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Relação Estrutura-Atividade
13.
Molecules ; 26(9)2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33946346

RESUMO

Colitis causes destruction of the intestinal mucus layer and increases intestinal inflammation. The use of antioxidants and anti-inflammatory agents derived from natural sources has been recently highlighted as a new approach for the treatment of colitis. Oxyresveratrol (OXY) is an antioxidant known to have various beneficial effects on human health, such as anti-inflammatory, antibacterial activity, and antiviral activity. The aim of this study was to investigate the therapeutic effect of OXY in rats with dextran sulfate sodium (DSS)-induced acute colitis. OXY ameliorated DSS-induced colitis and repaired damaged intestinal mucosa. OXY downregulated the expression of pro-inflammatory cytokine genes (TNF-α, IL-6, and IL-1ß) and chemokine gene MCP-1, while promoting the production of anti-inflammatory cytokine IL-10. OXY treatment also suppressed inflammation via inhibiting cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) expression in the colon, as well as the activity of myeloperoxidase (MPO). OXY exhibited anti-apoptotic effects, shifting the Bax/Bcl-2 balance. In conclusion, OXY might improve DSS-induced colitis by restoring the intestinal mucus layer and reducing inflammation within the intestine.


Assuntos
Anti-Inflamatórios/farmacologia , Sulfato de Dextrana/efeitos adversos , Extratos Vegetais/farmacologia , Estilbenos/farmacologia , Animais , Biomarcadores , Colite/tratamento farmacológico , Colite/etiologia , Colite/metabolismo , Colo/efeitos dos fármacos , Colo/metabolismo , Colo/patologia , Citocinas/metabolismo , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Expressão Gênica , Humanos , Mediadores da Inflamação/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Óxido Nítrico Sintase Tipo II/metabolismo , Tamanho do Órgão/efeitos dos fármacos , Ratos , Baço/efeitos dos fármacos , Baço/metabolismo , Baço/patologia
14.
J Food Sci ; 86(6): 2468-2480, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34028011

RESUMO

To investigate ways to extract greater dietary value from the leaves of the vegetable soybean (Glycine max (L.) Merr.) cultivar 'Kaohsiung No. 9'. Our results indicate that phenolic content and flavonoid content are highest in extracts prepared with 70% methanol and 70% ethanol. The 70% ethanol extracts also had the highest quercetin (135 ± 1.62 µg/g) and kaempferol (450 ± 1.35 µg/g) contents. These results show that flavonoids are a dominant class of compounds in these vegetable soybean leaf extracts and serve as their main source of antioxidants. At an extract concentration of 5 mg/ml, the 70% methanol extracts achieved good antioxidant effects, with a DPPH radical scavenging rate of 80%, and a reducing power of 88%. In assays of anti-inflammatory capacity using lipopolysaccharide-stimulated RAW 264.7 macrophages. The 70% methanol extracts displayed the most significant inhibition of nitric oxide (NO) synthesis, achieving up to 86% inhibition. As a similar trend was observed in expression levels of inducible nitric oxide synthase (iNOS), we deduced that vegetable soybean leaves may regulate NO synthesis through inhibiting iNOS. We also observed a significant decrease in cyclooxygenase (COX)-2 gene expression. Analysis of proinflammatory cytokine synthesis revealed that the 70% methanol and 70% ethanol extracts significantly reduced TNF-α, IL-6, and IL-1ß synthesis, and increased the intracellular reduced glutathione/oxidized glutathione (GSH/GSSG) ratio from 8 to 12.8. These results indicate that vegetable soybean leaves possess antioxidant activities and exert inhibitory effects on inflammatory mediators, suggesting their potential for use as dietary supplements.


Assuntos
Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Flavonoides/farmacologia , Macrófagos/efeitos dos fármacos , Extratos Vegetais/farmacologia , Folhas de Planta/química , Soja/química , Animais , Antioxidantes/análise , Macrófagos/citologia , Camundongos , Óxido Nítrico Sintase Tipo II/metabolismo , Células RAW 264.7 , Fator de Necrose Tumoral alfa/metabolismo
15.
Oxid Med Cell Longev ; 2021: 6692628, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33815659

RESUMO

This work is aimed at investigating the expression levels of inducible nitric oxide synthase (iNOS) in cervical cancer and identifying a potential iNOS inhibitor. The data mining studies performed advocated iNOS to be a promising biomarker for cancer prognosis, as it is highly overexpressed in several malignant cancers. The elevated iNOS was found to be associated with poor survival and increased tumor aggressiveness in cervical cancer. Immunohistochemical and RT-PCR investigations of iNOS showed significant upregulation of endogenous iNOS expression in the cervical tumor samples, thus making iNOS a potent target for decreasing tumor inflammation and aggressiveness. Andrographolide, a plant-derived diterpenoid lactone, is widely reported to be effective against infections and inflammation, causing no adverse side effects on humans. In the current study, we investigated the effect of andrographolide on the prognostic value of iNOS expression in cervical cancer, which has not been reported previously. The binding efficacy of andrographolide was analyzed by performing molecular docking and molecular dynamic simulations. Multiple parameters were used to analyze the simulation trajectory, like root mean square deviation (RMSD), torsional degree of freedom, protein-root mean square fluctuations (P-RMSF), ligand RMSF, total number of intramolecular hydrogen bonds, secondary structure elements (SSE) of the protein, and protein complex with the time-dependent functions of MDS. Ligand-protein interactions revealed binding efficacy of andrographolide with tryptophan amino acid of iNOS protein. Cancer cell proliferation, cell migration, cell cycle analysis, and apoptosis-mediated cell death were assessed in vitro, post iNOS inhibition induced by andrographolide treatment (demonstrated by Western blot). Results. Andrographolide exhibited cytotoxicity by inhibiting the in vitro proliferation of cervical cancer cells and also abrogated the cancer cell migration. A significant increase in apoptosis was observed with increasing andrographolide concentration, and it also induced cell cycle arrest at G1-S phase transition. Our results substantiate that andrographolide significantly inhibits iNOS expression and exhibits antiproliferative and proapoptotic effects on cervical cancer cells.


Assuntos
Apoptose , Diterpenos/farmacologia , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Neoplasias do Colo do Útero/patologia , Adulto , Animais , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Feminino , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Células HeLa , Humanos , Ligantes , Pessoa de Meia-Idade , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Reprodutibilidade dos Testes , Termodinâmica , Neoplasias do Colo do Útero/genética , Cicatrização/efeitos dos fármacos
16.
ACS Chem Neurosci ; 12(9): 1593-1605, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33884870

RESUMO

The development of multifunctional molecules that are able to simultaneously interact with several pathological components has been considered as a solution to treat the complex pathologies of neurodegenerative diseases. Herein, a series of aminomethylindole derivatives were synthesized, and evaluation of their application for antineuroinflammation and promoting neurite outgrowth was disclosed. Our initial screening showed that most of the compounds potently inhibited lipopolysaccharide (LPS)-stimulated production of NO in microglial cells and potentiated the action of NGF to promote neurite outgrowth of PC12 cells. Interestingly, with outstanding NO/TNF-α production inhibition and neurite outgrowth-promoting activities, compounds 8c and 8g were capable of rescuing cells after injury by H2O2. Their antineuroinflammatory effects were associated with the downregulation of the LPS-induced expression of the inflammatory mediators inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Western blotting and immunofluorescence assay results indicated that the mechanism of their antineuroinflammatory actions involved suppression of the MAPK/NF-κB signal pathways. Further studies revealed that another important reason for the high comprehensive antineuroinflammatory activity was the anti-COX-2 capabilities of the compounds. All these results suggest that the potential biochemical multifunctional profiles of the aminomethylindole derivatives provide a new sight for the treatment of neurodegenerative diseases.


Assuntos
Anti-Inflamatórios , Peróxido de Hidrogênio , Animais , Anti-Inflamatórios/farmacologia , Ciclo-Oxigenase 2/metabolismo , Lipopolissacarídeos/farmacologia , Microglia/metabolismo , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Ratos
17.
Phytother Res ; 35(6): 3377-3389, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33891785

RESUMO

Excessive glutamate (Glu) can lead to significant effects on neural cells through the generation of neurotoxic or excitotoxic cascades. Icariin (ICA) is a main active ingredient of Chinese Medicine Berberidaceae epimedium L., and has many biological activities, such as antiinflammation, antioxidative stress, and anti-depression. This study aims to evaluate the effect of ICA on Glu-induced excitatory neurotoxicity of SH-SY5Y cells. The cell viability assay was evaluated by the CCK-8 assay. The apoptosis, reactive oxygen species (ROS), and mitochondrial membrane potential were assessed by flow cytometry. Intracellular Ca2+ concentration was determined by using the fluorescent probe Fluo-3. Protein expression was detected by western blotting analysis. ICA can significantly enhance the SH-SY5Y cell viability reduced by Glu. At the same time, ICA can significantly reduce apoptosis, ROS, nitric oxide (NO) levels, and intracellular Ca2+ concentration, and significantly inhibit the increase of mitochondrial membrane potential. In addition, ICA significantly increased the expression of P47phox and iNOS, decreased p-JNK/JNK, p-P38/P38, Bax/Bcl-2, active caspase-3, and active caspase-9. These results indicate that ICA may reduce the excitatory neurotoxicity of Glu-induced SH-SY5Y cells through suppression of oxidative stress and apoptotic pathways, suggesting that ICA could be a potential therapeutic candidate for neurological disorders propagated by Glu toxicity.


Assuntos
Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Flavonoides/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Caspase 3/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Ácido Glutâmico/farmacologia , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Óxido Nítrico Sintase Tipo II/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Espécies Reativas de Oxigênio/metabolismo
18.
Nitric Oxide ; 111-112: 64-71, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: covidwho-1164254

RESUMO

Symptoms of COVID-19 range from asymptomatic/mild symptoms to severe illness and death, consequence of an excessive inflammatory process triggered by SARS-CoV-2 infection. The diffuse inflammation leads to endothelium dysfunction in pulmonary blood vessels, uncoupling eNOS activity, lowering NO production, causing pulmonary physiological alterations and coagulopathy. On the other hand, iNOS activity is increased, which may be advantageous for host defense, once NO plays antiviral effects. However, overproduction of NO may be deleterious, generating a pro-inflammatory effect. In this review, we discussed the role of endogenous NO as a protective or deleterious agent of the respiratory and vascular systems, the most affected in COVID-19 patients, focusing on eNOS and iNOS roles. We also reviewed the currently available NO therapies and pointed out possible alternative treatments targeting NO metabolism, which could help mitigate health crises in the present and future CoV's spillovers.


Assuntos
COVID-19/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico/metabolismo , SARS-CoV-2 , Vasos Sanguíneos/metabolismo , Regulação Enzimológica da Expressão Gênica , Humanos , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo III/genética , Sistema Respiratório/metabolismo
19.
Adv Sci (Weinh) ; 8(7): 2003895, 2021 04.
Artigo em Inglês | MEDLINE | ID: covidwho-1103262

RESUMO

Coronavirus disease 2019 (COVID-19) is an infectious disease caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) that has quickly and deeply affected the world, with over 60 million confirmed cases. There has been a great effort worldwide to contain the virus and to search for an effective treatment for patients who become critically ill with COVID-19. A promising therapeutic compound currently undergoing clinical trials for COVID-19 is nitric oxide (NO), which is a free radical that has been previously reported to inhibit the replication of several DNA and RNA viruses, including coronaviruses. Although NO has potent antiviral activity, it has a complex role in the immunological host responses to viral infections, i.e., it can be essential for pathogen control or detrimental for the host, depending on its concentration and the type of virus. In this Essay, the antiviral role of NO against SARS-CoV, SARS-CoV-2, and other human viruses is highlighted, current development of NO-based therapies used in the clinic is summarized, existing challenges are discussed and possible further developments of NO to fight viral infections are suggested.


Assuntos
Antivirais/uso terapêutico , Óxido Nítrico/uso terapêutico , Viroses/tratamento farmacológico , Antivirais/química , Antivirais/farmacologia , COVID-19/diagnóstico , COVID-19/tratamento farmacológico , COVID-19/virologia , Ensaios Clínicos como Assunto , Humanos , Óxido Nítrico/farmacologia , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Óxido Nítrico Sintase Tipo II/metabolismo , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/isolamento & purificação , Viroses/patologia , Replicação Viral/efeitos dos fármacos
20.
Nitric Oxide ; 111-112: 64-71, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33831567

RESUMO

Symptoms of COVID-19 range from asymptomatic/mild symptoms to severe illness and death, consequence of an excessive inflammatory process triggered by SARS-CoV-2 infection. The diffuse inflammation leads to endothelium dysfunction in pulmonary blood vessels, uncoupling eNOS activity, lowering NO production, causing pulmonary physiological alterations and coagulopathy. On the other hand, iNOS activity is increased, which may be advantageous for host defense, once NO plays antiviral effects. However, overproduction of NO may be deleterious, generating a pro-inflammatory effect. In this review, we discussed the role of endogenous NO as a protective or deleterious agent of the respiratory and vascular systems, the most affected in COVID-19 patients, focusing on eNOS and iNOS roles. We also reviewed the currently available NO therapies and pointed out possible alternative treatments targeting NO metabolism, which could help mitigate health crises in the present and future CoV's spillovers.


Assuntos
COVID-19/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico/metabolismo , SARS-CoV-2 , Vasos Sanguíneos/metabolismo , Regulação Enzimológica da Expressão Gênica , Humanos , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo III/genética , Sistema Respiratório/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...