Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 951
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-34864425

RESUMO

Quality control, nutritional value and the monitoring of hazardous residues in honey bee- products have become major topics for both producers and consumers. Due to its potential role in human health, bee-products rich in bioactive compounds are becoming increasingly popular. This review aims to provide an overview of thin-layer chromatography methods used in quality control,authenticity testing and chemical profiling of bee-products in order to help scientists engaged in the field of bee-products chemistry to utilize the advantages of this technique in the detection and elimination of fraudulent practices in bee-product manufacturing. Recently, hyphenation of thin-layer chromatography, image analysis and chemometrics support bee-products analysisbysimultaneousdeterminationofanalytes with different detection principles, identification of individual bioactive compounds as well as structure elucidation of compounds. Highlighted opportunities of thin-layer chromatography could encourage further investigations that would lead to improvements in the detection and elimination of marketing fraudulent practices.


Assuntos
Abelhas/metabolismo , Produtos Biológicos , Cromatografia em Camada Delgada/métodos , Mel , Própole , Animais , Produtos Biológicos/análise , Produtos Biológicos/química , Produtos Biológicos/normas , Mel/análise , Mel/normas , Pólen/química , Própole/análise , Própole/química , Própole/normas , Controle de Qualidade
2.
Int J Mol Sci ; 22(21)2021 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-34769266

RESUMO

Sublethal dosages of imidacloprid cause long-term destructive effects on honey bees at the individual and colony levels. In this review, the molecular effects of sublethal imidacloprid were integrated and reported. Several general effects have been observed among different reports using different approaches. Quantitative PCR approaches revealed that imidacloprid treatments during the adult stage are expressed as changes in immuneresponse, detoxification, and oxidation-reduction response in both workers and queens. In addition, transcriptomic approaches suggested that phototransduction, behavior, and somatic muscle development also were affected. Although worker larvae show a higher tolerance to imidacloprid than adults, molecular evidence reveals its potential impacts. Sublethal imidacloprid treatment during the larval stage causes gene expression changes in larvae, pupae, and adults. Transcriptome profiles suggest that the population and functions of affected differentially expressed genes, DEGs, vary among different worker ages. Furthermore, an early transcriptomic switch from nurse bees to foragers was observed, suggesting that precocious foraging activity may occur. This report comprehensively describes the molecular effects of sublethal dosages of imidacloprid on the honey bee Apis mellifera. The corresponding molecular pathways for physiological and neurological responses in imidacloprid-exposed honey bees were validated. Transcriptomic evidence suggests a global and sustained sublethal impact of imidacloprid on honey bee development.


Assuntos
Abelhas/metabolismo , Neonicotinoides/farmacologia , Nitrocompostos/farmacologia , Transcriptoma/efeitos dos fármacos , Animais , Larva/metabolismo
3.
PLoS One ; 16(9): e0252806, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34499645

RESUMO

Beeswax is intended for use in the beekeeping sector but also in the agro-food, pharmaceutical or cosmetics sectors. The adulteration of beeswax is an emerging issue that was reported lately at several occasions in the scientific literature. This issue tends to become more frequent and global, but its exact extent is not accurately defined. The present study aims to assess the current situation in Belgium through a nationwide survey. Randomized beeswax samples originating from Belgian beekeepers (N = 98) and commercial suppliers (N = 9) were analysed with a Fourier transform infrared spectroscopy (FTIR) coupled with Attenuated Total Reflectance (ATR) accessory (FTIR-ATR spectroscopy) for adulteration. The survey revealed a frequency of 9.2% and 33.3% of adulteration in beekeepers beeswax samples (9 samples out of 98: 2 with paraffin and 7 with stearin/stearic acid) and commercial beeswax samples (3 samples out of 9: all adulterated with stearin/stearic acid), respectively. The analysed samples were adulterated with various percentages of paraffin (12 to 78.8%) and stearin/stearic acid (1.2 to 20.8%). This survey indicates that in the beekeepers samples, beeswax adulteration was more frequent in comb foundation and crude beeswax than in comb wax. With the example of this nationwide survey conducted in Belgium, this study shows the emergence of the issue and the urgent need for action to safeguard the health of both honey bees health and humans, in particular with the setting of a proper regulation legal framework and a specific routine analytical testing of commercial beeswax to ensure beeswax quality.


Assuntos
Abelhas/metabolismo , Ceras/análise , Animais , Bélgica , Contaminação de Medicamentos , Parafina/química , Espectroscopia de Infravermelho com Transformada de Fourier , Ácidos Esteáricos/química
4.
Sci Rep ; 11(1): 18466, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34531482

RESUMO

An isolated bacterium TBE-8, was identified as Leuconostoc mesenteroides according to the sequences of 16S rDNA and the 16S-23S rDNA intergenic spacer region. The probiotic properties of the L. mesenteroides TBE-8 strain were characterized and revealed that TBE-8 could utilize various carbohydrates, exhibited high tolerance to sucrose's osmotic pressure and acidic conditions, and could mitigate the impact of the bee pathogen Paenibacillus larvae. In addition, we found that the TBE-8 broth increased the expression of the nutrition-related genes major royal jelly protein 1 and vitellogenin in bees by approximately 1400- and 20-fold, respectively. The expression of genes encoding two antibacterial peptides, hymenoptaecin and apidaecin, in the bee abdomen was significantly increased by 17- and 7-fold in bees fed with the TBE-8 fermented broth. Furthermore, we fed four-frame bee colonies with 50% sucrose syrup containing TBE-8 and can detect the presence of approximately 2 × 106 16S rDNA copies of TBE-8 in the guts of all bees in 24 h, and the retention of TBE-8 in the bee gut for at least 5 days. These findings indicate that the L. mesenteroides TBE-8 has high potential as a bee probiotic and could enhance the health of bee colonies.


Assuntos
Abelhas/microbiologia , Resistência à Doença , Leuconostoc mesenteroides/patogenicidade , Probióticos , Animais , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/metabolismo , Abelhas/metabolismo , Metabolismo dos Carboidratos , Glicoproteínas/genética , Glicoproteínas/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Leuconostoc mesenteroides/genética , Paenibacillus larvae/patogenicidade , RNA Ribossômico 16S/genética , Vitelogeninas/genética , Vitelogeninas/metabolismo
5.
Sci Rep ; 11(1): 16731, 2021 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-34408196

RESUMO

Calcium sparks are involved in major physiological and pathological processes in vertebrate muscles but have never been characterized in invertebrates. Here, dynamic confocal imaging on intact skeletal muscle cells isolated enzymatically from the adult honey bee legs allowed the first spatio-temporal characterization of subcellular calcium release events (CREs) in an insect species. The frequency of CREs, measured in x-y time lapse series, was higher than frequencies usually described in vertebrates. Honey bee CREs had a larger spatial spread at half maximum than their vertebrate counterparts and a slightly ellipsoidal shape, two characteristics that may be related to ultrastructural features specific to invertebrate cells. In line-scan experiments, the histogram of CREs' duration followed a bimodal distribution, supporting the existence of both sparks and embers. Unlike in vertebrates, embers and sparks had similar amplitudes, a difference that could be related to genomic differences and/or excitation-contraction coupling specificities in honey bee skeletal muscle fibres. The first characterization of CREs from an arthropod which shows strong genomic, ultrastructural and physiological differences with vertebrates may help in improving the research field of sparkology and more generally the knowledge in invertebrates cell Ca2+ homeostasis, eventually leading to a better understanding of their roles and regulations in muscles but also the myotoxicity of new insecticides targeting ryanodine receptors.


Assuntos
Abelhas/metabolismo , Sinalização do Cálcio , Cálcio/metabolismo , Músculo Esquelético/metabolismo , Animais
6.
J Insect Physiol ; 134: 104297, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34403656

RESUMO

Bumble bees are eusocial, with distinct worker and queen castes that vary strikingly in size and life-history. The smaller workers rely on energetically-demanding foraging flights to collect resources for rearing brood. Queens can be 3 to 4 times larger than workers, flying only for short periods in fall and again in spring after overwintering underground. These differences between castes in size and life history may be reflected in hypoxia tolerance. When oxygen demand exceeds supply, oxygen delivery to the tissues can be compromised. Previous work revealed hypermetric scaling of tracheal system volume of worker bumble bees (Bombus impatiens); larger workers had much larger tracheal volumes, likely to facilitate oxygen delivery over longer distances. Despite their much larger size, queens had relatively small tracheal volumes, potentially limiting their ability to deliver oxygen and reducing their ability to respond to hypoxia. However, these morphological measurements only indirectly point to differences in respiratory capacity. To directly assess size- and caste-related differences in tolerance to low oxygen, we measured critical PO2 (Pcrit; the ambient oxygen level below which metabolism cannot be maintained) during both rest and flight of worker and queen bumble bees. Queens and workers had similar Pcrit values during both rest and flight. However, during flight in oxygen levels near the Pcrit, mass-specific metabolic rates declined precipitously with mass both across and within castes, suggesting strong size limitations on oxygen delivery, but only during extreme conditions, when demand is high and supply is low. Together, these data suggest that the comparatively small tracheal systems of queen bumble bees do not limit their ability to deliver oxygen except in extreme conditions; they pay little cost for filling body space with eggs rather than tracheal structures.


Assuntos
Abelhas , Voo Animal/fisiologia , Oxigênio/metabolismo , Animais , Abelhas/metabolismo , Abelhas/fisiologia , Hipóxia , Respiração , Fenômenos Fisiológicos Respiratórios
7.
Dev Biol ; 479: 23-36, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34332994

RESUMO

The mandibular gland is an important exocrine gland of worker bees, which mainly secretes fatty acids and pheromones. Lipids have important roles in energy storage, membrane structure stabilization, and signaling. However, molecular underpinnings of mandibular gland development and lipid remodeling at the different physiological stages of worker bees is still lacking. In this study, we used scanning and transmission electron microscopy to reveal the morphological changes in secretory cells, and liquid chromatography-mass spectrometry and RNA-seq to investigate the lipidome and gene transcripts during development. The morphology of secretory cells was flat in newly emerged workers, becoming vacuolated and turgid when they were activated in nurse bees and foragers. Transport vesicles became denser from newly emerged bees to 21-day worker bees. Concentrations of 10-HDA reached a maximum within 15d workers and changes in genes expression were consistent with 10-HDA content. Non-targeted lipidomics analysis of newly emerged, 6d, and 15d worker bees revealed that PC and TAG were the main lipids in mandibular gland, and lipids dramatically altered across developmental stages. TAG 54:4 was increased most strongly at 6d and 15d worker bees, meanwhile, the abundances of TAG 54:1 and TAG 54:2 were decreased sharply. Further, transcriptomics analysis showed that differentially expressed genes were significantly enriched in key nutrient metabolic pathways, particularly lipid metabolism, in 6d and 15d bees. This multi-omic perspective provides a unique resource and deeper insight into bee mandibular gland development and baseline data for further study of the mandibular gland in worker bees.


Assuntos
Abelhas/embriologia , Glândulas Exócrinas/embriologia , Mandíbula/embriologia , Animais , Abelhas/metabolismo , Comportamento Animal/fisiologia , Glândulas Exócrinas/metabolismo , Perfilação da Expressão Gênica/métodos , Proteínas de Insetos/genética , Metabolismo dos Lipídeos/genética , Lipidômica/métodos , Mandíbula/metabolismo , Redes e Vias Metabólicas , Organogênese , Proteoma/metabolismo , Proteômica/métodos , Transcriptoma/genética
8.
PLoS One ; 16(7): e0254251, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34234379

RESUMO

Pentameric ligand-gated ion channels (pLGICs) activated by the inhibitory neurotransmitter γ-aminobutyric acid (GABA) are expressed widely in both vertebrate and invertebrate species. One of the best characterised insect GABA-gated chloride channels is RDL, an abbreviation of 'resistance to dieldrin', that was originally identified by genetic screening in Drosophila melanogaster. Here we have cloned the analogous gene from the bumblebee Bombus terrestris audax (BtRDL) and examined its pharmacological properties by functional expression in Xenopus oocytes. Somewhat unexpectedly, the sensitivity of BtRDL to GABA, as measured by its apparent affinity (EC50), was influenced by heterologous expression conditions. This phenomenon was observed in response to alterations in the amount of cRNA injected; the length of time that oocytes were incubated before functional analysis; and by the presence or absence of a 3' untranslated region. In contrast, similar changes in expression conditions were not associated with changes in apparent affinity with RDL cloned from D. melanogaster (DmRDL). Changes in apparent affinity with BtRDL were also observed following co-expression of a chaperone protein (NACHO). Similar changes in apparent affinity were observed with an allosteric agonist (propofol) and a non-competitive antagonist (picrotoxinin), indicating that expression-depended changes are not restricted to the orthosteric agonist binding site. Interestingly, instances of expression-dependent changes in apparent affinity have been reported previously for vertebrate glycine receptors, which are also members of the pLGIC super-family. Our observations with BtRDL are consistent with previous data obtained with vertebrate glycine receptors and indicates that agonist and antagonist apparent affinity can be influenced by the level of functional expression in a variety of pLGICs.


Assuntos
Canais de Cloreto/antagonistas & inibidores , Canais de Cloreto/metabolismo , Drosophila melanogaster/metabolismo , Ácido gama-Aminobutírico/metabolismo , Regiões 3' não Traduzidas/efeitos dos fármacos , Sequência de Aminoácidos , Animais , Abelhas/metabolismo , Agonistas dos Canais de Cloreto/farmacologia , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/efeitos dos fármacos , Feminino , Picrotoxina/análogos & derivados , Picrotoxina/farmacologia , Propofol/farmacologia , Receptores de Glicina/metabolismo , Sesterterpenos , Xenopus laevis/metabolismo
9.
Molecules ; 26(12)2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34205731

RESUMO

In recent years, interest has surged among researchers to determine compounds from bee products such as honey, royal jelly, propolis and bee pollen, which are beneficial to human health. Mass spectrometry techniques have shown that bee products contain a number of proven health-promoting compounds but also revealed rather high diversity in the chemical composition of bee products depending on several factors, such as for example botanical sources and geographical origin. In the present paper, we present recent scientific advances in the field of major bioactive compounds from bee products and corresponding regenerative properties. We also discuss extracellular vesicles from bee products as a potential novel bioactive nutraceutical component. Extracellular vesicles are cell-derived membranous structures that show promising potential in various therapeutic areas. It has been extensively reported that the use of vesicles, which are naturally formed in plant and animal cells, as delivery agents have many advantages. Whether the use of extracellular vesicles from bee products represents a new solution for wound healing remains still to be elucidated. However, promising results in specific applications of the bee products in wound healing and tissue regenerative properties of extracellular vesicles provide a good rationale to further explore this idea.


Assuntos
Abelhas/metabolismo , Produtos Biológicos/farmacologia , Vesículas Extracelulares/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Animais , Suplementos Nutricionais , Ácidos Graxos/farmacologia , Mel , Humanos , Espectrometria de Massas/métodos , Pólen/química , Própole/farmacologia
10.
Molecules ; 26(12)2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-34200887

RESUMO

Royal jelly is a natural substance produced by worker bees that possesses a variety of biological activities, including antioxidant, anti-inflammatory, antibacterial, and protective. Although fresh royal jelly is kept at low temperatures, to increase its stability, it needs to be incorporated into pharmaceutical formulations, such as in situ gels. The aim of this study was to formulate in situ ocular gels containing Lithuanian royal jelly for topical corneal use in order to increase the retention time of the formulation on the ocular surface and bioavailability. Gels were evaluated for physicochemical characteristics (pH, rheological properties, refractive index) and in vitro drug release measuring the amount of 10-hydroxy-2-decenoic acid (10-HDA). An ocular irritation test and cell viability tests were performed using the SIRC (Statens Seruminstitut Rabbit Cornea) cell culture line. Results indicated that all the in situ gels were within an acceptable pH and refractive index range close to corneal properties. Rheology studies have shown that the gelation temperature varies between 25 and 32 °C, depending on the amount of poloxamers. The release studies have shown that the release of 10-HDA from in situ gels is more sustained than royal jelly suspension. All gel formulations were non-irritant according to the short-time exposure test (STE) using the SIRC cell culture line, and long-term cell viability studies indicated that the formulations used in small concentrations did not induce cell death. Prepared in situ gels containing royal jelly have potential for ocular drug delivery, and they may improve the bioavailability, stability of royal jelly, and formation of non-irritant ocular formulations.


Assuntos
Córnea/efeitos dos fármacos , Ácidos Graxos/química , Ácidos Graxos/farmacologia , Géis/química , Géis/farmacologia , Animais , Abelhas/metabolismo , Disponibilidade Biológica , Produtos Biológicos/química , Produtos Biológicos/farmacocinética , Produtos Biológicos/farmacologia , Morte Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Química Farmacêutica/métodos , Córnea/metabolismo , Ácidos Decanoicos/química , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Preparações de Ação Retardada/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos/efeitos dos fármacos , Excipientes/química , Géis/farmacocinética , Poloxâmero/química , Coelhos , Reologia , Temperatura
11.
Sci Rep ; 11(1): 14710, 2021 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-34282204

RESUMO

The population of bumble bees and other pollinators has considerably declined worldwide, probably, due to the toxic effect of pesticides used in agriculture. Inexpensive and available antidotes can be one of the solutions for the problem of pesticide toxicity for pollinators. We studied the properties of the thiazine dye Methylene blue (MB) as an antidote against the toxic action of pesticides in the bumble bee mitochondria and found that MB stimulated mitochondrial respiration mediated by Complex I of the electron transport chain (ETC) and increased respiration of the mitochondria treated with mitochondria-targeted (chlorfenapyr, hydramethylnon, pyridaben, tolfenpyrad, and fenazaquin) and non-mitochondrial (deltamethrin, metribuzin, and penconazole) pesticides. MB also restored the mitochondrial membrane potential dissipated by the pesticides affecting the ETC. The mechanism of MB action is most probably related to its ability to shunt electron flow in the mitochondrial ETC.


Assuntos
Abelhas , Azul de Metileno/farmacologia , Mitocôndrias/efeitos dos fármacos , Praguicidas/envenenamento , Agricultura , Animais , Antídotos/farmacologia , Abelhas/efeitos dos fármacos , Abelhas/metabolismo , Citoproteção/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/metabolismo , Polinização/efeitos dos fármacos , Polinização/fisiologia , Piretrinas/envenenamento
12.
Arch Insect Biochem Physiol ; 108(1): e21830, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34288081

RESUMO

Zinc finger proteins (ZFPs) are a class of transcription factors that contain zinc finger domains and play important roles in growth, aging, and responses to abiotic and biotic stresses. These proteins activate or inhibit gene transcription by binding to single-stranded DNA or RNA and through RNA/DNA bidirectional binding and protein-protein interactions. However, few studies have focused on the oxidation resistance functions of ZFPs in insects, particularly Apis cerana. In the current study, we identified a ZFP41 gene from A. cerana, AcZFP41, and verified its function in oxidative stress responses. Real-time quantitative polymerase chain reaction showed that the transcription level of AcZFP41 was upregulated to different degrees during exposure to oxidative stress, including that induced by extreme temperature, UV radiation, or pesticides. In addition, the silencing of AcZFP41 led to changes in the expression patterns of some known antioxidant genes. Moreover, the activities of the antioxidant enzymes catalase (CAT), superoxide dismutase (SOD), peroxidase (POD), and glutathione S-transferase (GST) in AcZFP41-silenced honeybees were higher than those in a control group. In summary, the data indicate that AcZFP41 is involved in the oxidative stress response. The results provide a theoretical basis for further studies of zinc finger proteins and improve our understanding of the antioxidant mechanisms of honeybees.


Assuntos
Abelhas , Estresse Oxidativo/genética , Estresse Fisiológico/genética , Dedos de Zinco/genética , Animais , Antioxidantes/metabolismo , Abelhas/genética , Abelhas/metabolismo , Abelhas/fisiologia , Glutationa Transferase/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Peroxidase/metabolismo , Interferência de RNA , Superóxido Dismutase/metabolismo , Dedos de Zinco/fisiologia
13.
Molecules ; 26(12)2021 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-34205369

RESUMO

The benefits of natural honeybee products (e.g., honey, royal jelly, beeswax, propolis, beevenom and pollen) to the immune system are remarkable, and many of them are involved in the induction of antibody production, maturation of immune cells and stimulation of the immune system. The type of plants in the geographical area, climatic conditions and production method have a significantly influence on the nutritional quality of honey. However, this variability can influence consumer liking by the sensory attributes of the product. The aim of this work was to compare the most popular honeys from Poland in terms of nutritional value, organoleptic properties and antioxidant activity. In the study, five varieties of honey (honeydew, forest, buckwheat, linden and dandelion) from conventional and organic production methods were tested. The nutritional characteristics of honey samples included acidity, content of water, sugars, vitamin C, HMF and phenolics (total and flavonoids), while honey color, taste, aroma and consistency were investigated in the organoleptic characteristics. The antioxidant activity was determined in water- and ethanol-soluble honey extracts using DPPH and ORAC tests. The results showed that organoleptic and nutritional characteristics of popular Polish honeys differ significantly in relation to plant source and production method. The significant effect of honey variety on the content of HMF, saccharose and phenolics, as well as acidity and antioxidant capacity were noted. The impact of variety and variety × production method interaction was significant in the case of the content of vitamin C, glucose and fructose. A visible difference of buckwheat and forest honeys from other samples was observed. The highest content of total phenolics with antioxidant activity based on the SET mechanism was found in buckwheat honeys, while forest honeys were richer in flavonoids.


Assuntos
Antioxidantes/farmacologia , Abelhas/metabolismo , Mel/análise , Nutrientes/farmacologia , Animais , Ácido Ascórbico/farmacologia , Etanol/química , Fagopyrum , Feminino , Flavonoides/farmacologia , Frutose/farmacologia , Glucose/farmacologia , Sistema Imunitário/efeitos dos fármacos , Masculino , Fenóis/farmacologia , Polônia , Água/química
14.
J Insect Physiol ; 133: 104275, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34217739

RESUMO

Body size is related to many aspects of life history, including foraging distance and pollination efficiency. In solitary bees, manipulating the amount of larval diet produces intraspecific differences in adult body size. The goal of this study was to determine how body size impacts metabolic rates, allometry, and flight-related morphometrics in the alfalfa leafcutting bee, Megachile rotundata. By restricting or providing excess food, we produced a range of body sizes, which allowed us to test the effect of body size on allometry, the power required for flight, and amount of energy produced, as measured indirectly through CO2 emission. The power required during flight was predicted using the flight biomechanical formulas for wing loading and excess power index. We found larger bees had higher absolute metabolic rates at rest and during flight, but smaller bees had higher mass-specific metabolic rates at rest. During flight, bees did not have size-related differences in mass-specific metabolic rate. As bees increase in size, their thorax and abdomens become disproportionately larger, while their wings (area, and length) become disproportionately smaller. Smaller bees had more power available during flight as demonstrated by flight biomechanical formulas. Smaller body size was advantageous because of a reduced power requirement for flight with no metabolic cost.


Assuntos
Metabolismo Basal , Abelhas/anatomia & histologia , Abelhas/metabolismo , Voo Animal , Asas de Animais/anatomia & histologia , Animais , Tamanho Corporal , Feminino , Masculino
15.
Int J Mol Sci ; 22(14)2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34299368

RESUMO

BACKGROUND: Poisoning from pesticides can be extremely hazardous for non-invasive species, such as bees, and humans causing nearly 300,000 deaths worldwide every year. Several pesticides are recognized as endocrine disruptors compounds that alter the production of the normal hormones mainly by acting through their interaction with nuclear receptors (NRs). Among the insecticides, one of the most used is pyriproxyfen. As analogous to the juvenile hormone, the pyriproxyfen acts in the bee's larval growth and creates malformations at the adult organism level. METHODS: This work aims to investigate the possible negative effects of pyriproxyfen and its metabolite, the 4'-OH-pyriproxyfen, on human and bee health. We particularly investigated the mechanism of binding of pyriproxyfen and its metabolite with ultraspiracle protein/ecdysone receptor (USP-EcR) dimer of A. mellifera and the relative heterodimer farnesoid X receptor/retinoid X receptor alpha (FXR-RXRα) of H. sapiens using molecular dynamic simulations. RESULTS: The results revealed that pyriproxyfen and its metabolite, the 4'-OH- pyriproxyfen, stabilize each dimer and resulted in stronger binders than the natural ligands. CONCLUSION: We demonstrated the endocrine interference of two pesticides and explained their possible mechanism of action. Furthermore, in vitro studies should be carried out to evaluate the biological effects of pyriproxyfen and its metabolite.


Assuntos
Abelhas/efeitos dos fármacos , Abelhas/metabolismo , Piridinas/farmacologia , Receptores Citoplasmáticos e Nucleares/metabolismo , Sequência de Aminoácidos , Animais , Simulação por Computador , Humanos , Inseticidas/farmacologia , Hormônios Juvenis/metabolismo , Larva/efeitos dos fármacos , Larva/metabolismo , Receptores de Esteroides/metabolismo
16.
J Insect Physiol ; 132: 104264, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34081960

RESUMO

Visible genetic markers are critical to gene function studies using genome editing technology in insects. However, there is no report about visible phenotypic markers in Apis mellifera, which extremely influences the application of genomic editing in honey bees. Here, we cloned and characterized the Amyellow-y gene in A. mellifera. Stage expression profiles showed that Amyellow-y gene was highly expressed in 2-, 4-day-old pupae, and newly emerged bees, and a high expression level was detected in the leg, thorax, wing and sting. To understand its functional role in pigmentation, Amyellow-y edited honeybees were created using CRISPR/Cas9, and it was found that the black pigment was decreased in the cuticle of mosaic workers and mutant drones. In particular, mutant drones manifested an overall appearance of yellowish cuticle in the body and appendages, including antennae, wings and legs, indicating that mutagenesis induced by disruption of Amyellow-y with CRISPR/Cas9 are heritable. Furthermore, the expression levels of genes associated with melanin pigmentation was investigated in mutant and wild-type drones using quantitative reverse transcription PCR. Transcription levels of Amyellow-y and aaNAT decreased markedly in mutant drones than that in wild-type ones, whereas laccase 2 was significantly up-regulated. Our results provide the first evidence, to our knowledge, that CRISPR/Cas9 edited G1 mutant drones of A. mellifera have a dramatic body pigmentation defect that can be visualized in adults, suggesting that Amyellow-y may serve as a promising visible phenotypic marker for genome editing in honey bees.


Assuntos
Abelhas/genética , Sistemas CRISPR-Cas , Edição de Genes/métodos , Marcadores Genéticos , Animais , Abelhas/metabolismo , Genes de Insetos , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Melaninas , Pigmentação/genética , Fatores de Transcrição/genética
17.
PLoS One ; 16(6): e0252858, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34166412

RESUMO

The amount of artificial electromagnetic fields of various parameters in the honey bee's environment increases globally. So far, it had been proven that exposure to an E-field at 50 Hz can cause changes in bee's behavior, alter the activity of proteases, and enzymatic antioxidants. Due to the potentially harmful effect of this factor on honey bees, we decided to investigate the activity of aspartate aminotransferase (AST), alanine aminotransferase (ALT), and alkaline phosphatase (ALP), and the concentration of albumin and creatinine in bee's hemolymph after exposure to 50 Hz E-field. Honey bee workers were placed in wooden cages (200 × 150 × 70 mm) and exposed to the 50 Hz E-field with the intensity of <1, 5.0, 11.5, 23.0, or 34.5 kV/m for 1, 3, 6, or 12h. A homogeneous 50 Hz E-field was generated in the form of a plate capacitor. Hemolymph samples for analysis were taken immediately after the end of exposure to the E-field from 100 bees from each group. According to our study, the activity of AST, ALT, and ALP in honey bees' hemolymph decreased after exposure to 50 Hz E-field with various intensities. The decrease in AST, ALT, and ALP activity intensified with prolonged exposure time. 50 Hz E-field may cause the impairment of crucial metabolic cycles in the honey bees' organism (such as the citric acid cycle, ATP synthesis, oxidative phosphorylation, ß-oxidation). Moreover, exposure to E-Field altered the concentration of creatinine and albumin, which are important non-enzymatic antioxidants. Such changes may indicate a disturbance in protein metabolism and increased muscle activity.


Assuntos
Abelhas/metabolismo , Biomarcadores/metabolismo , Eletricidade/efeitos adversos , Hemolinfa/metabolismo , Proteínas de Insetos/metabolismo , Animais , Abelhas/efeitos dos fármacos , Hemolinfa/efeitos dos fármacos
18.
J Insect Physiol ; 132: 104270, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34175313

RESUMO

To explore the physiological mechanisms that underlie age-related dopamine increases during sexual maturation in the brains of male honey bees, we focused on the expression of genes encoding the enzymes tyrosine hydroxylase (Amth) and DOPA decarboxylase (Amddc), which are involved in dopamine biosynthesis in the brain. We hypothesized that juvenile hormone in hemolymph and tyrosine intake from food known as factors enhancing brain dopamine levels might both control the expression of genes related to dopamine production, and we tested this hypothesis in experiments. The brain levels of tyrosine and DOPA, which are precursors of dopamine, decreased as males aged, whereas the dopamine levels increased, suggesting active metabolism of dopamine precursors. The relative expression levels of Amth and Amddc were significantly higher in the brains of 4-day-old males compared with 0-day-old males, and the higher level of Amddc was maintained after 8 days. Topical application of the juvenile hormone analog methoprene enhanced the expression levels of Amth and Amddc in the brains according to the methoprene concentration. Oral intake of tyrosine enhanced the tyrosine, DOPA and dopamine levels in the brain, and activated Amddc expression in the brain, suggesting that tyrosine intake can increase both substrates and enzyme for dopamine biosynthesis. These results support our hypothesis that juvenile hormone and tyrosine intake may enhance the expression levels of genes encoding enzymes involved in dopamine biosynthesis in male honey bee brains during sexual maturation.


Assuntos
Abelhas , Dopamina/biossíntese , Maturidade Sexual , Animais , Abelhas/genética , Abelhas/metabolismo , Abelhas/fisiologia , Encéfalo/metabolismo , Dopa Descarboxilase/genética , Dopa Descarboxilase/metabolismo , Expressão Gênica , Regulação da Expressão Gênica , Genes de Insetos , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Hormônios Juvenis/metabolismo , Masculino , Tirosina/metabolismo , Tirosina 3-Mono-Oxigenase/genética , Tirosina 3-Mono-Oxigenase/metabolismo
19.
PLoS One ; 16(5): e0251043, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33983988

RESUMO

A diverse range of threats have been associated with managed-bee declines globally. Recent increases of two known threats, land-use change and pesticide use, have resulted from agricultural expansion and intensification notably in the top honey-producing state in the United States: North Dakota. This study investigated the dual threat from land conversion and pesticide use surrounding ~14,000 registered apiaries in North Dakota from 2001 to 2014. We estimated the annual total insecticide use (kg) on major crops within 1.6 km of apiary sites. Of the eight insecticides quantified, six showed significant increasing trends over the time period. Specifically, applications of the newly established neonicotinoids Chlothianidin, Imidacloprid and Thiamethoxam, increased annually by 1329 kg, 686 kg, 795 kg, respectively. Also, the use of Chlorpyrifos, which was well-established in the state by 2001 and is highly toxic to honey bees, increased by ~8,800 kg annually from 6,500 kg in 2001 to 115,000 kg in 2014 on corn, soybeans and wheat. We further evaluated the relative quality changes of natural/semi-natural land covers surrounding apiaries in 2006, 2010 and 2014, a period of significant increases in cropland area. In areas surrounding apiaries, we observed changes in multiple indices of forage quality that reflect the deteriorating landscape surrounding registered apiary sites due to land-use change and pesticide-use increases. Overall, our results suggest that the application of foliar-applied insecticides, including pyrethroids and one organophosphate, increased surrounding apiaries when the use of neonicotinoid seed treatments surged and the area for producing corn and soybeans expanded. Spatially, these threats were most pronounced in southeastern North Dakota, a region hosting a high density of apiary sites that has recently experienced corn and soybean expansion. Our results highlight the value of natural and semi-natural land covers as sources of pollinator forage and refugia for bees against pesticide exposure. Our study provides insights for targeting conservation efforts to improve forage quality benefiting managed pollinators.


Assuntos
Criação de Abelhas/métodos , Abelhas/metabolismo , Praguicidas/toxicidade , Agricultura , Criação de Animais Domésticos/métodos , Animais , Criação de Abelhas/tendências , Conservação dos Recursos Naturais/métodos , Produtos Agrícolas , Comportamento Alimentar/efeitos dos fármacos , Mel/provisão & distribuição , Inseticidas/toxicidade , North Dakota , Pólen/química , Polinização
20.
Food Chem ; 361: 130050, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34033992

RESUMO

The compound DAGE (DiAcyl Glyceryl Ether, 1-stearyl-2,3-dioleoyl glycerol), present in Apis mellifera honey, is a lipidic entomological marker secreted by the salivary glands of worker bees. Its content was determined by NMR, analyzing the organic extracts of a number of Italian honeys of different floral typology. We have found that the DAGE content is related to the botanical origin of honey. This dependence on floral typology was further confirmed by a linear correlation (R2 > 0.83) observed between the content of DAGE and the enzymatic activity of invertase and diastase in honey. Also these enzymes originate from bee salivary secretions and their concentrations in honey are known to depend on the floral source. DAGE content appears to be a sensitive parameter to some forms of honey manipulations, as indicated by the results of artificial bee-feeding experiments. This suggests its possible use as indicator of honey authenticity.


Assuntos
Abelhas/metabolismo , Flores/química , Mel/análise , Lipídeos/análise , Amilases/metabolismo , Animais , Abelhas/enzimologia , Itália , beta-Frutofuranosidase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...