Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.545.316
Filtrar
1.
Chemosphere ; 262: 127905, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33182152

RESUMO

Pot experiments were conducted to study combined effects of Ca and Cd on contents of Cd and Ca, and membrane transporters activities (CC (calcium channel protein), ATPase and CAXs (cationic/H+ antiporter) of two-year old Panax notoginseng with application of different concentrations of Ca2+ (0, 180 and 360 mgkg-1, prepared by Ca(OH)2 and CaCl2, respectively) under Cd2+ (0, 0.6, 6.0, and 12.0 mgkg-1, prepared by CdCl2•2.5H2O) treatments. The results showed that soil available Cd contents decreased with Ca(OH)2 and CaCl2 application. Soil pH value increased with Ca(OH)2 application. The contents of Cd in all parts of P. notoginseng increased with the increase in Cd treatment concentrations. The Cd content of P. notoginseng decreased with Ca(OH)2 and CaCl2 treatments. The activities of CC and ATPase in the main root of P. notoginseng decreased with the increase in Cd treatment concentrations and application of CaCl2. The activities of CC and ATPase increased with Ca(OH)2application. The activity of CAXs in the main root of P. notoginseng increased with the increase of Cd treatment concentration. The results indicate that Ca and Cd should be both related to membrane transporters activities and activities of CC, ATPase and CAXs are promoted by cooperation of Ca2+and OH+, which suggest the Ca(OH)2 application should be better than application of CaCl2 for Cd detoxification.


Assuntos
Cádmio/toxicidade , Cálcio/metabolismo , Panax notoginseng/fisiologia , Poluentes do Solo/toxicidade , Adenosina Trifosfatases/análise , Cádmio/análise , Proteínas de Membrana Transportadoras/metabolismo , Panax notoginseng/química , Raízes de Plantas/metabolismo , Solo/química , Poluentes do Solo/análise
2.
Chemosphere ; 262: 127810, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32763578

RESUMO

Copper (Cu) is an essential element for humans and plants when present in lesser amount, while in excessive amounts it exerts detrimental effects. There subsists a narrow difference amid the indispensable, positive and detrimental concentration of Cu in living system, which substantially alters with Cu speciation, and form of living organisms. Consequently, it is vital to monitor its bioavailability, speciation, exposure levels and routes in the living organisms. The ingestion of Cu-laced food crops is the key source of this heavy metal toxicity in humans. Hence, it is necessary to appraise the biogeochemical behaviour of Cu in soil-plant system with esteem to their quantity and speciation. On the basis of existing research, this appraisal traces a probable connexion midst: Cu levels, sources, chemistry, speciation and bioavailability in the soil. Besides, the functions of protein transporters in soil-plant Cu transport, and the detrimental effect of Cu on morphological, physiological and nutrient uptake in plants has also been discussed in the current manuscript. Mechanisms related to detoxification strategies like antioxidative response and generation of glutathione and phytochelatins to combat Cu-induced toxicity in plants is discussed as well. We also delimits the Cu accretion in food crops and allied health perils from soils encompassing less or high Cu quantity. Finally, an overview of various techniques involved in the reclamation and restoration of Cu-contaminated soils has been provided.


Assuntos
Cobre/metabolismo , Produtos Agrícolas/fisiologia , Poluentes do Solo/metabolismo , Disponibilidade Biológica , Cobre/análise , Cobre/toxicidade , Produtos Agrícolas/metabolismo , Intoxicação por Metais Pesados , Humanos , Solo/química , Poluentes do Solo/análise , Poluentes do Solo/toxicidade
3.
Chemosphere ; 262: 127828, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32763579

RESUMO

Cadmium (Cd) pollution is a widespread environmental problem that decreases crop production, destroys the microbial ecology of soil, and poses a severe risk to human health. Organo-chemical amendment is a cost-effective, eco-friendly, and community-acceptable widely applied an in situ technique for metal-contaminated farmland. In this study, we mixed lime, zeolite, calcium magnesium phosphate fertilizer, and biochar in a mixture ratio of 71:23:5:1 to form a mixed amendment. Field and laboratory experiments were conducted to study the effects of the mixed amendment on soil exchangeable Cd content, plant Cd accumulation, and soil microbial community. It was found that the application of 0.5% mixed amendment decreased exchangeable soil Cd by more than 85% and 64% in wheat and rice season, respectively, compared with control (CK), without increasing pH. Moreover, the application of 0.5% mixed amendment decreased Cd accumulation in grains by 22.9% and 41.2% in wheat and rice season, respectively, compared to CK. The result of phospholipid fatty acids (PLFAs) shows that the level of soil microbial diversity and species richness under mixed amendment treatments were higher than in lime treatment, indicating more copiotrophic conditions and faster rate of nutrient turnover in mixed amendment than pure lime treatment. Hence, it concluded that the mixed amendment has a strong effect on fixing exchangeable soil Cd and reducing the accumulation of Cd in crops. Finally, it was observed that the mixed amendment improved the soil microbial community structure and accelerate the rate of nutrient turnover by microbes under this favorable condition comparative to individual treatments.


Assuntos
Cádmio/química , Microbiota/efeitos dos fármacos , Microbiologia do Solo , Poluentes do Solo/química , Agricultura/métodos , Cádmio/análise , Cádmio/toxicidade , Compostos de Cálcio , Carvão Vegetal , Produtos Agrícolas , Poluição Ambiental , Recuperação e Remediação Ambiental/métodos , Fertilizantes , Humanos , Microbiota/fisiologia , Oryza/efeitos dos fármacos , Óxidos , Fosfatos , Rotação , Solo/química , Poluentes do Solo/análise , Poluentes do Solo/toxicidade , Triticum
4.
Chemosphere ; 262: 127869, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32771709

RESUMO

Barite (BaSO4) is a component of drilling fluids used in the oil and gas industry and may cause barium (Ba) contamination if it is spilled onto flooded soils. Under anoxic soil conditions and low redox potential, sulfate can be reduced to a more soluble form (sulfide), and Ba can be made available. To design a solution for such environmental issues, a field study was conducted in a Ba-contaminated flooded area in Brazil, in which we induced Ba phytoextraction from the management of the planting density of two intercropped macrophytes. Typha domingensis and Eleocharis acutangula were grown in four initial planting densities: "Ld" (low density: 4 and 32 plants m-2); "Md" (medium density: 8 and 64 plants m-2); "Hd" (high density: 12 and 128 plants m-2); "Vhd" (very high density: 16 and 256 plants m-2). Vhd produced the largest number of plants after 300 days. However, the treatments did not differ in terms of the amount of biomass. The increments in the initial planting density did not increase the Ba concentration in the aerial part. The greatest Ba phytoextraction (aerial part + root) was achieved by Ld treatment, which removed approximately 3 kg of Ba ha-1. Md and Vhd treatments had the highest Ba translocation factors. Because more plants per area did not result in greater Ba phytoextraction, a lower planting density was recommended for the intercropping of T. domingensis and E. acutangula to promote the phytoextraction of barium, due to possible lower implementation costs in contaminated flooded environments.


Assuntos
Biodegradação Ambiental , Poluentes do Solo/metabolismo , Typhaceae/fisiologia , Bário , Sulfato de Bário , Biomassa , Brasil , Eleocharis , Inundações , Solo , Poluentes do Solo/análise
5.
Chemosphere ; 262: 127880, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32777607

RESUMO

BACKGROUND: Bisphenol A (BPA) is a well-known endocrine disruptor that affects male fertility. However, the main biological events through which BPA affects spermatogenesis remain to be identified. METHODS: Adult male mice were treated by feeding with drinking water containing BPA (0.2 µg/ml, 20 µg/ml, 200 µg/ml, respectively) for two months. Testes were collected for protein extraction or for immunohistochemical analysis. Epididymal spermatozoa were collected for sperm quality evaluation and male fertility assay by in vitro fertility (IVF). Serums were collected for detection of testosterone levels. Proteins associated with germ cell proliferation, meiosis, blood-testis barrier, and steroidogenesis production were examined in BPA-treated and control mice testes. CCK8 assay was used to detect the effect of BPA on the proliferation of GC-1 and GC-2 cells. RESULTS: The BPA-treated mice were characterized by decreased sperm quality, serum testosterone levels and, sub-fertile phenotype characterizing with low pregnancy rates and reduced fertilization efficiency. In lower BPA (0.2 µg/ml) treatment, PCNA and PLZF were down-expressed that indicated impaired germ cell proliferation. SYCP3 was down-expressed in BPA-treated mice, but expressions of other proteins associated with meiosis and blood-testis barrier were not significantly altered. CYP11A1 and HSD3B1 were down-expressed in BPA-treated mice that demonstrated reduced steroidogenesis activity. BPA has a concentration-dependent inhibition effect on the proliferation of GC-1 and GC-2 cells. Conclusively, low doses BPA exposure reduced mice sperm quality mainly by impairing germ cell proliferation, leading to reduced male fertility. The study would provide relevant information for investigation on molecular mechanisms and protective strategy on male production.


Assuntos
Compostos Benzidrílicos/toxicidade , Disruptores Endócrinos/toxicidade , Fenóis/toxicidade , Espermatozoides/fisiologia , Animais , Proliferação de Células/efeitos dos fármacos , Disruptores Endócrinos/metabolismo , Epididimo/efeitos dos fármacos , Feminino , Fertilidade/efeitos dos fármacos , Masculino , Camundongos , Gravidez , Espermatogênese/efeitos dos fármacos , Espermatozoides/efeitos dos fármacos , Testículo/efeitos dos fármacos , Testes de Toxicidade Crônica
6.
Chemosphere ; 262: 127823, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32777613

RESUMO

We conducted the first complete toxicological study of six quinolones, including acute, chronic, and recovery assays on Daphnia magna and Ceriodaphnia dubia. The assayed quinolones were second-generation ciprofloxacin (CIP), norfloxacin (NOR), enrofloxacin (ENR), and marbofloxacin (MAR); third-generation levofloxacin (LEV), and fourth-generation moxifloxacin (MOX). The median lethal concentrations (LC50) obtained for both species by acute ecotoxicity assay ranged from 14 to 73 mg L-1 and from 3 to 23 mg L-1 at 48 and 72 h, respectively; while the median effective concentration (EC50) ranged from 4 to 28 mg L-1 in the chronic ecotoxicity assays. C. dubia surviving the chronic exposure assay was monitored in recovery assays free of quinolones. A fluorometric method was used to confirm that there was no significant loss of quinolone concentrations during the acute assays. We also used this method to show that quinolone concentrations fell below 80% of the nominal value after 9-11 d if exposure solutions were not renewed. This study on the ecotoxicological and chemical behavior of quinolones in two cladoceran species fills a data gap about how these emerging contaminants affect nontarget aquatic organisms and how long they persist in the environment.


Assuntos
Daphnia/fisiologia , Quinolonas/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Bioensaio , Cladóceros/efeitos dos fármacos , Daphnia/efeitos dos fármacos
7.
Chemosphere ; 262: 127881, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32795709

RESUMO

The recovery of microalgae by means of coagulation-flocculation is efficient, simple and low operating costs. The addition of coagulants makes it possible to destabilize the microalgae surface loads and recover their biomass. Chemical coagulants can contaminate the environment and negatively affect human health. Thus, the exploration of natural coagulants, such as Moringa oleifera and Guazuma ulmifolia, are innovative. Thus, this study aimed to evaluate the efficiency of biomass separation from the microalgae Scenedesmus obliquuos by means of coagulation-flocculation. M. oleifera and G. ulmifolia were used in order to optimize the variables dose, pH and settling time, through a central composite rotational design, which presented recovery efficiencies above 80.0% and 60.0%, respectively. In relation to M. oleifera, optimum regions were obtained for biomass recovery at both pH 4.0 with a dose of 40.0 mg L-1 and pH 9.0 with a dose of 80.0 mg L-1, both in 30 min of settling times. For G. ulmifolia, an optimum dose of 30.0 mg L-1 at pH 4.0 with a 3 min settling time demonstrated that this new coagulant for microalgae recovery has potential for application. Thus, these natural coagulants are promising and can be used in coagulation-flocculation to recover biomass from Scenedesmus obliquuos and, thus, minimize the use of synthetic or metallic products.


Assuntos
Scenedesmus/fisiologia , Biomassa , Floculação , Humanos , Microalgas , Moringa oleifera
8.
Chemosphere ; 262: 128422, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33182085

RESUMO

This study evaluated the toxicity of Cr(VI) to microalgae Chlorella vulgaris, and its removal by continuous microalgae cultivation in membrane photobioreactor (MPBR). Batch cultivation in photobioreactors showed that low concentration of Cr(VI) (0.5 and 1.0 mg L-1) stimulated the growth of C. vulgaris, while 2.0 and 5.0 mg L-1 Cr(VI) in the wastewater significantly inhibited the growth of C. vulgaris. Superoxide dismutase and catalase activities that represented cellular antioxidant capacity significantly increased at 0.5 and 1.0 mg L-1 Cr(VI), and then gradually decreased with the continuous increase of Cr(VI) concentration. The content of malondialdehyde, which represents the degree of cellular oxidative damage, increased with the increase of Cr(VI) concentration and reached the peak value at 2.0 mg L-1 Cr(VI). C. vulgaris was then cultured in MPBR equipped with hollow-fiber ultrafiltration membrane module to achieve continuous removal of Cr from wastewater. With the in-situ solid-liquid separation function of the membrane module, solid retention time (SRT) and hydraulic retention time (HRT) of the reactor could be controlled separately. Experimental results showed that both SRT and HRT had significant effects on the algal biomass production and pollutants removal. During the continuous operation, MPBR achieved a maximum total Cr reduction of 50.0% at HRT of 3-day and SRT of 40-day, and a maximum volumetric removal rate of total Cr of 0.21 mg L-1 d-1 at HRT of 2-day and SRT of 40-day.


Assuntos
Chlorella vulgaris/fisiologia , Cromo/toxicidade , Fotobiorreatores , Eliminação de Resíduos Líquidos , Biomassa , Chlorella vulgaris/crescimento & desenvolvimento , Cromo/análise , Estudos Longitudinais , Membranas Artificiais , Microalgas/crescimento & desenvolvimento , Oxirredução , Águas Residuárias
9.
Chemosphere ; 262: 128388, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33182095

RESUMO

Arbitrary use of insecticides in agricultural practices cause severe environmental hazard that adversely affects the growth and productivity of edible crops. Considering theses, the aim of the present study was to evaluate the toxicological potential of two neonicotinoid insecticides, imidacloprid (IMID) and thiamethoxam (THIA) using chickpea as a test crop. Application of insecticides at three varying doses revealed a gradual decrease in biological performance of chickpea plants which however, varied noticeably among insecticides and their doses. Significant (P ≤ 0.05) decline in germination efficiency, length of plant organs under in vitro condition was observed in a dose related manner. Among insecticides, 300 µgIMIDkg-1 (3X dose) maximally and significantly (P ≤ 0.05) inhibited germination efficiency, vigor index, length, dry matter accumulation, photosynthetic pigment formation, nodule volume and mass, nutrient uptake, grain yield and protein over untreated control. In contrast, 75 µgTHIAkg-1 (3X dose) considerably declined the leghaemoglobin content, shoot phosphorus and root nitrogen. Enhanced expression of stress biomarkers including proline, malondialdehyde (MDA), and antioxidant defence enzymes was noticed in the presence of insecticides. For instance, at 3X IMID, shoot proline, MDA, ascorbate peroxidase (APX), guaiacol peroxidase (GPX) and peroxidase (POD) were increased significantly (P ≤ 0.05) by 66%, 81%, 36% and 35%, respectively. Additionally, electrolyte leakage was maximally (77%) increased at 3X dose of IMID, whereas, H2O2 in foliage was maximally accumulated (0.0156 µ moles min-1 g-1 fw) at 3X dose of THIA which was 58% greater than untreated foliage. A clear distortion/damage in tip and surface of roots and ultrastructural deformation in xylem and phloem of plant tissues as indication of insecticidal phytotoxicity was observed under scanning electron microscope (SEM). For oxidative stress and cytotoxicity assessment, root tips were stained with a combination of acridine orange and propidium iodide, and Evan blue dyes and examined. Confocal laser scanning microscopic (CLSM) images of roots revealed a 10-fold and 13.5-fold increase in red and blue fluorescence when 3X IMID treated roots were assessed quantitatively. Conclusively, the present investigation recommends that a careful and protected approach should be adopted before the application of insecticides in agricultural ecosystems.


Assuntos
Cicer/fisiologia , Inseticidas/toxicidade , Neonicotinoides/toxicidade , Antioxidantes/metabolismo , Ascorbato Peroxidases/metabolismo , Cicer/enzimologia , Ecossistema , Germinação , Peróxido de Hidrogênio/metabolismo , Inseticidas/metabolismo , Malondialdeído/metabolismo , Nitrocompostos , Estresse Oxidativo , Peroxidase , Fotossíntese
10.
Chemosphere ; 262: 128384, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33182105

RESUMO

Arsenic (As) polluted food chain has become a serious issue for the growth and development of humans, animals and plants. Nitric oxide (NO) or silicon (Si) may mitigate As toxicity. However, the combined application of NO and Si in mitigating As uptake and phytotoxicity in Brassica juncea is unknown. Hence, the collegial effect of sodium nitroprusside (SNP), a NO donor and Si application on B. juncea growth, gas exchange parameters, antioxidant system and As uptake was examined in a greenhouse experiment. Arsenic toxicity injured cell membrane as signposted by the elevated level of malondialdehyde (MDA) and hydrogen peroxide (H2O2), thus decreasing the growth of stressed plants. Moreover, As stress negatively affected gas exchange parameters and antioxidative system of plants. However, NO or/and Si alleviated As induced oxidative stress through increasing the activity of superoxide dismutase (SOD), ascorbate peroxidase (APX), glutathione reductase (GR), glutathione S-transferase (GST), glutathione (GSH), along with thiol and proline synthesis. Furthermore, plants treated with co-application of NO and Si showed improved growth, gas attributes and decreased As uptake under As regimes. The current study highlights that NO and Si synergistically interact to mitigate detrimental effects of As stress through reducing As uptake. Our findings recommend combined NO and Si application in As spiked soils for improvement of plant growth and stress alleviation.


Assuntos
Arsênico/metabolismo , Mostardeira/fisiologia , Óxido Nítrico/química , Silício/química , Poluentes do Solo/metabolismo , Antioxidantes/metabolismo , Arsênico/toxicidade , Ascorbato Peroxidases/metabolismo , Glutationa/metabolismo , Glutationa Redutase/metabolismo , Peróxido de Hidrogênio/metabolismo , Malondialdeído/metabolismo , Mostardeira/metabolismo , Doadores de Óxido Nítrico/metabolismo , Doadores de Óxido Nítrico/farmacologia , Nitroprussiato/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Plântula/efeitos dos fármacos , Poluentes do Solo/toxicidade , Superóxido Dismutase/metabolismo
11.
Chemosphere ; 262: 128361, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33182109

RESUMO

Although Cd is threatening to the environment, animal, and human, the eco-friendly approach to mitigate the Cd-toxicity in alfalfa was barely studied. Therefore, this study aims at elucidating the role of S, a crucial macroelement, in alleviating Cd toxicity in alfalfa plants. The supplementation of S in Cd-stressed alfalfa reversed the detrimental effect on plant biomass, chlorophyll synthesis, and protein concentration. Interestingly, S surplus restored the photosynthetic kinetics, such as Fv/Fm, Pi_ABS, and Mo values in leaves of Cd-stressed alfalfa. Further, Cd-induced adverse effect on membrane stability, cell viability, and redox status was restored due to S under Cd stress. The exogenous S not only increased S status and the expression of sulfate transporters (MsSULRT1;2 and MsSULTR1;3), but also decreased the Cd concentration in the shoot by retaining elevated Cd in root tissue. Further analysis revealed the upregulation of MsGS (glutathione synthetase) and MsPCS1 (phytochelatin synthase) genes along with the increased concentration of glutathione and phytochelatin, predominantly in roots subjected to S surplus under Cd stress. The subcellular Cd analysis showed elevated Cd in the cell wall but not in the vacuole. It suggests that S-induced elevated glutathione enables the phytochelatin to bind with excess Cd leading to subcellular sequestration in the cell wall of roots. Also, S stimulates the S-metabolites and GR enzyme that coordinately counteracts Cd-induced oxidative damage. These findings can be utilized to popularize the application of S and to perform breeding/transgenic experiments to develop Cd-free forage crops.


Assuntos
Cádmio/toxicidade , Glutationa/metabolismo , Medicago sativa/fisiologia , Fitoquelatinas/metabolismo , Poluentes do Solo/toxicidade , Enxofre/toxicidade , Aminoaciltransferases , Cádmio/metabolismo , Parede Celular/metabolismo , Medicago sativa/metabolismo , Oxirredução , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Poluentes do Solo/metabolismo , Enxofre/metabolismo
12.
Chemosphere ; 262: 127939, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33182115

RESUMO

Species specific nitrogen-to-phosphorus molar ratio (NPR) has been suggested for green microalgae. Algae can store nitrogen and phosphorus, suggesting that the optimum feed concentration dynamically changes as function of the nutrient storage. We assessed the effect of varying influent NPR on microalgal cultivation in terms of microbial community stability, effluent quality and biokinetics. Mixed green microalgae (Chlorella sorokiniana and Scenedesmus sp.) and a monoculture of Chlorella sp. were cultivated in continuous laboratory-scale reactors treating used water. An innovative image analysis tool, developed in this study, was used to track microbial community changes. Diatoms proliferated as influent NPR decreased, and were outcompeted once cultivation conditions were restored to the optimal NPR range. Low NPR operation resulted in decrease in phosphorus removal, biomass concentration and effluent nitrogen concentration. ASM-A kinetic model simulation results agreed well with operational data in the absence of diatoms. The failure to predict operational data in the presence of diatoms suggest differences in microbial activity that can significantly influence nutrient recovery in photobioreactors (PBR). No contamination occurred during Chlorella sp. monoculture cultivation with varying NPRs. Low NPR operation resulted in decrease in biomass concentration, effluent nitrogen concentration and nitrogen quota. The ASM-A model was calibrated for the monoculture and the simulations could predict the experimental data in continuous operation using a single parameter subset, suggesting stable biokinetics under the different NPR conditions. Results show that controlling the influent NPR is effective to maintain the algal community composition in PBR, thereby ensuring effective nutrients uptake.


Assuntos
Microalgas/fisiologia , Nitrogênio/análise , Fósforo/análise , Purificação da Água/métodos , Biomassa , Chlorella , Nutrientes , Fotobiorreatores , Scenedesmus , Águas Residuárias , Água
13.
Chemosphere ; 262: 127826, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33182120

RESUMO

The present manuscript investigates the roles of silicon nanoparticles (SiNPs) in ameliorating fluoride toxicity in the susceptible rice cultivar, IR-64. Fluoride toxicity reduced overall growth and yield by suppressing grain development. Fluoride stress alarmingly increased the accumulation of cobalt, which together with fluoride triggered electrolyte leakage, malondialdehyde, methylglyoxal and hydrogen peroxide accumulation and NADPH oxidase activity. The overall photosynthesis was compromised due to chlorosis and inhibited Hill activity. Nano-Si-priming efficiently ameliorated molecular injuries and restored yield by reducing fluoride bioaccumulation particularly in the grains. The level of non-enzymatic antioxidants like anthocyanins, flavonoids, phenolics and glutathione was stimulated upon SiNP-priming. Nano-Si-pulsing removed fluoride-mediated inhibition of glutathione synthesis by activating glutathione reductase. Glutathione was utilized to activate glyoxalases and associated enzymes like glutathione-S-transferase and glutathione peroxidase. Uptake of nutrients like silicon, potassium, zinc, copper, iron, nickel, manganese, selenium and vanadium improved seedling health even during prolonged fluoride stress. Nano-Si-pulsing produced a nanozymatic effect, since high level of crucial co-factors like copper, zinc and iron stimulated the activity of superoxide dismutase, catalase, ascorbate peroxidase and guaiacol peroxidase, which synergistically with other enzymatic and non-enzymatic antioxidants scavenged reactive oxygen species and promoted fluoride tolerance. Overall, the study supported by statistical modelling using principal component analysis, t-distributed stochastic neighbour embedding and multidimensional scaling, established the potential of SiNP to promote safe rice cultivation and precision farming even in fluoride-infested environments.


Assuntos
Fluoretos/toxicidade , Oryza/fisiologia , Silício/química , Poluentes Químicos da Água/toxicidade , Antioxidantes/metabolismo , Ascorbato Peroxidases , Catalase , Glutationa/metabolismo , Glutationa Peroxidase , Peróxido de Hidrogênio/metabolismo , Malondialdeído , Oryza/efeitos dos fármacos , Peroxidase , Espécies Reativas de Oxigênio/metabolismo , Plântula/efeitos dos fármacos , Superóxido Dismutase
14.
Food Chem ; 337: 127772, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32777571

RESUMO

Chitosan can function a key role in plant resistant against Botrytis cinerea infection, while its mechanism is unclear in ripened fruits. In this study, we investigated the chitosan effect on two type of ripened fruits including strawberry and grapes (Kyoho and Shine-Muscat) when were infected with B. cinerea. Results showed that chitosan inhibited B. cinerea growth, increased phenolic compounds and cell wall composition, modulated oxidative stress and induced jasmonic acid (JA) production in ripened fruits. Data-independent acquisition (DIA) showed that 224 and 171 proteins were upregulated 1.5-fold by chitosan in Kyoho and Shine-Muscat grape, respectively. Topless-related protein 3 (TPR3) were identified and interacted with histone deacetylase 19 (HDAC19) and negatively regulated by JA and chitosan. Meanwhile, overexpression of VvTPR3 and VvHDAC19 reduced the stability of cell wall against B. cinerea in strawberry. Taken together, chitosan induces defense related genes and protect the fruit quality against Botrytis infection through JA signaling.


Assuntos
Botrytis/efeitos dos fármacos , Quitosana/farmacologia , Ciclopentanos/metabolismo , Fragaria/metabolismo , Oxilipinas/metabolismo , Vitis/metabolismo , Botrytis/fisiologia , Parede Celular/metabolismo , Fragaria/microbiologia , Frutas/metabolismo , Frutas/microbiologia , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/antagonistas & inibidores , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Interferência de RNA , Esporos Fúngicos/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Vitis/microbiologia
15.
Food Chem ; 334: 127484, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32711263

RESUMO

This study investigated the soymilk coagulation induced by fermented yellow whey (FYW), which is extensively used as a natural tofu coagulant in China. The aggregations involving proteins and isoflavone particles caused by FYW were analyzed using the proteomic technology and high-performance liquid chromatography, respectively. As indicated, the FYW-induced coagulation of soy proteins mainly occurred at pH 5.80-5.90. When the pH of soymilk decreased, the 7S ß, 11S A3 and some of 11S A1a subunits and SBP, Bd, lectin and TA aggregated the earliest, and later did the 11S A4, other 11S A1a, 11S A2 and 11S A1b subunits. The 7S α and α' subunits and TB showed an obvious delay in aggregation. Moreover, isoflavones in the form of aglycones were more likely to coprecipitate with proteins, compared with glycosides. These results could provide an important reference and assistance for future research on the development of traditional FYW-tofu.


Assuntos
Isoflavonas/análise , Lactobacillales/crescimento & desenvolvimento , Agregados Proteicos/fisiologia , Leite de Soja/química , Proteínas de Soja/análise , Soro do Leite/química , Reatores Biológicos , Cromatografia Líquida de Alta Pressão , Eletroforese em Gel Bidimensional , Concentração de Íons de Hidrogênio , Proteômica , Leite de Soja/metabolismo , Soro do Leite/metabolismo
16.
Food Chem ; 336: 127672, 2021 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-32771899

RESUMO

Endophytic bacteria are always related to the host different traits, including the secondary metabolites production. However, the effect and mechanism of endophytic bacteria in the mushrooms fruit body on mycelia are still not clear. In this study, we investigated the effect of endophytic bacterial metabolites on the quality of Lyophyllum decastes mycelia. Soluble sugars, starch, protein, free amino acids, 5'-Nucleotides, EUC, and organic acids contents of mycelia were analyzed. We found that endophytic bacterial metabolites significantly increased the contents of soluble sugars, starch, protein, free amino acids, organic acids, and EUC. The present study thus suggests that endophytic bacteria could promote the quality of Lyophyllum decastes by improving non-volatile taste components of mycelia.


Assuntos
Agaricales/química , Bactérias/metabolismo , Endófitos/fisiologia , Micélio/química , Paladar , Agaricales/fisiologia , Aminoácidos/análise , Bactérias/isolamento & purificação , Microbiologia de Alimentos , Qualidade dos Alimentos , Proteínas Fúngicas/análise , Micélio/fisiologia , Nucleotídeos/análise , Compostos Orgânicos Voláteis
17.
Food Chem ; 336: 127590, 2021 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-32763742

RESUMO

This work has been aimed at studying the effect of red thyme oil (RTO, Thymus vulgaris L.) on the shelf-life and Penicillium decay of oranges during cold storage. RTO vapours significantly reduced (P ≤ 0.05) the percentage of infected wounds, the external growth area and the production of spores in inoculated orange fruit stored for 12 days at 7 °C in a polypropylene film selected for its appropriate permeability. Among the RTO compounds, p-cymene and thymol were the most abundant in packed boxes at the end of cold storage. The RTO vapours did not affect the main quality parameters of the oranges, or the taste and odour of the juice. The results have shown that an active packaging, using RTO vapours, could be employed, by the citrus industry, to extend the shelf-life of oranges for fresh market use and juice processing.


Assuntos
Qualidade dos Alimentos , Armazenamento de Alimentos/métodos , Óleos Voláteis/farmacologia , Penicillium/efeitos dos fármacos , Thymus (Planta)/metabolismo , Antioxidantes/química , Citrus/química , Citrus/metabolismo , Citrus/microbiologia , Temperatura Baixa , Sucos de Frutas e Vegetais/análise , Cromatografia Gasosa-Espectrometria de Massas , Concentração de Íons de Hidrogênio , Óleos Voláteis/análise , Penicillium/fisiologia
18.
Chemosphere ; 262: 127573, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32745791

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are widespread, persistent environmental pollutants. They exert toxic effects at different developmental stages of plants. Plant defense mechanisms against PAHs are poorly understood. To this end, transcriptomics and widely targeted metabolomic sequencing were used to study the changes in gene expression and metabolites that occur in the roots of Salix viminalis subjected to phenanthrene stress. Significant variations in genes and metabolites were observed between treatment groups and the control group. Thirteen amino acids and key genes involved in their biosynthesis were upregulated exposed to phenanthrene. Cysteine biosynthesis was upregulated. Sucrose, inositol galactoside, and mellidiose were the main carbohydrates that were largely accumulated. Glutathione biosynthesis was enhanced in order to scavenge reactive oxygen species and detoxify the phenanthrene. Glucosinolate and flavonoid biosynthesis were upregulated. The production of pinocembrin, apigenin, and epigallocatechin increased, which may play a role in antioxidation to resist phenanthrene stress. In addition, levels of six amino acids and N,N'-(p-coumaroyl)-cinnamoyl-caffeoyl-spermidine were significantly increased, which may have helped protect the plant against phenanthrene stress. These results demonstrated that S. viminalis had a positive defense strategy in response to phenanthrene challenge. Subsequent defense-related reactions may have also occurred within 24 h of phenanthrene exposure. The findings of the present study would be useful in elucidating the molecular mechanisms regulating plant responses to PAH challenges and would help guide crop and plant breeders in enhancing PAH resistance.


Assuntos
Fenantrenos/toxicidade , Salix/fisiologia , Poluentes do Solo/toxicidade , Metabolômica , Fenantrenos/metabolismo , Raízes de Plantas/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Salix/metabolismo , Poluentes do Solo/metabolismo , Transcriptoma
19.
Chemosphere ; 262: 127805, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32750593

RESUMO

The present study assessed the individual and combined toxicity effects of Ag- and TiO2- nanoparticles (NPs) on Ag bioaccumulation, oxidative stress, and gill histopathology in common carp as an aquatic animal model. The 96-h acute toxicity tests showed that TiO2NPs enhanced the toxicity of AgNPs deducted from the decreased LC50 in co-exposure to these NPs. Chronic toxicity tests included a 10-day exposure and a 10-day recovery period. In most cases, histological damages were more severe in co-exposure to Ag- and TiO2- NPs compared with the individual AgNPs however, they were reduced in some cases and also after the recovery period. In co-exposure to Ag- and TiO2- NPs, the Ag bioaccumulation was decreased in the gills but increased in the liver and intestine compared with the singular exposure. After the recovery period, Ag bioaccumulation decreased especially in the liver. Decreased levels of antioxidant enzymes were observed in the AgNPs exposed groups, which were partially alleviated by TiO2NPs. The reduction of condition factor (CF) and hepatosomatic index (HSI) and a severe decrease of weight gain (WG) were observed in co-exposure to Ag- and TiO2- NPs. After the recovery period, the CF and HSI increased but the WG decreased less compared with the exposure period. The present results emphasize the importance of considering the co-existence and interaction of NPs in realizing their bioavailability and toxicity in aquatic environments.


Assuntos
Carpas/fisiologia , Nanopartículas Metálicas/toxicidade , Titânio/química , Poluentes Químicos da Água/toxicidade , Animais , Antioxidantes/metabolismo , Brânquias , Dose Letal Mediana , Fígado/metabolismo , Nanopartículas/toxicidade , Estresse Oxidativo , Prata/toxicidade
20.
Chemosphere ; 262: 127803, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32755694

RESUMO

Mine tailings pose a huge hazard for environmental and human health, and the establishment of vegetation cover is crucial to reduce pollutant dispersion for the surroundings. However, their hostile physicochemical conditions hamper plant growth, compromising phytoremediation strategies. This study aims to investigate the role of organo-mineral amendments and plant growth-promoting rhizobacteria (PGPR) on the improvement of mine tailings properties and Lolium perenne L. (ryegrass) growth. Plants were grown in mine tailings mixed with an agricultural soil (1:1), 10% compost, and supplied with two different inorganic amendments - rock phosphate (6%) or lime (3%), and inoculated with the rhizobacterial strains Advenellakashmirensis BKM20 (B1) and Mesorhizobium tamadayense BKM04 (B2). The application of organo-mineral amendments ameliorated tailings characteristics, which fostered plant growth and further enhanced soil fertility and microbial activity. These findings were consistent with the increase of total organic carbon levels, with the higher numbers of heterotrophic and phosphate solubilizing bacteria, and higher dehydrogenase and urease activities, found in these substrates after plant establishment. Plant growth was further boosted by PGPR inoculation, most noticeable by co-inoculation of both strains. Moreover, inoculated plants showed increased activities for several antioxidant enzymes (catalase, peroxidase, polyphenoloxidase, and glutathione reductase) which indicate a reinforced antioxidant system. The application of agricultural soil, compost and lime associated with the inoculation of a mixture of PGPR proved to enhance the establishment of vegetation cover, thus promoting the stabilization of Kettara mine tailings. Nonetheless, further studies are needed in order to confirm its effectiveness under field conditions.


Assuntos
Biodegradação Ambiental , Recuperação e Remediação Ambiental/métodos , Mesorhizobium/fisiologia , Desenvolvimento Vegetal , Poluentes do Solo/análise , Bactérias , Compostos de Cálcio , Lolium/crescimento & desenvolvimento , Minerais , Mineração , Óxidos , Solo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA