Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 141
Filtrar
1.
Chemotherapy ; 64(3): 146-154, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31715603

RESUMO

OBJECTIVE: Colorectal cancer (CRC) remains a major cause of cancer-related death worldwide. Proteasome 26S subunit ATPase 2 (PSMC2) plays vital roles in regulating cell cycle and transcription and has been confirmed to be a gene potentially associated with some human tumors. However, the expression correlation and molecular mechanism of PSMC2 in CRC are still unclear. This study aimed to investigate the role of PSMC2 in malignant behaviors in CRC. METHODS: The high protein levels of PSMC2 in CRC samples were identified by tissue microarray analysis. Lentivirus was used to silence PSMC2 in HCT116 and RKO cells; MTT and colony formation assay were performed to determine cell proliferation. Wound healing and Transwell assay were used to detect cell migration and invasion. Flow cytometry assay was applied to detect cell cycle and apoptosis. RESULT: The results showed that, among the 96 CRC patients, the expression of PSMC2 was a positive correlation with the clinicopathological features of the patients with CRC. Furthermore, the low PSMC2 expression group showed a higher survival rate than the high PSMC2 expression group. The expression levels of PSMC2 in cancer tissue were dramatically upregulated compared with adjacent normal tissues. In vitro, shPSMC2 was designed to inhibit the expression of PSMC2 in CRC cells. Compared with shCtrl, silencing of PSMC2 significantly suppressed cell proliferation, decreased single cell colony formation, enhanced apoptosis, and accelerated G2 phase and/or S phase arrest. CONCLUSION: Survival analysis indicated that high expression of PSMC2 in the CRC samples was associated with poorer survival rate than low expression of PSMC2, while the anti-tumor effect of PSMC2 silencing was also confirmed at the cellular level in vitro. Our results suggested that PSMC2 potentially worked as a regulator for CRC, and the silencing of PSMC2 may be a therapeutic strategy for CRC.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/metabolismo , Apoptose , Proliferação de Células , Neoplasias Colorretais/patologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Interferência de RNA , ATPases Associadas a Diversas Atividades Celulares/antagonistas & inibidores , ATPases Associadas a Diversas Atividades Celulares/genética , Idoso , Linhagem Celular Tumoral , Movimento Celular , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/mortalidade , Feminino , Humanos , Estimativa de Kaplan-Meier , Masculino , Prognóstico , Complexo de Endopeptidases do Proteassoma/genética , RNA Interferente Pequeno/metabolismo , Pontos de Checagem da Fase S do Ciclo Celular
2.
Int J Mol Sci ; 20(18)2019 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-31533258

RESUMO

Eukaryotic genes are packed into a dynamic but stable nucleoprotein structure called chromatin. Chromatin-remodeling and modifying complexes generate a dynamic chromatin environment that ensures appropriate DNA processing and metabolism in various processes such as gene expression, as well as DNA replication, repair, and recombination. The INO80 and SWR1 chromatin remodeling complexes (INO80-c and SWR1-c) are ATP-dependent complexes that modulate the incorporation of the histone variant H2A.Z into nucleosomes, which is a critical step in eukaryotic gene regulation. Although SWR1-c has been identified in plants, plant INO80-c has not been successfully isolated and characterized. In this review, we will focus on the functions of the SWR1-c and putative INO80-c (SWR1/INO80-c) multi-subunits and multifunctional complexes in Arabidopsis thaliana. We will describe the subunit compositions of the SWR1/INO80-c and the recent findings from the standpoint of each subunit and discuss their involvement in regulating development and environmental responses in Arabidopsis.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/metabolismo , Montagem e Desmontagem da Cromatina , Proteínas de Ligação a DNA/metabolismo , Substâncias Macromoleculares/metabolismo , Plantas/metabolismo , Cromatina/genética , Cromatina/metabolismo , Reparo do DNA , Replicação do DNA , Histonas/metabolismo , MicroRNAs/genética , Desenvolvimento Vegetal , Imunidade Vegetal , Plantas/genética
3.
J Exp Clin Cancer Res ; 38(1): 409, 2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-31533816

RESUMO

BACKGROUND: ATPase associated with a variety of cellular activities (AAA ATPase) family members are closely linked to tumor formation and progression. However, their roles in hepatocellular carcinoma (HCC) largely remain unclear. METHODS: Bioinformatic analyses of public databases were used to excavate the potential AAA ATPases that may contribute to HCC, and thyroid hormone receptor interactor 13 (TRIP13) was selected to following researches because of its most prominently differential expression. Western blot, qRT-PCR and immunohistochemistry were used to detect the expression of TRIP13 in HCC tissues, and then the relationship between TRIP13 expression and clinicopathological parameters were evaluated. Finally, its functions and potential mechanisms were investigated through a series gain- and loss-of-function strategies both in vitro and in vivo. RESULTS: TRIP13 was significantly overexpressed in HCC tissues and high level of TRIP13 was closely correlated with a worse clinical outcome. Functionally, elevated TRIP13 facilitated cell proliferation, migration, invasion, and promoted cellular epithelial-mesenchymal transition (EMT) in vitro, while promote tumor growth and lung metastasis in vivo. Mechanistically, TRIP13 interacted with ACTN4 and positively regulated its expression, thus activating the AKT/mTOR pathway to drive tumor progression. Moreover, miR-192-5p served as an upstream regulator of TRIP13 by directly binding to TRIP13 mRNA 3' UTR, which may partially explain the high expression of TRIP13 in HCC. CONCLUSION: Our findings identified TRIP13 as a promising candidate oncogene in HCC, and TRIP13 induced cell migration, invasion and metastasis of HCC through the AKT/mTOR signaling via interacting with ACTN4.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/metabolismo , Carcinoma Hepatocelular/patologia , Proteínas de Ciclo Celular/metabolismo , Neoplasias Hepáticas/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , ATPases Associadas a Diversas Atividades Celulares/genética , Actinina/metabolismo , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/mortalidade , Estudos de Casos e Controles , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Movimento Celular , Progressão da Doença , Feminino , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/mortalidade , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Transdução de Sinais , Taxa de Sobrevida , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Med Sci Monit ; 25: 6660-6668, 2019 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-31486418

RESUMO

BACKGROUND Bladder cancer is the fourth most common cancer worldwide. Thyroid receptor-interacting protein 13 (TRIP13) is a member of the AAA+ ATPase family. The upregulation of TRIP13 has been shown to be involved in a few diseases, especially in cancers, but the expression and function of TRIP13 in bladder cancer is still elusive. MATERIAL AND METHODS In our study, the expression of TRIP13 was investigated with immunohistochemistry (IHC). The mRNAs of TRIP13 in bladder cancer and adjacent normal tissues were compared using quantitative real-time polymerase chain reaction (qRT-PCR) and IHC scores. The clinical value of TRIP13 was estimated by evaluating its correlation with other clinicopathological factors using the chi-square test. The prognostic significance of TRIP13 was evaluated using univariate and multivariate analyses. The effect of TRIP13 on proliferation and invasion was evaluated using function assays in vitro. RESULTS In the 139 samples of bladder cancer tissues, the patients with low and high expression of TRIP13 accounted for 64.03% and 35.97%, respectively. Moreover, the mRNA expression of TRIP13 in bladder cancer was significantly higher than in normal tissues. High expression of TRIP13 was remarkably correlated with T stage, metastasis, and poor prognosis. In addition, TRIP13 was demonstrated to promote the proliferation, invasion, and epithelial-mesenchymal transition (EMT) of bladder cancer. CONCLUSIONS TRIP13 is correlated with poor prognosis of bladder cancer by promoting proliferation, invasion, and EMT, indicating that TRIP13 may be a promising drug target in bladder cancer.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/metabolismo , Proteínas de Ciclo Celular/metabolismo , Progressão da Doença , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/patologia , ATPases Associadas a Diversas Atividades Celulares/genética , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células , Transição Epitelial-Mesenquimal/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Invasividade Neoplásica , Metástase Neoplásica , Estadiamento de Neoplasias , Prognóstico , Regulação para Cima , Neoplasias da Bexiga Urinária/genética
5.
Int J Mol Sci ; 20(15)2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31374812

RESUMO

Peroxisome biogenesis disorders (PBDs) are nontreatable hereditary diseases with a broad range of severity. Approximately 65% of patients are affected by mutations in the peroxins Pex1 and Pex6. The proteins form the heteromeric Pex1/Pex6 complex, which is important for protein import into peroxisomes. To date, no structural data are available for this AAA+ ATPase complex. However, a wealth of information can be transferred from low-resolution structures of the yeast scPex1/scPex6 complex and homologous, well-characterized AAA+ ATPases. We review the abundant records of missense mutations described in PBD patients with the aim to classify and rationalize them by mapping them onto a homology model of the human Pex1/Pex6 complex. Several mutations concern functionally conserved residues that are implied in ATP hydrolysis and substrate processing. Contrary to fold destabilizing mutations, patients suffering from function-impairing mutations may not benefit from stabilizing agents, which have been reported as potential therapeutics for PBD patients.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/genética , Proteínas de Membrana/genética , Mutação de Sentido Incorreto , Transtornos Peroxissômicos/genética , ATPases Associadas a Diversas Atividades Celulares/química , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Animais , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Modelos Moleculares , Transtornos Peroxissômicos/metabolismo , Conformação Proteica , Mapas de Interação de Proteínas , Alinhamento de Sequência
6.
Adv Exp Med Biol ; 1158: 119-142, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31452139

RESUMO

The mitochondrion is a vital organelle that performs diverse cellular functions. In this regard, the cell has evolved various mechanisms dedicated to the maintenance of the mitochondrial proteome. Among them, AAA+ ATPase-associated proteases (AAA+ proteases) such as the Lon protease (LonP1), ClpXP complex, and the membrane-bound i-AAA, m-AAA and paraplegin facilitate the clearance of misfolded mitochondrial proteins to prevent the accumulation of cytotoxic protein aggregates. Furthermore, these proteases have additional regulatory functions in multiple biological processes that include amino acid metabolism, mitochondria DNA transcription, metabolite and cofactor biosynthesis, maturation and turnover of specific respiratory and metabolic proteins, and modulation of apoptosis, among others. In cancer cells, the increase in intracellular ROS levels promotes tumorigenic phenotypes and increases the frequency of protein oxidation and misfolding, which is compensated by the increased expression of specific AAA+ proteases as part of the adaptation mechanism. The targeting of AAA+ proteases has led to the discovery and development of novel anti-cancer compounds. Here, we provide an overview of the molecular characteristics and functions of the major mitochondrial AAA+ proteases and summarize recent research efforts in the development of compounds that target these proteases.


Assuntos
Proteínas Mitocondriais , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Ativação Enzimática , Humanos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Neoplasias/enzimologia , Neoplasias/fisiopatologia , Neoplasias/terapia , Protease La/metabolismo
7.
Mol Cell ; 75(5): 1073-1085.e6, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31327635

RESUMO

Mitochondrial AAA+ quality-control proteases regulate diverse aspects of mitochondrial biology through specialized protein degradation, but the underlying mechanisms of these enzymes remain poorly defined. The mitochondrial AAA+ protease AFG3L2 is of particular interest, as genetic mutations localized throughout AFG3L2 are linked to diverse neurodegenerative disorders. However, a lack of structural data has limited our understanding of how mutations impact enzymatic function. Here, we used cryoelectron microscopy (cryo-EM) to determine a substrate-bound structure of the catalytic core of human AFG3L2. This structure identifies multiple specialized structural features that integrate with conserved motifs required for ATP-dependent translocation to unfold and degrade targeted proteins. Many disease-relevant mutations localize to these unique structural features of AFG3L2 and distinctly influence its activity and stability. Our results provide a molecular basis for neurological phenotypes associated with different AFG3L2 mutations and establish a structural framework to understand how different members of the AAA+ superfamily achieve specialized biological functions.


Assuntos
Proteases Dependentes de ATP/química , ATPases Associadas a Diversas Atividades Celulares/química , Proteínas Mitocondriais/química , Mutação , Proteases Dependentes de ATP/genética , Proteases Dependentes de ATP/metabolismo , ATPases Associadas a Diversas Atividades Celulares/genética , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Microscopia Crioeletrônica , Células HEK293 , Transtornos Heredodegenerativos do Sistema Nervoso/genética , Transtornos Heredodegenerativos do Sistema Nervoso/metabolismo , Humanos , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Domínios Proteicos
8.
Nat Commun ; 10(1): 3393, 2019 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-31358741

RESUMO

The nuclear exosome and its essential co-factor, the RNA helicase MTR4, play crucial roles in several RNA degradation pathways. Besides unwinding RNA substrates for exosome-mediated degradation, MTR4 associates with RNA-binding proteins that function as adaptors in different RNA processing and decay pathways. Here, we identify and characterize the interactions of human MTR4 with a ribosome processing adaptor, NVL, and with ZCCHC8, an adaptor involved in the decay of small nuclear RNAs. We show that the unstructured regions of NVL and ZCCHC8 contain short linear motifs that bind the MTR4 arch domain in a mutually exclusive manner. These short sequences diverged from the arch-interacting motif (AIM) of yeast rRNA processing factors. Our results suggest that nuclear exosome adaptors have evolved canonical and non-canonical AIM sequences to target human MTR4 and demonstrate the versatility and specificity with which the MTR4 arch domain can recruit a repertoire of different RNA-binding proteins.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/metabolismo , Proteínas de Transporte/metabolismo , Núcleo Celular/metabolismo , Exossomos/genética , Proteínas Nucleares/metabolismo , RNA Helicases/metabolismo , ATPases Associadas a Diversas Atividades Celulares/química , ATPases Associadas a Diversas Atividades Celulares/genética , Sequência de Aminoácidos , Sítios de Ligação/genética , Proteínas de Transporte/química , Proteínas de Transporte/genética , Cristalografia por Raios X , Exossomos/metabolismo , Células HeLa , Humanos , Mutação , Proteínas Nucleares/química , Proteínas Nucleares/genética , Ligação Proteica , Domínios Proteicos , RNA Helicases/química , RNA Helicases/genética , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Homologia de Sequência de Aminoácidos
9.
Nat Commun ; 10(1): 3050, 2019 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-31296859

RESUMO

The Rea1 AAA+-ATPase dislodges assembly factors from pre-60S ribosomes upon ATP hydrolysis, thereby driving ribosome biogenesis. Here, we present crystal structures of Rea1-MIDAS, the conserved domain at the tip of the flexible Rea1 tail, alone and in complex with its substrate ligands, the UBL domains of Rsa4 or Ytm1. These complexes have structural similarity to integrin α-subunit domains when bound to extracellular matrix ligands, which for integrin biology is a key determinant for force-bearing cell-cell adhesion. However, the presence of additional motifs equips Rea1-MIDAS for its tasks in ribosome maturation. One loop insert cofunctions as an NLS and to activate the mechanochemical Rea1 cycle, whereas an additional ß-hairpin provides an anchor to hold the ligand UBL domains in place. Our data show the versatility of the MIDAS fold for mechanical force transmission in processes as varied as integrin-mediated cell adhesion and mechanochemical removal of assembly factors from pre-ribosomes.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/ultraestrutura , Proteínas Fúngicas/ultraestrutura , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , ATPases Associadas a Diversas Atividades Celulares/isolamento & purificação , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Adesão Celular/fisiologia , Chaetomium/fisiologia , Cristalografia por Raios X , Proteínas Fúngicas/isolamento & purificação , Proteínas Fúngicas/metabolismo , Integrinas/ultraestrutura , Ligantes , Ligação Proteica/fisiologia , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestrutura
10.
Artif Cells Nanomed Biotechnol ; 47(1): 2575-2584, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31218890

RESUMO

Our previous studies have revealed that a dominant mutation in vacuolar protein sorting 4B (VPS4B), a member of the AAA ATPase family, causes dentin dysplasia type I. The purpose of the present study was to investigate the roles of VPS4B in human dental pulp stem cells (hDPSCs) and to elucidate the underlying molecular mechanisms. In this study, we found that VPS4B was highly expressed in the dental pulp cells of the mouse molar tooth germ, and the expression of VPS4B increased significantly during the odontoblastic differentiation of hDPSCs. VPS4B downregulation inhibited the proliferation, migration, and odontoblastic differentiation of hDPSCs. Moreover, treatment with lithium chloride, an agonist of the Wnt-ß-catenin signalling pathway, partially reversed the VPS4B knockdown-driven suppression of proliferation and of odontoblastic differentiation of hDPSCs. Collectively, our findings indicate that VPS4B, via Wnt-ß-catenin signalling, acts as a regulator of the proliferation and differentiation of hDPSCs. Our results suggest potential therapeutic avenues for dentin formation and regenerative endodontics in patients with dentin dysplasia type I.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/metabolismo , Diferenciação Celular , Polpa Dentária/citologia , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Odontoblastos/citologia , Células-Tronco/citologia , Via de Sinalização Wnt , ATPases Associadas a Diversas Atividades Celulares/genética , Animais , Movimento Celular , Proliferação de Células , Regulação para Baixo , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Transporte Proteico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , beta Catenina/metabolismo
11.
Elife ; 82019 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-31251172

RESUMO

Most AAA+ remodeling motors denature proteins by pulling on the peptide termini of folded substrates, but it is not well-understood how motors produce grip when resisting a folded domain. Here, at single amino-acid resolution, we identify the determinants of grip by measuring how substrate tail sequences alter the unfolding activity of the unfoldase-protease ClpXP. The seven amino acids abutting a stable substrate domain are key, with residues 2-6 forming a core that contributes most significantly to grip. ClpX grips large hydrophobic and aromatic side chains strongly and small, polar, or charged side chains weakly. Multiple side chains interact with pore loops synergistically to strengthen grip. In combination with recent structures, our results support a mechanism in which unfolding grip is primarily mediated by non-specific van der Waal's interactions between core side chains of the substrate tail and a subset of YVG loops at the top of the ClpX axial pore.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/química , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Endopeptidase Clp/química , Endopeptidase Clp/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Desdobramento de Proteína , Sequência de Aminoácidos , Proteínas de Fluorescência Verde/metabolismo , Ligação Proteica , Proteólise , Especificidade por Substrato
12.
Microbiol Res ; 223-225: 99-109, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31178057

RESUMO

Streptococcus suis has received increasing attention for its involvement in severe infections in pigs and humans; however, their pathogenesis remains unclear. ClpX and ClpP, two subunits of the ATP-dependent caseinolytic protease Clp, play key roles in bacterial adaptation to various environmental stresses. In this study, a virulent S. suis serotype 2 strain, ZY05719, was employed to construct clpX and clpP deletion mutants (ΔclpX and ΔclpP, respectively) and their complementation strains. Both ΔclpX and ΔclpP displayed significantly reduced adaptability compared with the wild-type strain, evident through several altered phenotypes: formation of long cell chains, tendency to aggregate in culture, and reduced growth under acidic pH and H2O2-induced oxidative stress. ClpP and ClpX were required for the optimal growth during heat and cold stress, respectively. An in vitro experiment on RAW264.7 macrophage cells showed significantly increased sensitivity of ΔclpX and ΔclpP to phagocytosis compared with the wild-type strain. Mouse infection assays verified the deletion of clpX and clpP led to not only fewer clinical symptoms and lower mortality but also to a marked attenuation in bacterial colonization. These virulence-related phenotypes were restored by genetic complementation. Furthermore, the deletion of clpX or clpP caused a significant decrease in the expression of sodA, tpx, and apuA compared with the wild-type strain, suggesting that these genes may be regulated by ClpX and ClpP as downstream response factors to facilitate the bacterial tolerance against various environmental stresses. Taken together, these results suggest that ClpX and ClpP play important roles in stress tolerance for achieving the full virulence of S. suis serotype 2 during infection.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/metabolismo , Proteínas de Bactérias/metabolismo , Endopeptidase Clp/metabolismo , Chaperonas Moleculares/metabolismo , Streptococcus suis/metabolismo , Streptococcus suis/patogenicidade , Animais , Proteínas de Bactérias/genética , Biofilmes , Resposta ao Choque Frio , Endopeptidase Clp/genética , Deleção de Genes , Regulação Bacteriana da Expressão Gênica , Resposta ao Choque Térmico , Peróxido de Hidrogênio/metabolismo , Concentração de Íons de Hidrogênio , Camundongos , Chaperonas Moleculares/genética , Pressão Osmótica , Estresse Oxidativo , Fagocitose , Células RAW 264.7 , Infecções Estreptocócicas/microbiologia , Streptococcus suis/genética , Streptococcus suis/crescimento & desenvolvimento , Transcriptoma , Virulência/genética , Fatores de Virulência/genética , Fatores de Virulência/fisiologia
13.
BMB Rep ; 52(7): 457-462, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31186081

RESUMO

[18F]Fluorodeoxyglucose (FDG) PET/CT imaging has been widely used in the diagnosis of malignant tumors. ATPase family AAA domain-containing protein 2 (ATAD2) plays important roles in tumor growth, invasion and metastasis. However, the relationship between [18F]FDG accumulation and ATAD2 expression remains largely unknown. This study aimed to investigate the correlation between ATAD2 expression and [18F]FDG uptake in lung adenocarcinoma (LUAD), and elucidate its underlying molecular mechanisms. The results showed that ATAD2 expression was positively correlated with maximum standardized uptake value (SUVmax), total lesion glycolysis (TLG), glucose transporter type 1 (GLUT1) expression and hexokinase2 (HK2) expression in LUAD tissues. In addition, ATAD2 knockdown significantly inhibited the proliferation, tumorigenicity, migration, [18F]FDG uptake and lactate production of LUAD cells, while, ATAD2 overexpression exhibited the opposite effects. Furthermore, ATAD2 modulated the glycometabolism of LUAD via AKT-GLUT1/HK2 pathway, as assessed using LY294002 (an inhibitor of PI3K/AKT pathway). In summary, to explore the correlation between ATAD2 expression and glycometabolism is expected to bring good news for anti-energy metabolism therapy of cancers. [BMB Reports 2019; 52(7): 457-462].


Assuntos
ATPases Associadas a Diversas Atividades Celulares/metabolismo , Adenocarcinoma de Pulmão/metabolismo , Proteínas de Ligação a DNA/metabolismo , Fluordesoxiglucose F18/farmacocinética , Neoplasias Pulmonares/metabolismo , ATPases Associadas a Diversas Atividades Celulares/antagonistas & inibidores , ATPases Associadas a Diversas Atividades Celulares/genética , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/patologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Cromonas/farmacologia , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/genética , Relação Dose-Resposta a Droga , Feminino , Transportador de Glucose Tipo 1/antagonistas & inibidores , Transportador de Glucose Tipo 1/metabolismo , Hexoquinase/antagonistas & inibidores , Hexoquinase/metabolismo , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Morfolinas/farmacologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo
14.
Nat Commun ; 10(1): 2420, 2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-31160570

RESUMO

Replication-Factor-C (RFC) and RFC-like complexes (RLCs) mediate chromatin engagement of the proliferating cell nuclear antigen (PCNA). It remains controversial how RFC and RLCs cooperate to regulate PCNA loading and unloading. Here, we show the distinct PCNA loading or unloading activity of each clamp loader. ATAD5-RLC possesses the potent PCNA unloading activity. ATPase motif and collar domain of ATAD5 are crucial for the unloading activity. DNA structures did not affect PCNA unloading activity of ATAD5-RLC. ATAD5-RLC could unload ubiquitinated PCNA. Through single molecule measurements, we reveal that ATAD5-RLC unloaded PCNA through one intermediate state before ATP hydrolysis. RFC loaded PCNA through two intermediate states on DNA, separated by ATP hydrolysis. Replication proteins such as Fen1 could inhibit the PCNA unloading activity of Elg1-RLC, a yeast homolog of ATAD5-RLC in vitro. Our findings provide molecular insights into how PCNA is released from chromatin to finalize DNA replication/repair.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/metabolismo , Replicação do DNA , Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Proteína de Replicação C/metabolismo , Adenosina Trifosfatases , Trifosfato de Adenosina/metabolismo , Proteínas de Transporte/metabolismo , Cromatina/metabolismo , Endonucleases Flap/metabolismo , Humanos , Hidrólise , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo
15.
Biol Pharm Bull ; 42(5): 764-769, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31061318

RESUMO

Werner helicase-interacting protein 1 (WRNIP1) was originally identified as a protein that interacts with WRN, the product of the gene responsible for Werner syndrome. Our previous studies suggested that WRNIP1 is implicated in translesion synthesis (TLS), a process in which specialized TLS polymerases replace replicative DNA polymerase and take over DNA synthesis on damaged templates. We proposed that a novel error-free pathway involving DNA polymerase δ and primase-polymerase (PrimPol) functions to synthesize DNA on UV-damaged DNA templates in the absence of WRNIP1 and the TLS polymerase Polη. Hence, in the current study, we analyzed the relationship between WRNIP1 and PrimPol. We found that WRNIP1 and PrimPol form a complex in cells. PrimPol protein expression was reduced in cells overexpressing WRNIP1, but was increased in WRNIP1-depleted cells. The WRNIP1-mediated reduction in the amount of PrimPol was suppressed by treatment of the cells with proteasome inhibitors, suggesting that WRNIP1 is involved in the degradation of PrimPol via the proteasome.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/metabolismo , DNA Primase/metabolismo , Proteínas de Ligação a DNA/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Enzimas Multifuncionais/metabolismo , ATPases Associadas a Diversas Atividades Celulares/genética , DNA Primase/genética , DNA Complementar/genética , Proteínas de Ligação a DNA/genética , DNA Polimerase Dirigida por DNA/genética , Células HEK293 , Humanos , Enzimas Multifuncionais/genética , Plasmídeos , Inibidores de Proteassoma/farmacologia , RNA Mensageiro/metabolismo , Transfecção
16.
PLoS Genet ; 15(5): e1008184, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31125351

RESUMO

The function of AarF domain-containing kinase 1 (ADCK1) has not been thoroughly revealed. Here we identified that ADCK1 utilizes YME1-like 1 ATPase (YME1L1) to control optic atrophy 1 (OPA1) and inner membrane mitochondrial protein (IMMT) in regulating mitochondrial dynamics and cristae structure. We firstly observed that a serious developmental impairment occurred in Drosophila ADCK1 (dADCK1) deletion mutant, resulting in premature death before adulthood. By using temperature sensitive ubiquitously expression driver tub-Gal80ts/tub-Gal4 or muscle-specific expression driver mhc-Gal4, we observed severely defective locomotive activities and structural abnormality in the muscle along with increased mitochondrial fusion in the dADCK1 knockdown flies. Moreover, decreased mitochondrial membrane potential, ATP production and survival rate along with increased ROS and apoptosis in the flies further demonstrated that the structural abnormalities of mitochondria induced by dADCK1 knockdown led to their functional abnormalities. Consistent with the ADCK1 loss-of-function data in Drosophila, ADCK1 over-expression induced mitochondrial fission and clustering in addition to destruction of the cristae structure in Drosophila and mammalian cells. Interestingly, knockdown of YME1L1 rescued the phenotypes of ADCK1 over-expression. Furthermore, genetic epistasis from fly genetics and mammalian cell biology experiments led us to discover the interactions among IMMT, OPA1 and ADCK1. Collectively, these results established a mitochondrial signaling pathway composed of ADCK1, YME1L1, OPA1 and IMMT, which has essential roles in maintaining mitochondrial morphologies and functions in the muscle.


Assuntos
Mitocôndrias/genética , Proteínas Mitocondriais/genética , Proteínas Quinases/metabolismo , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Animais , Animais Geneticamente Modificados , Apoptose , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Humanos , Potencial da Membrana Mitocondrial/genética , Proteínas de Membrana/metabolismo , Metaloendopeptidases/metabolismo , Mitocôndrias/metabolismo , Dinâmica Mitocondrial/genética , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas Musculares/metabolismo , Proteínas Quinases/genética
17.
Viruses ; 11(4)2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-31018511

RESUMO

Ebola virus (EBOV) is a filovirus that has become a global public health threat in recent years. EBOV is the causative agent of a severe, often fatal hemorrhagic fever. A productive viral infection relies on the successful recruitment of host factors for various stages of the viral life cycle. To date, several investigations have discovered specific host-pathogen interactions for various EBOV proteins. However, relatively little is known about the EBOV nucleoprotein (NP) with regard to host interactions. In the present study, we aimed to elucidate NP-host protein-protein interactions (PPIs). Affinity purification-mass spectrometry (AP-MS) was used to identify candidate NP cellular interactors. Candidate interactors RUVBL1 and RUVBL2, partner proteins belonging to the AAA+ (ATPases Associated with various cellular Activities) superfamily, were confirmed to interact with NP in co-immunoprecipitation (co-IP) and immunofluorescence (IF) experiments. Functional studies using a minigenome system revealed that the siRNA-mediated knockdown of RUVBL1 but not RUVBL2 moderately decreased EBOV minigenome activity. Super resolution structured illumination microscopy (SIM) was used to identify an association between NP and components of the R2TP complex, which includes RUVBL1, RUVBL2, RPAP3, and PIH1D1, suggesting a potential role for the R2TP complex in capsid formation. Moreover, the siRNA-mediated knockdown of RPAP3 and subsequent downregulation of PIH1D1 was shown to have no effect on minigenome activity, further suggesting a role in capsid formation. Overall, we identify RUVBL1 and RUVBL2 as novel interactors of EBOV NP and for the first time report EBOV NP recruitment of the R2TP complex, which may provide novel targets for broad-acting anti-EBOV therapeutics.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/metabolismo , Proteínas de Transporte/metabolismo , DNA Helicases/metabolismo , Ebolavirus/fisiologia , Interações Hospedeiro-Patógeno , Nucleoproteínas/metabolismo , ATPases Associadas a Diversas Atividades Celulares/genética , Proteínas de Transporte/antagonistas & inibidores , Proteínas de Transporte/genética , DNA Helicases/genética , Ebolavirus/genética , Técnicas de Silenciamento de Genes , Genoma Viral , Humanos , Nucleoproteínas/genética , Ligação Proteica , RNA Interferente Pequeno
18.
Nucleic Acids Res ; 47(10): 5170-5180, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-30941419

RESUMO

Homologous recombination (HR) maintains genome stability by promoting accurate DNA repair. Two recombinases, RAD51 and DMC1, are central to HR repair and form dynamic nucleoprotein filaments in vivo under tight regulation. However, the interplay between positive and negative regulators to control the dynamic assembly/disassembly of RAD51/DMC1 filaments in multicellular eukaryotes remains poorly characterized. Here, we report an antagonism between BRCA2, a well-studied positive mediator of RAD51/DMC1, and FIDGETIN-LIKE-1 (FIGL1), which we previously proposed as a negative regulator of RAD51/DMC1. Through forward genetic screen, we identified a mutation in one of the two Arabidopsis BRCA2 paralogs that suppresses the meiotic phenotypes of figl1. Consistent with the antagonistic roles of BRCA2 and FIGL1, the figl1 mutation in the brca2 background restores RAD51/DMC1 focus formation and homologous chromosome interaction at meiosis, and RAD51 focus formation in somatic cells. This study shows that BRCA2 and FIGL1 have antagonistic effects on the dynamics of RAD51/DMC1-dependent DNA transactions to promote accurate HR repair.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/antagonistas & inibidores , Proteínas de Arabidopsis/antagonistas & inibidores , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ligação a DNA/antagonistas & inibidores , Epistasia Genética , Recombinação Homóloga , Proteínas Associadas aos Microtúbulos/antagonistas & inibidores , Nucleoproteínas/química , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , DNA/química , Dano ao DNA , Reparo do DNA , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Meiose , Proteínas Associadas aos Microtúbulos/metabolismo , Modelos Genéticos , Mutação , Fenótipo , Rad51 Recombinase/química , Recombinases Rec A/química , Reparo de DNA por Recombinação
19.
Adv Exp Med Biol ; 1134: 259-269, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30919342

RESUMO

The ATPase family AAA-domain containing protein 3A (ATAD3A), a nuclear-encoded mitochondrial enzyme, is involved in diverse cellular processes, including mitochondrial dynamics, cell death and cholesterol metabolism. Overexpression and/or mutation of the ATAD3A gene have been observed in different types of cancer, associated with cancer development and progression. The dysregulated ATAD3A acts as a broker of a mitochondria-endoplasmic reticulum connection in cancer cells, and inhibition of this enzyme leads to tumor repression and enhanced sensitivity to chemotherapy and radiation. As such, ATAD3A is a promising drug target in cancer treatment.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/metabolismo , Neoplasias/metabolismo , Animais , Retículo Endoplasmático/metabolismo , Humanos , Mitocôndrias/metabolismo
20.
Nat Commun ; 10(1): 1407, 2019 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-30926776

RESUMO

RAD51 assembly on single-stranded (ss)DNAs is a crucial step in the homology-dependent repair of DNA damage for genomic stability. The formation of the RAD51 filament is promoted by various RAD51-interacting proteins including RAD51 paralogues. However, the mechanisms underlying the differential control of RAD51-filament dynamics by these factors remain largely unknown. Here, we report a role for the human RAD51 paralogue, SWSAP1, as a novel regulator of RAD51 assembly. Swsap1-deficient cells show defects in DNA damage-induced RAD51 assembly during both mitosis and meiosis. Defective RAD51 assembly in SWSAP1-depleted cells is suppressed by the depletion of FIGNL1, which binds to RAD51 as well as SWSAP1. Purified FIGNL1 promotes the dissociation of RAD51 from ssDNAs. The dismantling activity of FIGNL1 does not require its ATPase but depends on RAD51-binding. Purified SWSAP1 inhibits the RAD51-dismantling activity of FIGNL1. Taken together, our data suggest that SWSAP1 protects RAD51 filaments by antagonizing the anti-recombinase, FIGNL1.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Rad51 Recombinase/metabolismo , Recombinases Rec A/fisiologia , Homologia de Sequência de Aminoácidos , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Linhagem Celular , Cromossomos Humanos/metabolismo , DNA/metabolismo , Dano ao DNA , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/metabolismo , Células Germinativas/metabolismo , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitose , Modelos Biológicos , Ligação Proteica , Recombinases Rec A/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA