Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.995.936
Filtrar
1.
Chemosphere ; 262: 128371, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33182123

RESUMO

The environment is affected by agricultural, domestic, and industrial activities that lead to drastic problems such as global warming and wastewater generation. Wastewater pollution is of public concern, making the treatment of persistent pollutants in water and wastewater highly imperative. Several conventional treatment technologies (physicochemical processes, biological degradation, and oxidative processes) have been applied to water and wastewater remediation, but each has numerous limitations. To address this issue, treatment using bimetallic systems has been extensively studied. This study reviews existing research on various synthesis methods for the preparation of bimetallic catalysts and their catalytic application to the treatment of organic (dyes, phenol and its derivatives, and chlorinated organic compounds) and inorganic pollutants (nitrate and hexavalent chromium) from water and wastewater. The reaction mechanisms, removal efficiencies, operating conditions, and research progress are also presented. The results reveal that Fe-based bimetallic catalysts are one of the most efficient heterogeneous catalysts for the treatment of organic and inorganic contamination. Furthermore, the roles and performances of bimetallic catalysts in the removal of these environmental contaminants are different.


Assuntos
Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Catálise , Corantes , Poluentes Ambientais , Oxirredução , Poluentes Químicos da Água/análise
2.
Chemosphere ; 262: 128365, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33182124

RESUMO

The study of soil potentially toxic elements (PTE) contents and establishment of the geochemical characterization of areas which have never been studied is of great concern. In 2019, soil survey of the Armavir region (Armenia) was conducted in order to investigate the spatial pattern of PTE, reveal PTE geochemical associations and assess the origin-specific health risks. The application of compositional data analysis and geospatial mapping allowed to identify two clusters of samples. The first cluster was spatially located on volcanic rocks and was represented by Fe, Co, Mn, Ti, Zn, Ba, Pb suggesting a natural origin of PTE in these areas. The second cluster was allocated on the alluvial, deluvial, and proluvial sediments and represented by As, Cu, Cr, Ni. Such combination of elements in the same group indicates the anthropogenic introduction of some quantities of PTE. The latter is confirmed by the presence of outliers and extreme values for As, Cu and Ni, as well as by the spatial colocation of Fe, Mn, Co, Pb, Zn outliers and extreme contents. The health risk assessment showed that for children the multi-elemental non-carcinogenic risk was detected, while for the adults the non-carcinogenic risk and carcinogenic risk were below the allowable level. The detailed study of the risk levels showed that in first cluster comparatively higher risk were observed for Pb, V, Ba, Zn while in the second cluster: Fe, Co, Mn, As, Cr, Cu, Ni. The results indicated the necessity of additional in-depth studies with special focus on bioavailability of PTE.


Assuntos
Metais Pesados/análise , Poluentes do Solo/análise , Adulto , Armênia , Criança , Monitoramento Ambiental/métodos , Humanos , Medição de Risco , Solo/química
3.
Chemosphere ; 262: 128404, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33182127

RESUMO

BACKGROUND: Reduced growth velocity before birth increases the risk of adverse health outcomes in adult life. However, until recently, there has been a lack of studies demonstrating the impact of prenatal PM2.5 exposure on fetal growth velocity. METHODS: The current study was embedded in a previous cohort built between January 1, 2014, and April 30, 2015, in Shanghai First Maternity and Infant Hospital, China, in 6129 eligible singleton pregnancies. The PM2.5 concentration was estimated by an inverse distance weighted method according to the residential addresses of the participants. Repeated fetal biometry measurements, including head circumference (HC), abdominal circumference (AC), femur length (FL), and biparietal diameter (BPD), were measured through ultrasound between 14 and 41 gestational weeks. A principal component analysis through conditional expectation for sparse longitudinal data was used to estimate the corresponding velocities. RESULTS: A total of 22782 ultrasound measurements were conducted among 6129 participants with a median of 2 and a maximum of 9 measurements. With each 10 µg/m3 increase in cumulative PM2.5 exposure, the velocity of HC, AC FL and BPD decreased by 0.12 mm/week, 0.17 mm/week, 0.02 mm/week and 0.02 mm/week, respectively, on average. The results of the Generalized Functional Concurrent Model showed that the velocity decreased significantly with PM2.5 exposure between 22 and 32 gestational weeks, which might be the potential sensitive exposure window. CONCLUSIONS: There are negative associations between prenatal exposure to PM2.5 and fetal growth velocity, and the late second trimester and early third trimester might be the potential sensitive window.


Assuntos
Poluentes Atmosféricos/toxicidade , Exposição Materna , Material Particulado/toxicidade , Efeitos Tardios da Exposição Pré-Natal , Adulto , China , Estudos de Coortes , Feminino , Desenvolvimento Fetal , Idade Gestacional , Humanos , Masculino , Material Particulado/análise , Gravidez , Segundo Trimestre da Gravidez , Terceiro Trimestre da Gravidez , Ultrassonografia Pré-Natal/métodos
4.
Chemosphere ; 262: 128376, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33182138

RESUMO

Indoor air pollution has traditionally received less attention than outdoors pollution despite indoors pollutant levels are typically twice higher, and people spend 80-90% of their life in increasing air-tight buildings. More than 5 million people die every year prematurely from illnesses attributable to poor indoor air quality, which also causes multi-millionaire losses due to reduced employee's productivity, material damages and increased health system expenses. Indoor air pollutants include particulate matter, biological pollutants and over 400 different chemical organic and inorganic compounds, whose concentrations are governed by several outdoor and indoor factors. Prevention of pollutant is not always technically feasible, so the implementation of cost-effective active abatement units is required. Up to date no single physical-chemical technology is capable of coping with all indoor air pollutants in a cost-effective manner. This problem requires the use of sequential technology configurations at the expenses of superior capital and operating costs. In addition, the performance of conventional physical-chemical technologies is still limited by the low concentrations, the diversity and the variability of pollutants in indoor environments. In this context, biotechnologies have emerged as a cost-effective and sustainable platform capable of coping with these limitations based on the biocatalytic action of plants, bacteria, fungi and microalgae. Indeed, biological-based purification systems can improve the energy efficiency of buildings, while providing additional aesthetic and psychological benefits. This review critically assessed the state-of-the-art of the indoor air pollution problem and prevention strategies, along with the recent advances in physical-chemical and biological technologies for indoor pollutants abatement.


Assuntos
Poluição do Ar em Ambientes Fechados/análise , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Monitoramento Ambiental , Humanos , Material Particulado/análise
5.
Chemosphere ; 262: 128408, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33182150

RESUMO

The safety of creating fish farms in agricultural settings was evaluated by growing Piaractus mesopotamicus in a pond, while crops where cultivated in a nearby field under a pesticide application regime typical of the Pampa region. Atrazine, glyphosate and its metabolite, aminomethylphosphonic acid (AMPA), were detected in the water of the pond at concentrations ranging between 92 and 118 µg/L for atrazine, 12 and 221 µg/L for glyphosate and 21 and 117 µg/L for AMPA. Atrazine and malathion were detected in fish muscles at concentrations ranging between 70 and 105 µg/kg for atrazine and 8.6 and 23.7 µg/kg for malathion. Compared to fish raised in a pisciculture, fish from the agricultural pond presented reduced values of pack cell volume, hemoglobin, mean corpuscular hemoglobin and mean corpuscular hemoglobin concentration, together with significantly greater cholinesterase activity in both plasma and liver and reduced glutathione-S-transferase activity in the liver. A comet assay also demonstrated that P. mesopotamicus from the agricultural pond presented a significantly greater level of DNA damage in both erythrocytes and gill cells. Overall, the present study demonstrates that pisciculture ponds established in an agricultural setting may receive pesticides applied to nearby cultures and that these pesticides may be taken up by the fish and affect their physiology and health. The accumulation of pesticides residues in fish flesh may also present a risk to human consumers and should be closely controlled.


Assuntos
Aquicultura , Agricultura , Animais , Atrazina , Colinesterases , Monitoramento Ambiental , Fazendas , Peixes , Glicina/análogos & derivados , Humanos , Resíduos de Praguicidas/análise , Praguicidas/análise , Tanques/química , Poluentes Químicos da Água/análise
6.
Chemosphere ; 262: 127930, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33182151

RESUMO

The beneficial recycling of drinking water treatment residue (DWTR) for environmental remediation has received increasingly interests; whereas, the reported potential effect of microbial communities in different DWTR was ambiguous, which was unfavorable for the beneficial recycling. This study hypothesized that the varied treatment to DWTR in different waterworks induced the ambiguous effect; accordingly, responses of microbial communities in DWTR to the sequential dewatering and drying treatment were determined based on samples from three waterworks, in combination with 180-d incubation tests. The results showed that the microbial communities varied remarkably in different DWTR before being dewatered (DWTS). However, after dewatering, the increased microbial diversities were observed, and the microbial communities exhibited higher similarities among the dewatered DWTR from different waterworks; furthermore, the dewatered DWTR with subsequent drying treatment enriched more bacteria genus with potential environmental functions after incubation tests. The variations of microbial communities were closely related to DWTR properties, such as pH, organic matter, metals, P, and water extractable nutrients. Further analysis indicated that with maintaining high adsorption capability of DWTR, the dewatering treatment tended to retain specific microbial communities that may be induced by the applied similar techniques in different waterworks; the accumulated nutriments due to drying treatment and the stable DWTR pH enhanced the potential functional bacteria enrichment. Overall, the dewatering and drying treatment led to microbial communities with generality in different DWTR and increased the potential favorable microbial effect, promoting DWTR recycling in environmental remediation.


Assuntos
Água Potável/química , Purificação da Água/métodos , Adsorção , Dessecação , Água Potável/análise , Recuperação e Remediação Ambiental , Metais , Microbiota , Reciclagem
7.
Chemosphere ; 262: 127905, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33182152

RESUMO

Pot experiments were conducted to study combined effects of Ca and Cd on contents of Cd and Ca, and membrane transporters activities (CC (calcium channel protein), ATPase and CAXs (cationic/H+ antiporter) of two-year old Panax notoginseng with application of different concentrations of Ca2+ (0, 180 and 360 mgkg-1, prepared by Ca(OH)2 and CaCl2, respectively) under Cd2+ (0, 0.6, 6.0, and 12.0 mgkg-1, prepared by CdCl2•2.5H2O) treatments. The results showed that soil available Cd contents decreased with Ca(OH)2 and CaCl2 application. Soil pH value increased with Ca(OH)2 application. The contents of Cd in all parts of P. notoginseng increased with the increase in Cd treatment concentrations. The Cd content of P. notoginseng decreased with Ca(OH)2 and CaCl2 treatments. The activities of CC and ATPase in the main root of P. notoginseng decreased with the increase in Cd treatment concentrations and application of CaCl2. The activities of CC and ATPase increased with Ca(OH)2application. The activity of CAXs in the main root of P. notoginseng increased with the increase of Cd treatment concentration. The results indicate that Ca and Cd should be both related to membrane transporters activities and activities of CC, ATPase and CAXs are promoted by cooperation of Ca2+and OH+, which suggest the Ca(OH)2 application should be better than application of CaCl2 for Cd detoxification.


Assuntos
Cádmio/toxicidade , Cálcio/metabolismo , Panax notoginseng/fisiologia , Poluentes do Solo/toxicidade , Adenosina Trifosfatases/análise , Cádmio/análise , Proteínas de Membrana Transportadoras/metabolismo , Panax notoginseng/química , Raízes de Plantas/metabolismo , Solo/química , Poluentes do Solo/análise
8.
Chemosphere ; 262: 128405, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33182156

RESUMO

This study focused on the fouling characteristics evaluation of the sludge in a membrane bioreactor integrated with microbial fuel cell (MFC-MBR) to reveal the mechanisms of membrane fouling mitigation. The filtration of soluble microbial products (SMPs) in MFC-MBR showed lower flux decline rate than those in the control system (C-MBR). Based on the extended Derjaguin-Landau-Verwey-Overbeek analysis, decreases in free energies of adhesion between the SMPs and clean membrane or SMP-fouled membrane were observed in MFC-MBR. When approaching the clean membrane or SMP-fouled membrane, the SMPs in MFC-MBR had to overcome a higher energy barrier compared to those in C-MBR, indicating the inhibition of adsorption of SMPs on the membrane surface in MFC-MBR. Additionally, sludge flocs in MFC-MBR exhibited lower hydrophobicity and were less negative surface charged in comparison to those in the C-MBR. In MFC-MBR, the sludge flocs approaching the clean membrane, SMP-fouled membrane and cake layer all experienced higher energy barriers and lower secondary energy minimums compared to those in C-MBR, exhibiting the lower potential of cake layer formation. These results confirmed that decreases of the fouling potentials of SMPs and sludge flocs were essential for the membrane fouling mitigation in the MFC-MBR.


Assuntos
Fontes de Energia Bioelétrica , Reatores Biológicos , Filtração , Interações Hidrofóbicas e Hidrofílicas , Membranas Artificiais , Esgotos/análise
9.
Sci Total Environ ; 753: 141774, 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33207436

RESUMO

Atmospheric fine particulate matter (PM2.5) causes severe haze in China and is regarded as a threat to human health. The health effects of PM2.5 vary location by location due to the variation in size distribution, chemical composition, and sources. In this study, the cytotoxicity effect, oxidative stress, and gene expression regulation of PM2.5 in Chengdu and Chongqing, two typical urban areas in southern China, were evaluated. Urban PM2.5 in summer and winter significantly inhibited cell viability and increased reactive oxygen species (ROS) levels in A549 cells. Notably, PM2.5 in winter exhibited higher cytotoxicity and ROS level than summer. Moreover, in this study, PM2.5 commonly induced cancer-related gene expression such as cell adhesion molecule 1 (PECAM1), interleukin 24 (IL24), and cytochrome P450 (CYP1A1); meanwhile, PM2.5 commonly acted on cancer-related biological functions such as cell-substrate junction, cell-cell junction, and focal adhesion. In particular, PM2.5 in Chengdu in summer had the highest carcinogenic potential among PM2.5 at the two sites in summer and winter. Importantly, cancer-related genes were uniquely targeted by PM2.5, such as epithelial splicing regulatory protein 1 (ESRP1) and membrane-associated ring-CH-type finger 1 (1-Mar) by Chengdu summer PM2.5; collagen type IX alpha 3 chain (COL9A3) by Chengdu winter PM2.5; SH2 domain-containing 1B (SH2D1B) by Chongqing summer PM2.5; and interleukin 1 receptor-like 1 (IL1RL1) and zinc finger protein 42 (ZNF423) by Chongqing winter PM2.5. Meanwhile, important cancer-related biological functions were specially induced by PM2.5, such as cell cycle checkpoint by Chengdu summer PM2.5; macromolecule methylation by Chengdu winter PM2.5; endoplasmic reticulum-Golgi intermediate compartment membrane by Chongqing summer PM2.5; and cellular lipid catabolic process by Chongqing winter PM2.5. Conclusively, in the typical urban areas of southern China, both summer and winter PM2.5 illustrated significant gene regulation effects. This study contributes to evaluating the adverse health effects of PM2.5 in southern China and providing public health suggestions for policymakers.


Assuntos
Poluentes Atmosféricos , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , China , Monitoramento Ambiental , Regulação da Expressão Gênica , Humanos , Material Particulado/análise , Material Particulado/toxicidade , Estações do Ano , Fatores de Transcrição
10.
Sci Total Environ ; 753: 141884, 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33207442

RESUMO

Understanding how plants and earthworms regulate soil-based ecosystem services can guide design and management of built environments to improve environmental quality. We tested whether plant and earthworm activity results in trade-offs between soil carbon (C) retention and water quality. In a 2 × 2 factorial random block design, we introduced shrubs (Aronia melanocarpa) and earthworms (Lumbricus terrestris) to turfgrass (Lolium perenne) sandy loam mesocosms in a greenhouse. We measured soil respiration and soil microclimate every two weeks and leachate every two months. After 15 months, we assessed C and nitrogen (N) in bulk soil and aggregates (> 2000, 2000-250, 250-53 µm). Turfgrass mesocosms with earthworms retained less soil C (6.10 ± 0.20 kg/m2), especially when warmer. Soils planted with shrubs were drier and had 7% lower mean respiration rates than soils without shrubs. Turfgrass mesocosms with both shrubs and earthworms retained more soil C (6.66 ± 0.25 kg/m2), even when warmer, and held ~1.5 times more C in >2 mm aggregates than turfgrass-only mesocosms. Turfgrass mesocosms with shrubs and earthworms leached nitrate-N with increased respiration and retained phosphate-P and dissolved organic carbon (DOC) when wetter. In contrast, turfgrass mesocosms with only shrubs had the opposite response by leaching less nitrate-N with increased respiration, and more phosphate-P and DOC when wetter. Overall, shrub and earthworm activity in turfgrass mesocosms led to soil C-nutrient retention trade-offs. Our results reveal potential challenges in managing built environments to both retain soil C and improve water quality.


Assuntos
Oligoquetos , Animais , Carbono/análise , Ecossistema , Solo , Qualidade da Água
11.
Sci Total Environ ; 753: 141975, 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33207448

RESUMO

Tetracyclines (TCs), used as human and veterinary medicines, are the most widely used antibiotics. More than 75% of TCs are excreted in an active form and released into the environment through human and animal urine and feces, causing adverse effects on the ecological system and human health. Few articles review the environmental occurrence and behaviors of TCs, as well as their risks and toxicities. Here, we comprehensively summarized the recent advances on the following important issues: (1) Environmental occurrence of TCs. TCs are used globally and their occurrence in the aquatic environment has been documented, including surface water, groundwater, drinking water, wastewater, sediment, and sludge. (2) Environmental behaviors of TCs, particularly the fate of TCs in wastewater treatment plants (WWTPs). Most WWTPs cannot effectively remove TCs from wastewater, so alternative methods for efficient removal of TCs need to be developed. The latest degradation methods of TCs are summarized, including adsorption, photocatalytic, photochemical and electrochemical, and biological degradations. (3) Toxicities and possible risks of TCs. The toxicological data of TCs indicate that several TCs are more toxic to algae than fish and daphnia. Risk assessments based on individual compound exposure indicate that the risks arising from the current concentrations of TCs in the aquatic environment cannot be ignored.


Assuntos
Poluentes Químicos da Água , Animais , Antibacterianos/toxicidade , Humanos , Medição de Risco , Tetraciclinas/análise , Tetraciclinas/toxicidade , Águas Residuárias , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
12.
Sci Total Environ ; 753: 142024, 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33207452

RESUMO

Microplastic and nanoplastic pollution in aquatic environments is a topic of emerging concern due to the internalization, retention time and effects of these particles in aquatic biota. Bivalves are considered bioindicators due to their wide distribution, sessile behaviour, occupation of ecological niches and ability to filter a large water volume. The study of microplastics and nanoplastics in bivalves has revealed the uptake mechanisms, internalization, distribution and depuration of these particles as well as their effects on physiological parameters, morphological alterations, immunotoxicity and changes in gene expression and proteomic profiles. In this review, we examine the primary characteristics of microplastics and nanoplastics (type of material, size, coating, density, additives and shapes) involved in their possible toxicity in bivalves. Furthermore, secondary characteristics such as the suspension media, aggregation stage and adsorption of persistent pollutants were also recorded to assess the impact of these materials on bivalves. Here, we have highlighted the efforts exerted thus far and the remaining gaps in understanding the extent of microplastic and nanoplastic impacts on bivalves on the basis of laboratory experiments and mesocosm bioassays and in the field. Furthermore, further microplastic and nanoplastic toxicological studies are proposed to facilitate the realistic assessment of environmental risk.


Assuntos
Bivalves , Poluentes Ambientais , Poluentes Químicos da Água , Animais , Monitoramento Ambiental , Microplásticos , Plásticos/toxicidade , Proteômica , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
13.
Sci Total Environ ; 753: 141980, 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33207456

RESUMO

The algae biological pump (ABP) effect for hydrophobic organic contaminants in deep oligotrophic lakes and oceans has been well studied. Suspended particulate matter (SPM) plays a connective role in ABP processes. However, little is known about the impacts of ABP effect on the occurrence, source apportionment and toxicity of SPM-bound polycyclic aromatic hydrocarbons (PAHs) in a typically shallow eutrophic lake under strong anthropogenic emissions of PAHs. In this study, we study this gap knowledge on the eutrophic Lake Chaohu, China. SPM-bound PAHs in Lake Chaohu were controlled by anthropogenic emissions in all seasons. Apparent ABP effect only occurred in spring and summer in lake area. Algae blooms in spring and summer significantly increased 46.5% ± 7.9% (mean ± standard deviation) and 19.8% ± 2.4% of Σ21 SPM-bound PAHs, and greatly enhanced their toxicity (1.98 ± 0.46 times in spring and 32.9% ± 4.2% in summer). Therefore, there need more attentions focusing on the coupling effect of persistent toxic substances such as PAHs and harmful algae blooms in aquatic environment for sustainable development. The apparent ABP effect had little influence on their source apportionment. However, it may cause a regime shift for the source apportionment on a short-term scale. Further study could pay more attentions on in-depth and short-term studies on ABP effect.


Assuntos
Proteínas de Membrana Transportadoras , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , China , Monitoramento Ambiental , Sedimentos Geológicos , Lagos/análise , Material Particulado/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
14.
Sci Total Environ ; 753: 141902, 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33207459

RESUMO

One of negative side-effects of usage of bio-renewables might be generation of mineral (ash) material, potential source of environmental pollution. A hypothesis was that bottom ash (BA; from biomass cogeneration facility) could be efficiently (re) used in soil chemical conditioning similarly to widely-used dolomite-based soil conditioner (DO; from Croatian Dinaric-coastal region) which we tested by: i) physicochemical characterisation of BA and DO, and ii) bioassay with Raphanus sativus cultivated in acidic soil amended with BA or DO. Scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX) confirmed complex chemical/physical structures and morphology between amendments, X-ray diffraction (XRD) showed their distinctive mineralogy with predominantly dolomite (in DO) vs. quartz and calcite (in BA), while secondary ion mass spectrometry (SIMS) revealed their diverse elemental/isotopic composition. The BA or DO amendments ameliorated soil acidity, increased available P, K and most other nutrients, but not Cd. The BA or DO amendments improved vegetative growth and edible hypocotyl yield. However, both amendments also increased Cd accumulation in all radish tissues, which was unexpected given the alkaline matrix of bio-ash and dolomite that would be likely to facilitate retention and immobilisation of toxic Cd. Thus, thorough characterisation and evaluation of BA- and/or DO-based materials and relevant soils (with an emphasis on metal sorption/immobilisation) prior to application in (agro) ecosystems is crucial for producing food clean of toxic metals.


Assuntos
Raphanus , Poluentes do Solo , Biomassa , Cádmio/análise , Carbonato de Cálcio , Cinza de Carvão , Ecossistema , Magnésio , Nutrientes , Solo , Poluentes do Solo/análise
15.
Sci Total Environ ; 753: 141819, 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33207461

RESUMO

The occurrence and health risks of toxic organic contaminants (TOCs) in the funeral industry are relatively under-studied compared to other industries. An increasing body of literature reports TOCs including emerging contaminants in the funeral industry, but comprehensive reviews of the evidence are still lacking. Hence, evidence was analysed to address the proposition that, the funeral industry constitutes several hotspot reservoirs of a wide spectrum of TOCs posing ecological and human health risks. TOCs detected include embalming products, persistent organic pollutants, synthetic pesticides, pharmaceuticals, personal care products and illicit drugs. Human cadavers, solid wastes, wastewaters and air-borne particulates from autopsy, thanatopraxy care facilities (mortuaries, funeral homes), cemeteries and crematoria are hotspots of TOCs. Ingestion of contaminated water, and aquatic and marine foods constitutes non-occupational human exposure, while occupational exposure occurs via inhalation and dermal intake. Risk factors promoting exposure to TOCs include unhygienic burial practices, poor solid waste and wastewater disposal, and weak and poorly enforced regulations. The generic health risks of TOCs are quite diverse, and include; (1) genotoxicity, endocrine disruption, teratogenicity and neurodevelopmental disorders, (2) development of antimicrobial resistance, (3) info-disruption via biomimicry, and (4) disruption of ecosystem functions and trophic interactions. Barring formaldehyde and inferential evidence, the epidemiological studies linking TOCs in the funeral industry to specific health outcomes are scarce. The reasons for the lack of evidence, and limitations of current health risk assessment protocols are discussed. A comprehensive framework for hazard identification, risk assessment and mitigation (HIRAM) in the funeral industry is proposed. The HIRAM includes regulatory, surveillance and control systems such as prevention and removal of TOCs. Future directions on the ecotoxicology of mixtures, behaviour, and health risks of TOCs are highlighted. The opportunities presented by emerging tools, including isotopic labelling, genomics, big data analytics (e.g., machine learning), and in silico techniques in toxicokinetic modelling are highlighted.


Assuntos
Praguicidas , Poluentes Químicos da Água , Autopsia , Cemitérios , Ecossistema , Monitoramento Ambiental , Humanos , Praguicidas/análise , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
16.
Sci Total Environ ; 751: 142268, 2021 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-33181977

RESUMO

Noble scallop Chlamys nobilis is an important marine bivalve that has been extensively cultured in the south coast of China since the 1980s. Unfortunately, since the late 1990s, the farmed scallops often suffered from regional mass mortality, which results in enormous economic losses to farmers and industries. In 2017, another mass mortality event occurred in Nan'ao Island, Shantou, China. In this study, the cause of C. nobilis mass mortality in 2017 was first investigated in the field, and then validated in a laboratory experiment. In the field, three sampling sites were selected according to the scallop mortality rate: Hunter Bay (90% mortality), Baisha Bay (67% mortality) and Longhai (6% mortality). Meanwhile, environmental parameters (temperature, salinity, DO, pH and chlorophyll a) of each site were also measured in situ. Then, water and scallop samples were collected randomly for the analysis of phytoplankton diversity and algal toxin activity using 18S rDNA and PP2A inhibition assay, respectively. In laboratory, healthy scallops were challenged with Karenia mikimotoi (1 × 103 cells/mL) for 30 h. The field results showed that no significant difference in those environmental parameters existed among the three sites, but the relative abundance of K. mikimotoi in seawater and scallops' intestines in Hunter Bay and Baisha Bay was significantly higher than that in Longhai, and sick scallops contained significantly higher algal toxin activity than healthy ones. Laboratory results revealed that challenged scallops with K. mikimotoi showed significantly higher mortality rate and algal toxin activity than healthy ones, and low density of K. mikimotoi (1 × 103 cells/mL) was sufficient to cause >50% scallops' mortality within 26 h. This study provides the first evidence that low K. mikimotoi cell density can cause massive mortality in C. nobilis, and provides useful information as guide to prevent scallop mass mortality in the future.


Assuntos
Carotenoides , Pectinidae , Animais , Carotenoides/análise , China/epidemiologia , Clorofila A , Ilhas
17.
Sci Total Environ ; 751: 142341, 2021 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-33181980

RESUMO

There is a lack of information on understanding how marine organisms respond to environmentally relevant microplastics (MP) which hampers decision making for waste management strategies. This study addresses this information gap by determining whether responses to MPs are species specific within a functional group. Benthic residing sea urchins, Psammechinus miliaris and Paracentrotus lividus were used as a case study. Psammechinus miliaris are strong omnivores with dietary intake including hard components (e.g. shell, tubeworms) and therefore likely to cope with the ingestion of MPs, while P. lividus are strong herbivores consuming softer dietary items (e.g. biofilms, algae) and therefore more likely sensitive. Responses to environmentally relevant MPs were conducted across two trials. Trial one determined the impact of short term (24 h) external exposure to storm-like sediment resuspension of MP concentrations (53 µm polyvinyl chloride (PVC) 25,000 MP L-1) compared to a control without MPs. No significant impacts were observed for both P. lividus and P. miliaris on metabolic rate or righting time, and urchins were able to remove MPs from the body surface using pedicellariae and cilia. Trial two determined the impact of medium term (2 months) ingestion of a diet laced with PVC MPs (59 µm) at an inclusion rate of 0.5% mass and a control diet (without MPs) on somatic growth and animal condition. The ingestion of MPs did not significantly impact P. miliaris but significantly reduced the alimentary index within P. lividus, indicating a compromised nutritional state. This study shows that responses to microplastics are species-specific and therefore cannot be generalized. Furthermore, feeding habit could act as a potential indicator for sensitivity to MP ingestion which will be important for impact assessments of plastic pollution and management strategies.


Assuntos
Paracentrotus , Poluentes Químicos da Água , Animais , Comportamento Alimentar , Microplásticos , Plásticos , Poluentes Químicos da Água/análise
18.
Sci Total Environ ; 751: 142235, 2021 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-33181987

RESUMO

Inhaled particulate matter (PM) from combustion- and friction-sourced air pollution adversely affects organs distant from the lung. A putative mechanism for the remote effect of inhaled PM is that ultrafine, nano-sized fraction (<100 nm) translocates across the air-tissue barrier, directly interacting with phagocytic tissue cells. Although PM is reported in other tissues, whether it is phagocytosed by non-respiratory tissue resident cells is unclear. Using the placenta as an accessible organ for phagocytic cells, we sought to seek evidence for air pollution-derived PM in tissue resident phagocytes. Macrophage-enriched placental cells (MEPCs) were isolated, and examined by light and electron microscopy. MEPC carbon was assessed by image analysis (mean µm2/1000 cells); particle composition and numbers were investigated using magnetic analyses and energy dispersive X-ray spectroscopy. MEPCs phagocytic capacity was assessed by culture with diesel exhaust PM in vitro. Fifteen placentas were analysed. Black inclusions morphologically compatible with inhaled PM were identified within MEPCs from all samples (mean ± SEM carbon loading, 1000 MEPCs/participant of 0.004 ± 0.001 µm2). High resolution scanning/transmission electron microscopy revealed abundant nano-sized particle aggregates within MEPCs. MEPC PM was predominantly carbonaceous but also co-associated with a range of trace metals, indicative of high temperature (i.e. exogenous) generation. MEPCs contained readily-measurable amounts of iron-rich, ferrimagnetic particles, in concentrations/particle number concentrations ranging, respectively, from 8 to 50 ng/g and 10 to 60.107 magnetic particles/g (wet wt) MEPCs. Extracted MEPCs (n = 20/ placenta) were phagocytic for PM since all cells showed increased carbon area after culture with diesel PM in vitro (mean ± SEM increase 7.55 ± 1.26 µm2 carbon PM). These findings demonstrate that inhaled, metal-bearing, air pollution-derived PM can not only translocate to distant organs, but is taken up by tissue resident phagocytes in vivo. The human placenta, and hence probably the fetus, thus appears to be a target for such particles.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Nanopartículas , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Poluição do Ar/análise , Feminino , Humanos , Tamanho da Partícula , Material Particulado/análise , Gravidez , Emissões de Veículos/análise , Emissões de Veículos/toxicidade
19.
Sci Total Environ ; 751: 142302, 2021 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-33181992

RESUMO

The objective of this study was to investigate the photocatalytic removal of PPCPs using poly(3,4-ethylenedioxythiophene) (PEDOT) polymer. PEDOT is a conducting polymer that exhibits excellent photocatalytic activity and was used in this study without any additives or metal co-catalysts. The PEDOT was synthesized using chemical oxidative polymerization and characterized further for composition and morphology. PEDOT, in the presence of UV irradiation, showed >99% degradation of one of the most widely prescribed antidiabetic drugs, metformin, within 60 min. The effect of varying concentration of PEDOT, pH, and light irradiance was studied to achieve maximum photocatalytic efficiency. Two major degradation products of metformin of m/z 116 and 126 were detected using triple quadrupole LC-MS/MS, while the degradation kinetics was found to be of pseudo-first-order. Results revealed that photogenerated electrons, holes, and radical species played a role in the PPCPs' degradation. When a mixture of seven PPCPs in the ultra-pure water matrix was tested, more than 99% removal was observed for most of the PPCPs within 60 min. The removal efficiency decreased in a real wastewater effluent due to the presence of dissolved organic matter; however, still, more than 50% removal was observed for majority of the studied PPCPs. The results of PEDOT reusability revealed that the reuse contributed to the drop in the conductivity and subsequent drop in the photocatalytic activity; however, a simple acid treatment was found to be effective to recoup its conductivity. PEDOT was successfully immobilized on an electrospun fiber mat to enhance its applicability.


Assuntos
Metformina , Poluentes Químicos da Água , Compostos Bicíclicos Heterocíclicos com Pontes , Cromatografia Líquida , Polímeros , Espectrometria de Massas em Tandem , Água , Poluentes Químicos da Água/análise
20.
Sci Total Environ ; 751: 142293, 2021 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-33181995

RESUMO

The harm done to the environment by coal gangue was very serious, and it is urgent to adopt effective methods to dispose of coal gangue in order to prevent further environmental damage. Co-pyrolysis experiments of coal gangue (CG) and peanut shell (PS) were carried out using thermogravimetry-Fourier transform infrared spectroscopy (TG-FTIR) under nitrogen atmosphere. The heavy metal was detected using the inductively coupled plasma-optical emission spectroscopy (ICP-OES). CG and PS were mixed according to the mass ratio of 1:0, 3:1, 1:1, 1:3 and 0:1. The samples were heated to 1000 °C at the heating rate of 10 °C/min, 20 °C/min and 30 °C/min. The comprehensive pyrolysis index (CPI) of CG, C3P1, C1P1, C1P3 and PS is 0.17 × 10-8, 9.75 × 10-8, 35.47 × 10-8, 100.94 × 10-8 and 192.72 × 10-8%2 ·min-2·°C-3. The kinetic parameters were calculated by model-free methods (Flynn-Wall-Ozawa and Kissinger-Akahira-Sunose). The gas products generated at different temperatures during the pyrolysis experiment were detected by Fourier transform infrared spectrometer. The heating rate, temperature and mixing ratio are the input parameters of artificial neural network (ANN), and the remaining mass percentage of sample during the pyrolysis is the output parameter. The ANN model was established and used to predict thermogravimetric experimental data. The ANN18 model is the best model for predicting the co-pyrolysis of CG and PS.


Assuntos
Carvão Mineral , Pirólise , Biomassa , Carvão Mineral/análise , Cinética , Redes Neurais de Computação , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA