Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.376
Filtrar
1.
Signal Transduct Target Ther ; 5(1): 218, 2020 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-33011739

Assuntos
Antivirais/farmacologia , Betacoronavirus/efeitos dos fármacos , Glicosídeos Cardíacos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Animais , Antivirais/química , Betacoronavirus/patogenicidade , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Bufanolídeos/química , Bufanolídeos/farmacologia , Glicosídeos Cardíacos/química , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Cloroquina/química , Cloroquina/farmacologia , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/virologia , Digoxina/química , Digoxina/farmacologia , Ensaios de Triagem em Larga Escala , Interações Hospedeiro-Patógeno/genética , Humanos , Janus Quinases/antagonistas & inibidores , Janus Quinases/genética , Janus Quinases/metabolismo , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fator 2 Relacionado a NF-E2/antagonistas & inibidores , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/antagonistas & inibidores , NF-kappa B/genética , NF-kappa B/metabolismo , Pandemias , Fenantrenos/química , Fenantrenos/farmacologia , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/virologia , Transdução de Sinais , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo , Células Vero , Replicação Viral/efeitos dos fármacos
2.
J Toxicol Sci ; 45(9): 549-558, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32879254

RESUMO

Trimethyltin chloride (TMT) is a stabilizer by-product in the process of manufacturing plastic, which is a kind of very strong toxic substance, and has acute, cumulative and chronic toxicity. TMT may cause bradycardia in patients with occupational poisoning, the mechanism of which has not been reported. This study explored the mechanism of TMT resulting in bradycardia of C57BL/6 mice. TMT was administered to mice to measure heart rate, serum succinate dehydrogenase (SDH) level, and myocardial Na+/K+-ATPase activity and expression. The effects of TMT on myocardial apoptosis were observed by changing the expressions of caspase-3, Bax and Bcl-2 in myocardium. It was found that the heart rate and SDH activity in serum of mice gradually decreased with the increase of TMT dose compared with the control group. The activity and the expression of Na+/K+-ATPase in the heart tissue of mice exposed to TMT was measured and gradually decreased with the increase of dose and time. We measured the expression of Bcl-2, Bax, caspase-3 and cleaved caspase-3 in the heart tissues of TMT exposed mice and found that the expressions of Bax, caspase-3 and cleaved caspase-3 increased and the expressions of Bcl-2 decreased in the heart tissues of the TMT-exposed mice at different doses. With the extension of TMT exposure time, the expression of Bax and caspase-3 increased and the expression of Bcl-2 decreased in the heart tissues of TMT exposed mice. Our findings suggest the mechanisms of TMT resulting in bradycardia may be associated with the inhibited activity and decreased content of Na+/K+-ATPase, thus further leading to the changes of Bcl-2, Bax, caspase-3 and cleaved caspase-3 in the mice's ventricular tissues.


Assuntos
Apoptose/efeitos dos fármacos , Bradicardia/etiologia , Miocárdio/metabolismo , Miocárdio/patologia , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo , Compostos de Trimetilestanho/toxicidade , Animais , Apoptose/genética , Bradicardia/genética , Caspase 3/genética , Caspase 3/metabolismo , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/genética , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
4.
Hum Genet ; 139(11): 1391-1401, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32440726

RESUMO

Cone-rod dystrophy (CORD) is an inherited retinal degenerative disease characterized by progressive loss of cone and rod photoreceptors. Although several genes have been reported to cause autosomal dominant CORD (adCORD), the genetic causes of adCORD have not been fully elucidated. Here, we identified the ATP1A3 gene, encoding the α3 subunit of Na+, K+-ATPase, as a novel gene associated with adCORD. Using whole-exome sequencing (WES), we found a candidate mutation of ATP1A3 that co-segregated with the disease in an analysis of two affected patients and one healthy relative in an adCORD family. According to our RNA-seq data, we demonstrated that the Atp1a3 mRNA level was extremely high in the murine retina. Overexpression of mutant ATP1A3 in vitro led to a reduced oxygen consumption rate (OCR), reflecting the limited mitochondrial reserve capacity. Furthermore, we generated transgenic mice expressing the ATP1A3 cDNA with patient variant and found decreased electroretinogram (ERG) responses. Moreover, the mutant ATP1A3 is highly expressed in photoreceptor inner segment, where mitochondria are enriched. These results suggest that the ATP1A3 mutation is a new genetic cause responsible for adCORD and indicate that ATP1A3 plays an important role in retinal function.


Assuntos
Distrofias de Cones e Bastonetes/genética , Genes Dominantes/genética , Mutação/genética , ATPase Trocadora de Sódio-Potássio/genética , Adulto , Animais , Linhagem Celular Tumoral , Eletrorretinografia/métodos , Feminino , Células HeLa , Humanos , Masculino , Camundongos , Linhagem , Fenótipo , Retina/patologia , Células Fotorreceptoras Retinianas Cones/patologia , Degeneração Retiniana/genética , Células Fotorreceptoras Retinianas Bastonetes/patologia , Retinite Pigmentosa/genética , Acuidade Visual , Sequenciamento Completo do Exoma/métodos , Adulto Jovem
5.
Arch Biochem Biophys ; 688: 108403, 2020 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-32418893

RESUMO

Myopia is a main cause of preventable or treatable visual impairment, it has become a major public health issue due to its increasingly high prevalence worldwide. Currently, it is confirmed that the development of myopia is associated with the disorders of accommodation. As a dominant factor for accommodation, ciliary muscle contraction/relaxation can regulate the physiological state of the lens and play a crucial role in the development of myopia. To investigate the relationship between myopia and ciliary muscle, the guinea pigs were randomly divided into a normal control (NC) group and a negative lens-induced myopia (LIM) group, and the animals in each group were further randomly assigned into 2-week (n = 18) and 4-week (n = 21) subgroups in accordance with the duration of myopic induction of 2 and 4 weeks, respectively. In the present study, right eyes of the animals in LIM group were covered with -6.0 D lenses to induce myopia. Next, we performed the haematoxylin and eosin (H&E) staining to observe the pathological change of ciliary muscle, determined the contents of adenosine triphosphate (ATP) and lactate acid (LA), and measured the Na+/K+-ATPase expression and activity in ciliary muscles in both NC and LIM groups. Moreover, we also analyzed the potassium ion (K+) flux in ciliary muscles from 4-week NC and LIM guinea pigs. As a result, we found that the arrangements of ciliary muscles in LIM guinea pigs were broken, dissolved or disorganized; the content of ATP decreased, whereas the content of LA increased in ciliary muscles from LIM guinea pigs. Monitoring of K+ flux in ciliary muscles from LIM guinea pigs demonstrated myopia-triggered K+ influx. Moreover, we also noted a decreased expression of Na+/K+-ATPase (Atp1a1) at both mRNA and protein levels and reduced activity in ciliary muscles from LIM guinea pigs. Overall, our results will facilitate the understanding of the mechanism associated with inhibitory Na+/K+-ATPase in lens-induced myopia and which consequently lead to the disorder of microenvironment within ciliary muscles from LIM guinea pigs, paving the way for a promising adjuvant approach in treating myopia in clinical practice.


Assuntos
Olho/metabolismo , Homeostase/fisiologia , Músculo Liso/metabolismo , Miopia/metabolismo , Potássio/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Olho/patologia , Cobaias , Ácido Láctico/metabolismo , Masculino , Músculo Liso/patologia , Miopia/patologia , RNA Mensageiro/metabolismo , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo
6.
Tissue Cell ; 63: 101340, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32223951

RESUMO

Artemia salina is an extremophile species that tolerates a wide range of salinity, especially hypertonic media considered lethal for the majority of other aquatic species. In this study, A. salina cysts were hatched in the laboratory and nauplii were acclimated at three different salinities (60, 139 and 212 ppt). Once in the adult phase, their hemolymph osmolality was measured. The animals were strong hypo-osmoregulators in the entire range of tested salinities, with up to 10 fold lower hemolymph osmolalities than their surrounding environment. Immunostaining of Na+/K+-ATPase was done on sections and on whole body mounts of adults in order to localize the ionocytes in different organs. An intense Na+/K+-ATPase immunostaining throughout the cells was observed in the epithelium of the ten pairs of metepipodites. A positive immunoreactivity for Na+/K+-ATPase was also detected in the maxillary glands, in the epithelium of the efferent tubule and of the excretory canal, as well as in the anterior digestive tract. This study confirms the strong hypo-osmotic capacity of this species and affords an overview of the different organs involved in osmoregulation in A. salina adults.


Assuntos
Artemia/enzimologia , Osmorregulação/genética , ATPase Trocadora de Sódio-Potássio/genética , Animais , Artemia/imunologia , Epitélio/imunologia , Epitélio/metabolismo , Brânquias/imunologia , Brânquias/metabolismo , Hemolinfa/imunologia , Hemolinfa/metabolismo , Osmorregulação/imunologia , Salinidade , ATPase Trocadora de Sódio-Potássio/imunologia , Tunísia
7.
Artigo em Russo | MEDLINE | ID: mdl-32323947

RESUMO

Alternating hemiplegia, a rare neurological disease that manifests in children under the age of 18 months, is characterized by transient episodes of hemiparesis of an alternating nature in the waking period. In addition to transient hemiparesis, neurological symptoms in the form of choreoathetosis, ataxia, dystonia, autonomic dysfunction, ocular apraxia, nystagmus, seizures, dysarthria and intellectual disorders may develop. Mutation in the ATP1A3 gene is the cause of the disease in more than 75% of patients. In some cases, the use of flunarizine, adenosine triphosphate and a ketogenic diet can reduce the frequency and duration of hemiplegic attacks. The authors report a case of a patient with alternating hemiplegia caused by a heterozygous mutation in exon 8 of the ATP1A3 gene (chr19: 42489098A>T, rs606231428), resulting in an amino acid substitution at position 335 (p.Val335Asp, NM_001256214.1). The use of flunarizin in a dose of 5 mg/day significantly reduces the number and duration of seizures, while oral adenosine-5-triphosphoric acid in a dose of 20 mg/kg/day is not effective.


Assuntos
Hemiplegia , Dieta Cetogênica , Distúrbios Distônicos/complicações , Distúrbios Distônicos/tratamento farmacológico , Distúrbios Distônicos/genética , Éxons , Hemiplegia/complicações , Hemiplegia/tratamento farmacológico , Hemiplegia/genética , Humanos , Lactente , Mutação , ATPase Trocadora de Sódio-Potássio/genética
8.
Gene ; 749: 144709, 2020 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-32339621

RESUMO

BACKGROUND: Mutations in the ATP1A3 gene are known to be the cause of three distinct neurological syndromes including alternating hemiplegia of childhood (AHC), rapid-onset dystonia parkinsonism (RDP) and cerebellar ataxia, arefexia, pes cavus, optic atrophy and sensorineural hearing impairment (CAPOS). Recent studies have suggested the broader diversity of ATP1A3-related disorders. This study aimed to investigate the clinical spectrum in patients carrying causative mutations within the ATP1A3 gene. METHOD: The medical histories of nine unrelated patients with diverse phenotypes harboring variants in ATP1A3 were retrospectively analyzed after they were referred to a tertiary epilepsy center in one of the two different health care systems (Germany or Thailand). Clinical features, neurophysiological data, imaging results, genetic characteristics and treatments were reviewed. RESULTS: Three patients harbor novel mutations in the ATP1A3 gene. Atypical clinical features and imaging findings were observed in two cases, one with hemiplegia-hemiconvulsion-epilepsy syndrome, and the other with neurodegeneration with brain iron accumulation. All nine patients presented with intellectual impairment. Alternating hemiplegia of childhood (AHC) was the most common phenotype (67%). Flunarizine and topiramate led to symptom reduction in 83% and 25% of AHC cases administered, respectively. CONCLUSION: The present case series expands the clinical and genetic spectrum of ATP1A3-related disorders.


Assuntos
Mutação , Doenças do Sistema Nervoso/genética , Fenótipo , ATPase Trocadora de Sódio-Potássio/genética , Adolescente , Criança , Distúrbios Distônicos/diagnóstico , Distúrbios Distônicos/genética , Eletroencefalografia , Feminino , Hemiplegia/diagnóstico , Hemiplegia/genética , Humanos , Masculino , Doenças do Sistema Nervoso/diagnóstico , Doenças do Sistema Nervoso/diagnóstico por imagem , Neuroimagem , Adulto Jovem
9.
Artigo em Inglês | MEDLINE | ID: mdl-32293933

RESUMO

Na,K-ATPase is a membrane transporter that is critically important for skeletal muscle function. Mdx and Bla/J mice are the experimental models of Duchenne muscular dystrophy and dysferlinopathy that are known to differ in the molecular mechanism of the pathology. This study examines the function of α1- and α2-Na,K-ATPase isozymes in respiratory diaphragm and postural soleus muscles from mdx and Bla/J mice compared with control С57Bl/6 mice. In diaphragm muscles, the motor endplate structure was severely disturbed (manifested by defragmentation) in mdx mice only. The endplate membrane of both Bla/J and mdx mice was depolarized due to specific loss of the α2-Na,K-ATPase electrogenic activity and its decreased membrane abundance. Total FXYD1 subunit (modulates Na,K-ATPase activity) abundance was decreased in both mouse models. However, the α2-Na,K-ATPase protein content as well as mRNA expression were specifically and significantly reduced only in mdx mice. The endplate membrane cholesterol redistribution was most pronounced in mdx mice. Soleus muscles from Bla/J and mdx mice demonstrated reduction of the α2-Na,K-ATPase membrane abundance and mRNA expression similar to the diaphragm muscles. In contrast to diaphragm, the α2-Na,K-ATPase protein content was altered in both Bla/J and mdx mice; membrane cholesterol re-distribution was not observed. Thus, the α2-Na,K-ATPase is altered in both Bla/J and mdx mouse models of chronic muscle pathology. However, despite some similarities, the α2-Na,K-ATPase and cholesterol abnormalities are more pronounced in mdx mice.


Assuntos
Proteínas de Membrana/genética , Distrofias Musculares/genética , Fosfoproteínas/genética , ATPase Trocadora de Sódio-Potássio/genética , Animais , Membrana Celular/genética , Membrana Celular/metabolismo , Colesterol/genética , Colesterol/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica/genética , Humanos , Camundongos , Camundongos Endogâmicos mdx , Placa Motora/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Distrofias Musculares/metabolismo , Distrofias Musculares/patologia , Isoformas de Proteínas/genética , RNA Mensageiro/genética
10.
Neurology ; 94(13): e1378-e1385, 2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-32123049

RESUMO

OBJECTIVE: To assess nonparoxysmal movement disorders in ATP1A3 mutation-positive patients with alternating hemiplegia of childhood (AHC). METHODS: Twenty-eight patients underwent neurologic examination with particular focus on movement phenomenology by a specialist in movement disorders. Video recordings were reviewed by another movement disorders specialist and data were correlated with patients' characteristics. RESULTS: Ten patients were diagnosed with chorea, 16 with dystonia (nonparoxysmal), 4 with myoclonus, and 2 with ataxia. Nine patients had more than one movement disorder and 8 patients had none. The degree of movement disorder was moderate to severe in 12/28 patients. At inclusion, dystonic patients (n = 16) were older (p = 0.007) than nondystonic patients. Moreover, patients (n = 18) with dystonia or chorea, or both, had earlier disease onset (p = 0.042) and more severe neurologic impairment (p = 0.012), but this did not correlate with genotype. All patients presented with hypotonia, which was characterized as moderate or severe in 16/28. Patients with dystonia or chorea (n = 18) had more pronounced hypotonia (p = 0.011). Bradykinesia (n = 16) was associated with an early age at assessment (p < 0.01). Significant dysarthria was diagnosed in 11/25 cases. A history of acute neurologic deterioration and further regression of motor function, typically after a stressful event, was reported in 7 patients. CONCLUSIONS: Despite the relatively limited number of patients and the cross-sectional nature of the study, this detailed categorization of movement disorders in patients with AHC offers valuable insight into their precise characterization. Further longitudinal studies on this topic are needed.


Assuntos
Hemiplegia/complicações , Transtornos dos Movimentos/genética , Adolescente , Adulto , Criança , Pré-Escolar , Estudos Transversais , Feminino , Humanos , Lactente , Masculino , Mutação , ATPase Trocadora de Sódio-Potássio/genética , Adulto Jovem
11.
Gene ; 741: 144547, 2020 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-32165299

RESUMO

Acclimation to low salinities is a vital physiological challenge for euryhaline fish as the European sea bass Dicentrarchus labrax. This species undertakes seasonal migrations towards lagoons and estuaries where a wide range of salinity variations occur along the year. We have previously reported intraspecific differences in freshwater tolerance, with an average 30% mortality rate. In this study, we bring new evidence of mechanisms underlying freshwater tolerance in sea bass at gill and kidney levels. In fresh water (FW), intraspecific differences in mRNA expression levels of several ion transporters and prolactin receptors were measured. We showed that the branchial Cl-/HCO3- anion transporter (slc26a6c) was over-expressed in freshwater intolerant fish, probably as a compensatory response to low blood chloride levels and potential metabolic alkalosis. Moreover, prolactin receptor a (prlra) and Na+/Cl- cotransporter (ncc1) but not ncc-2a expression seemed to be slightly increased and highly variable between individuals in freshwater intolerant fish. In the posterior kidney, freshwater intolerant fish exhibited differential expression levels of slc26 anion transporters and Na+/K+/2Cl- cotransporter 1b (nkcc1b). Lower expression levels of prolactin receptors (prlra, prlrb) were measured in posterior kidney which probably contributes to the failure in ion reuptake at the kidney level. Freshwater intolerance seems to be a consequence of renal failure of ion reabsorption, which is not sufficiently compensated at the branchial level.


Assuntos
Bass/genética , Brânquias/metabolismo , Rim/metabolismo , Membro 1 da Família 12 de Carreador de Soluto/genética , Aclimatação/genética , Animais , Bass/crescimento & desenvolvimento , Água Doce , Regulação da Expressão Gênica/genética , Brânquias/fisiologia , Transporte de Íons/genética , Rim/fisiologia , Osmorregulação/genética , Salinidade , Água do Mar , Sódio/metabolismo , ATPase Trocadora de Sódio-Potássio/genética
13.
Am J Physiol Gastrointest Liver Physiol ; 318(5): G931-G945, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32174134

RESUMO

Helicobacter pylori infection always induces gastritis, which may progress to ulcer disease or cancer. The mechanisms underlying mucosal injury by the bacteria are incompletely understood. Here, we identify a novel pathway for H. pylori-induced gastric injury, the impairment of maturation of the essential transport enzyme and cell adhesion molecule, Na-K-ATPase. Na-K-ATPase comprises α- and ß-subunits that assemble in the endoplasmic reticulum (ER) before trafficking to the plasma membrane. Attachment of H. pylori to gastric epithelial cells increased Na-K-ATPase ubiquitylation, decreased its surface and total levels, and impaired ion balance. H. pylori did not alter degradation of plasmalemma-resident Na-K-ATPase subunits or their mRNA levels. Infection decreased association of α- and ß-subunits with ER chaperone BiP and impaired assembly of α/ß-heterodimers, as was revealed by quantitative mass spectrometry and immunoblotting of immunoprecipitated complexes. The total level of BiP was not altered, and the decrease in interaction with BiP was not observed for other BiP client proteins. The H. pylori-induced decrease in Na-K-ATPase was prevented by BiP overexpression, stopping protein synthesis, or inhibiting proteasomal, but not lysosomal, protein degradation. The results indicate that H. pylori impairs chaperone-assisted maturation of newly made Na-K-ATPase subunits in the ER independently of a generalized ER stress and induces their ubiquitylation and proteasomal degradation. The decrease in Na-K-ATPase levels is also seen in vivo in the stomachs of gerbils and chronically infected children. Further understanding of H. pylori-induced Na-K-ATPase degradation will provide insights for protection against advanced disease.NEW & NOTEWORTHY This work provides evidence that Helicobacter pylori decreases levels of Na-K-ATPase, a vital transport enzyme, in gastric epithelia, both in acutely infected cultured cells and in chronically infected patients and animals. The bacteria interfere with BiP-assisted folding of newly-made Na-K-ATPase subunits in the endoplasmic reticulum, accelerating their ubiquitylation and proteasomal degradation and decreasing efficiency of the assembly of native enzyme. Decreased Na-K-ATPase expression contributes to H. pylori-induced gastric injury.


Assuntos
Retículo Endoplasmático/enzimologia , Células Epiteliais/enzimologia , Mucosa Gástrica/enzimologia , Gastrite/enzimologia , Proteínas de Choque Térmico/metabolismo , Infecções por Helicobacter/enzimologia , Helicobacter pylori/patogenicidade , ATPase Trocadora de Sódio-Potássio/metabolismo , Células Cultivadas , Retículo Endoplasmático/microbiologia , Estabilidade Enzimática , Células Epiteliais/microbiologia , Mucosa Gástrica/microbiologia , Gastrite/genética , Gastrite/microbiologia , Infecções por Helicobacter/genética , Infecções por Helicobacter/microbiologia , Interações Hospedeiro-Patógeno , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , Dobramento de Proteína , Proteólise , ATPase Trocadora de Sódio-Potássio/genética , Ubiquitinação
14.
Int J Mol Sci ; 21(4)2020 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-32069992

RESUMO

In recent years, Na/K-ATPase signaling has been implicated in different physiological and pathophysiological conditions, including cardiac hypertrophy and uremic cardiomyopathy. Cardiotonic steroids (CTS), specific ligands of Na/K-ATPase, regulate its enzymatic activity (at higher concentrations) and signaling function (at lower concentrations without significantly affecting its enzymatic activity) and increase reactive oxygen species (ROS) generation. On the other hand, an increase in ROS alone also regulates the Na/K-ATPase enzymatic activity and signaling function. We termed this phenomenon the Na/K-ATPase-mediated oxidant-amplification loop, in which oxidative stress regulates both the Na/K-ATPase activity and signaling. Most recently, we also demonstrated that this amplification loop is involved in the development of uremic cardiomyopathy. This review aims to evaluate the redox-sensitive Na/K-ATPase-mediated oxidant amplification loop and uremic cardiomyopathy.


Assuntos
Cardiomiopatias/genética , Estresse Oxidativo/genética , ATPase Trocadora de Sódio-Potássio/genética , Uremia/genética , Glicosídeos Cardíacos/uso terapêutico , Cardiomiopatias/tratamento farmacológico , Cardiomiopatias/etiologia , Cardiomiopatias/patologia , Humanos , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , Uremia/complicações , Uremia/tratamento farmacológico , Uremia/patologia
15.
Epileptic Disord ; 22(1): 103-109, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32043468

RESUMO

Mutations in ATP1A3 have been found to cause rapid-onset dystonia Parkinsonism, alternating hemiplegia of childhood, epileptic encephalopathy and other syndromes. We report a four-year, nine-month-old boy with episodes of frequent and recurrent status epilepticus, who first began having generalized tonic-clonic seizures at four months of age. Development was normal until the age of four months, and markedly slowed down after the onset of seizures. Between the age of seven months and two and a half years, the patient had recurrent attacks of unilateral and bilateral hemiplegia. At the age of 21 months, after a febrile illness with status epilepticus, he regressed and developed continuous severe dystonia and bradykinesia with superimposed intermittent painful dystonic spasms. Extensive neurological and genetic workup revealed a de novo p.V589F ATP1A3 mutation (NM_152296.5:c.1765G>T, NC_000019.9:g.42482344C>A). This is a novel mutation associated with a novel phenotype that shares features with epileptic encephalopathy, alternating hemiplegia of childhood, and rapid-onset dystonia Parkinsonism.


Assuntos
Encefalopatias , Distúrbios Distônicos , Epilepsia , Hemiplegia , ATPase Trocadora de Sódio-Potássio/genética , Encefalopatias/genética , Encefalopatias/fisiopatologia , Pré-Escolar , Distúrbios Distônicos/genética , Distúrbios Distônicos/fisiopatologia , Epilepsia/genética , Epilepsia/fisiopatologia , Hemiplegia/genética , Hemiplegia/fisiopatologia , Humanos , Masculino , Fenótipo
16.
Am J Pathol ; 190(3): 563-576, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31945314

RESUMO

Hyperlipidemia impacts on various diseases, such as atherosclerosis, hypertension, and diabetes mellitus. However, its influence, if any, on ocular tissues is largely unknown. Herein, we developed hyperlipidemic murine models by feeding 4-week-old male wild-type mice with a high-fat diet and apolipoprotein E knockout (ApoE-/-) mice with a high-fat diet or standard diet to investigate the corneal endothelial change under hyperlipidemic conditions. Oil Red O staining showed an accumulation of lipid droplets in corneal endothelial cells (CECs) of hyperlipidemic mice. Other manifestations included a reduced cell density and distorted cell morphology, a disruption of the endothelial cell tight junctions and adhesion junctions, a reduced number of surface microvilli, down-regulation of Na+-K+-ATPase expression and function, activation of oxidative stress, changes in mitochondrial ultrastructure, and increased apoptosis. CEC recovery after injury, moreover, was diminished in hyperlipidemic mice; and high palmitate levels were found in the aqueous humor. In vitro hyperlipemia model, moreover, was found to be associated with dose-dependent CEC cytotoxicity, altered cell morphology, reduced pump function, and an induction of oxidative stress, leading to functional and pathologic changes in the corneal endothelium.


Assuntos
Apolipoproteínas E/genética , Dieta Hiperlipídica/efeitos adversos , Hiperlipidemias/complicações , Estresse Oxidativo , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Apoptose , Sobrevivência Celular , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Regulação para Baixo , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Epitélio Posterior/metabolismo , Epitélio Posterior/patologia , Hiperlipidemias/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Mitocôndrias/ultraestrutura , Palmitatos/toxicidade , ATPase Trocadora de Sódio-Potássio/genética , Junções Íntimas/metabolismo , Junções Íntimas/patologia
17.
Cell Prolif ; 53(1): e12732, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31746080

RESUMO

OBJECTIVES: Temozolomide (TMZ) is one of the most commonly used clinical drugs for glioblastoma (GBM) treatment, but its drug sensitivity needs to be improved. Gamabufotalin (CS-6), the primary component of the traditional Chinese medicine "ChanSu," was shown to have strong anti-cancer activity. However, more efforts should be directed towards reducing its toxicity or effective treatment doses. METHODS: Target fishing experiment, Western blotting, PCR, confocal immunofluorescence and molecular cloning techniques were performed to search for possible downstream signalling pathways. In addition, GBM xenografts were used to further determine the potential molecular mechanisms of the synergistic effects of CS-6 and TMZ in vivo. RESULTS: Mechanistic research revealed a negative feedback loop between ATP1A3 and AQP4 through which CS-6 inhibited GBM growth and mediated the synergistic treatment effect of CS-6 and TMZ. In addition, by mutating potential amino acid residues of ATP1A3, which were predicted by modelling and docking to interact with CS-6, we demonstrated that abrogating hydrogen bonding of the amino acid Thr794 interferes with the activation of ATP1A3 by CS-6 and that the Thr794Ala mutation directly affects the synergistic treatment efficacy of CS-6 and TMZ. CONCLUSIONS: As the main potential target of CS-6, ATP1A3 activation critically depends on the hydrogen bonding of Thr794 with CS-6. The combination of CS-6 and TMZ could significantly reduce the therapeutic doses and promote the anti-cancer efficacy of CS-6/TMZ monotherapy.


Assuntos
Aquaporina 4/metabolismo , Bufanolídeos/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioblastoma/tratamento farmacológico , Proteínas de Neoplasias/biossíntese , ATPase Trocadora de Sódio-Potássio/biossíntese , Temozolomida/farmacologia , Animais , Aquaporina 4/genética , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Camundongos , Proteínas de Neoplasias/genética , ATPase Trocadora de Sódio-Potássio/genética , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Life Sci ; 248: 116481, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31102744

RESUMO

AIMS: Hypobaric hypoxia (HH), linked to oxidative stress, impairs cardiac function. We synthesized a novel nitronyl nitroxide radical, an HPN derivative (HEPN) and investigated the protective effects of HEPN and HPN against HH-induced heart injury in mice and the underlying mechanisms of action. MAIN METHODS: Mice were administered with HPN (200 mg/kg) or HEPN (200 mg/kg) 30 min before exposed to HH. The cardiac function was measured. Serum AST, CK, LDH and cTnI were estimated. Heart tissue oxidase activity, SOD, CAT, GSH-Px, ROS and MDA were estimated. ATP content, Na+/K+-ATPase and Ca2+/Mg2+-ATPase activity was measured. The expression of HIF-1, VEGF, Nrf2, HO-1, Bax, Bcl-2, Caspase-3 was estimated. KEY FINDINGS: Results showed that pretreatment with HEPN or HPN led to a dramatic decrease in the activity of biochemical markers AST, CK, LDH and cTnI in murine serum. They increased the activity of SOD, CAT and GSH-Px and reduced the level of ROS and MDA in the hearts of mice. HEPN and HPN could increase the expression of Nrf2 and OH-1. They could maintain the ATPase activity. The Bax and Caspase-3 expression as well as the ratio of Bax/Bcl-2 were significantly downregulated and the Bcl-2 expression was upregulated by HPN or HEPN compared to the HH group. They may attenuate the HH-induced oxidant stress via free radical scavenging activity. SIGNIFICANCE: The present study showed that the nitronyl nitroxide radical HEPN and HPN may be potential therapeutic agents for treatment of HH-induced cardiac dysfunction.


Assuntos
Antioxidantes/farmacologia , Cardiotônicos/farmacologia , Insuficiência Cardíaca/tratamento farmacológico , Hipóxia/tratamento farmacológico , Óxidos de Nitrogênio/farmacologia , Animais , Antioxidantes/síntese química , Aspartato Aminotransferases/sangue , Aspartato Aminotransferases/genética , ATPase de Ca(2+) e Mg(2+)/genética , ATPase de Ca(2+) e Mg(2+)/metabolismo , Cardiotônicos/síntese química , Caseína Quinases/sangue , Caseína Quinases/genética , Caspase 3/genética , Caspase 3/metabolismo , Catalase/sangue , Catalase/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Glutationa Peroxidase/sangue , Glutationa Peroxidase/genética , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/fisiopatologia , Testes de Função Cardíaca , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Hipóxia/complicações , Hipóxia/genética , Hipóxia/fisiopatologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , L-Lactato Desidrogenase/sangue , L-Lactato Desidrogenase/genética , Masculino , Malondialdeído/antagonistas & inibidores , Malondialdeído/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Óxidos de Nitrogênio/síntese química , Estresse Oxidativo/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Espécies Reativas de Oxigênio/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo , Superóxido Dismutase/sangue , Superóxido Dismutase/genética , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
19.
Anim Genet ; 51(1): 95-100, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31633210

RESUMO

In previous GWAS carried out in a Duroc commercial line (Lipgen population), we detected on pig chromosomes 3, 4 and 14 several QTL for gluteus medius muscle redness (GM a*), electric conductivity in the longissimus dorsi muscle (LD CE) and vaccenic acid content in the LD muscle (LD C18:1 n - 7), respectively. We have genotyped, in the Lipgen population, 19 SNPs mapping to 14 genes located within these QTL. Subsequently, association analyses have been performed. After correction for multiple testing, two SNPs in the TGFBRAP1 (rs321173745) and SELENOI (rs330820437) genes were associated with GM a*, whereas ACADSB (rs81449951) and GPR26 (rs343087568) genotypes displayed significant associations with LD vaccenic content. Moreover, the polymorphisms located at the ATP1A2 (rs344748241), ATP8B2 (rs81382410) and CREB3L4 (rs321278469 and rs330133789) genes showed significant associations with LD CE. We made a second round of association analyses including the SNPs mentioned above as well as other SNPs located in the chromosomes to which they map. After performing a correction for multiple testing, the only association that remained significant at the chromosome-wide level was that between the ATP1A2 genotype and LD CE. From a functional point of view, this association is meaningful because this locus encodes a subunit of the Na+ /K+ -ATPase responsible for maintaining an electrochemical gradient across the plasma membrane.


Assuntos
Condutividade Elétrica , Músculo Esquelético/fisiologia , Locos de Características Quantitativas , Carne Vermelha , ATPase Trocadora de Sódio-Potássio/genética , Sus scrofa/genética , Animais , Estudos de Associação Genética/veterinária , Genótipo
20.
Gastroenterology ; 158(3): 573-582.e2, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31678302

RESUMO

BACKGROUND & AIMS: Intraductal oncocytic papillary neoplasms (IOPNs) of the pancreas and bile duct contain epithelial cells with numerous, large mitochondria and are cystic precursors to pancreatic ductal adenocarcinoma (PDAC) and cholangiocarcinoma (CCA), respectively. However, IOPNs do not have the genomic alterations found in other pancreatobiliary neoplasms. In fact, no recurrent genomic alterations have been described in IOPNs. PDACs without activating mutations in KRAS contain gene rearrangements, so we investigated whether IOPNs have recurrent fusions in genes. METHODS: We analyzed 20 resected pancreatic IOPNs and 3 resected biliary IOPNs using a broad RNA-based targeted sequencing panel to detect cancer-related fusion genes. Four invasive PDACs and 2 intrahepatic CCAs from the same patients as the IOPNs, were also available for analysis. Samples of pancreatic cyst fluid (n = 5, collected before surgery) and bile duct brushings (n = 2) were analyzed for translocations. For comparison, we analyzed pancreatobiliary lesions from 126 patients without IOPN (controls). RESULTS: All IOPNs evaluated were found to have recurring fusions of ATP1B1-PRKACB (n = 13), DNAJB1-PRKACA (n = 6), or ATP1B1-PRKACA (n = 4). These fusions also were found in corresponding invasive PDACs and intrahepatic CCAs, as well as in matched pancreatic cyst fluid and bile duct brushings. These gene rearrangements were absent from all 126 control pancreatobiliary lesions. CONCLUSIONS: We identified fusions in PRKACA and PRKACB genes in pancreatic and biliary IOPNs, as well as in PDACs and pancreatic cyst fluid and bile duct cells from the same patients. We did not identify these gene fusions in 126 control pancreatobiliary lesions. These fusions might be used to identify patients at risk for IOPNs and their associated invasive carcinomas.


Assuntos
Neoplasias dos Ductos Biliares/genética , Carcinoma Ductal Pancreático/genética , Colangiocarcinoma/genética , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/genética , Neoplasias Intraductais Pancreáticas/genética , Neoplasias Pancreáticas/genética , Adulto , Idoso , Neoplasias dos Ductos Biliares/patologia , Ductos Biliares Intra-Hepáticos , Feminino , Fusão Gênica , Rearranjo Gênico , Proteínas de Choque Térmico HSP40/genética , Humanos , Masculino , Pessoa de Meia-Idade , Cisto Pancreático/genética , Neoplasias Intraductais Pancreáticas/patologia , Neoplasias Pancreáticas/patologia , ATPase Trocadora de Sódio-Potássio/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA