Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.049
Filtrar
1.
Anticancer Res ; 39(8): 4199-4206, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31366506

RESUMO

BACKGROUND/AIM: We previously synthesized a glucose-conjugated chlorin compound e6 (G-chlorin e6), and reported that it has very strong antitumor effects. The aim of the present study was to synthesize acetylated glucose-conjugated chlorin (AcN003HP) and evaluate its antitumor effect and excretion. MATERIALS AND METHODS: To evaluate the antitumor effect of AcN003HP, its IC50 was calculated as well as its accumulation in cancer cells was examined by flow cytometry. Confocal microscopy was used to observe the intracellular localization of AcN003HP. The excretion and antitumor effects of AcN003HP were also evaluated in vivo. RESULTS: AcN003HP showed stronger antitumor effects and accumulation into cancer cells compared to talaporfin sodium, a conventional photosensitizer. AcN003HP was localized in the endoplasmic reticulum. In a xenograft tumor mouse model, AcN003HP showed longer excretion time from the body than G-chlorin e6, and photodynamic therapy using AcN003HP showed very strong antitumor effects. CONCLUSION: The safety, improved controllability, and robust antitumor effects suggest AcN003HP as a good next-generation photosensitizer.


Assuntos
Neoplasias Gastrointestinais/terapia , Glucose/administração & dosagem , Fotoquimioterapia , Fármacos Fotossensibilizantes/administração & dosagem , Acetilação/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Retículo Endoplasmático/efeitos dos fármacos , Citometria de Fluxo , Neoplasias Gastrointestinais/patologia , Glucose/síntese química , Glucose/química , Humanos , Camundongos , Fármacos Fotossensibilizantes/síntese química , Fármacos Fotossensibilizantes/química , Porfirinas/administração & dosagem , Porfirinas/síntese química , Porfirinas/química , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Georgian Med News ; (291): 93-97, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31418739

RESUMO

The article solves a current task concerning a substantiated use of acetylation phenotype as susceptibility biomarker to unfavourable effect of chemical substances in scientific studies. Objective: to study a combined effect of sodium nitrate and cadmium chloride on the prooxidant-antioxidant balance of the blood, liver and functional state of the central nervous system in young rats with different acetylation type. The experimental studies were performed on immature male rats 1,5-month of age. The experimental animals were divided into two groups according to the amount of general sulfadimine excreted with urine: "rapid" and "slow" acetylators. 2 subgroups were differentiated in every group: I - control animals, II - animals subjected to administration of cadmium chloride and sodium nitrate. Administration of sodium nitrate and cadmium chloride to animals in the doses 1/15 DL50 and 1/150 DL50 respectively during 14 days found that at the young age "slow" acetylation type is susceptibility marker, and the criteria of a harmful effect in them are the following: 25% increase protein peroxide oxidation in the blood plasma, 34% and 30% increase of average molecular peptides and ceruloplasmin respectively, and 6,7 times increase of methemoglobin (hemiglobin) concentration. Nitrate-cadmium intoxication caused inhibition of the integral behavioural activity both in slow and rapid acetylators. Disturbed behavioural activity in young animals with "slow" acetylation type under conditions of subacute effect of sodium nitrate and cadmium chloride is caused mainly by an increased content of liver lipoperoxidation secondary products and less - by the levels of average molecular peptides and ceruloplasmin in the blood plasma, and in "rapid" acetylators - by increased products of oxidation-modification proteins.


Assuntos
Acetilação/efeitos dos fármacos , Cádmio/toxicidade , Nitratos/toxicidade , Animais , Biomarcadores/metabolismo , Intoxicação por Cádmio/metabolismo , Masculino , Fenótipo , Ratos
3.
Nat Commun ; 10(1): 3004, 2019 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-31285436

RESUMO

Identity determining transcription factors (TFs), or core regulatory (CR) TFs, are governed by cell-type specific super enhancers (SEs). Drugs to selectively inhibit CR circuitry are of high interest for cancer treatment. In alveolar rhabdomyosarcoma, PAX3-FOXO1 activates SEs to induce the expression of other CR TFs, providing a model system for studying cancer cell addiction to CR transcription. Using chemical genetics, the systematic screening of chemical matter for a biological outcome, here we report on a screen for epigenetic chemical probes able to distinguish between SE-driven transcription and constitutive transcription. We find that chemical probes along the acetylation-axis, and not the methylation-axis, selectively disrupt CR transcription. Additionally, we find that histone deacetylases (HDACs) are essential for CR TF transcription. We further dissect the contribution of HDAC isoforms using selective inhibitors, including the newly developed selective HDAC3 inhibitor LW3. We show HDAC1/2/3 are the co-essential isoforms that when co-inhibited halt CR transcription, making CR TF sites hyper-accessible and disrupting chromatin looping.


Assuntos
Elementos Facilitadores Genéticos/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Rabdomiossarcoma/genética , Acetilação/efeitos dos fármacos , Linhagem Celular Tumoral , Cromatina/efeitos dos fármacos , Cromatina/metabolismo , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Ensaios de Triagem em Larga Escala , Inibidores de Histona Desacetilases/química , Histona Desacetilases/química , Humanos , Simulação de Dinâmica Molecular , Sondas Moleculares/química , Sondas Moleculares/farmacologia , Proteínas de Fusão Oncogênica/genética , Fatores de Transcrição Box Pareados/genética , Cultura Primária de Células , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Rabdomiossarcoma/patologia , Análise de Sequência de RNA , Transcrição Genética/efeitos dos fármacos
4.
BMC Vet Res ; 15(1): 267, 2019 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-31357995

RESUMO

BACKGROUND: In practical production, dairy cows are frequently exposed to bacterial endotoxin (lipopolysaccharide, LPS) when they are subjected to high-concentrate diets, poor hygienic environments, as well as mastitis and metritis. Histone acetylation is an important epigenetic control of DNA transcription and a higher histone acetylation is associated with facilitated transcription. LPS might reduce histone acetylation in the mammary epithelial cells, resulting in lower transcription and mRNA expression of lactation-related genes. This study was conducted to investigate the effect of LPS on histone acetylation in bovine mammary epithelial cells and the efficacy of sodium butyrate (SB) in suppressing the endotoxin-induced adverse effect. Firstly, the bovine mammary epithelial cell line MAC-T cells were treated for 48 h with LPS at different doses of 0, 1, 10, 100, and 1000 endotoxin units (EU)/mL (1 EU = 0.1 ng), and the acetylation levels of histones H3 and H4 as well as the histone deacetylase (HDAC) activity were measured. Secondly, the MAC-T cells were treated for 48 h as follows: control, LPS (100 EU/mL), and LPS (100 EU/mL) plus SB (10 mmol/L), and the acetylation levels of histones H3 and H4 as well as milk gene mRNA expressions were determined. RESULTS: The results showed that HDAC activity increased linearly with increasing LPS doses (P < 0.01). The histone H3 acetylation levels were significantly reduced by LPS, while the histone H4 acetylation levels were not affected by LPS (P > 0.05). Sodium butyrate, an inhibitor of HDAC, effectively suppressed the endotoxin-induced decline of histone H3 acetylation (P < 0.05). As a result, SB significantly enhanced the mRNA expression of lactation-related genes (P < 0.05). CONCLUSIONS: The results suggest one of the adverse effects of LPS on the lactation of bovine mammary gland epithelial cells was due to decreasing histone H3 acetylation through increasing HDAC activity, whereas the endotoxin-induced adverse effects were effectively suppressed by SB.


Assuntos
Ácido Butírico/farmacologia , Endotoxinas/toxicidade , Células Epiteliais/efeitos dos fármacos , Histonas/metabolismo , Glândulas Mamárias Animais/efeitos dos fármacos , Acetilação/efeitos dos fármacos , Animais , Bovinos , Feminino , Antagonistas dos Receptores Histamínicos/farmacologia , Glândulas Mamárias Animais/citologia
5.
Life Sci ; 232: 116591, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31228513

RESUMO

AIMS: Calreticulin (CRT) is a multifunctional protein that protects endothelial cells by alleviating actin cytoskeleton injury, but the underlying mechanism remains unclear. CRT was recently identified as a novel acyltransferase; acetylation at the N-terminus of actin monomers strengthens actin polymerization. This study was undertaken to determine whether CRT protects human microvascular endothelial cells (HMECs) against microwave radiation through actin acetylation. MATERIALS AND METHODS: We prepared a eukaryotic-derived recombinant CRT and incubated the HMECs with it prior to microwave exposure. We then assessed cell injury and endothelial function, detected actin polymerization and acetylation after HMECs exposure to S-band high-power microwaves. Coimmunoprecipitation, pull-down, and ex vitro acetylation reaction were performed to determine whether actin is a novel substrate of CRT acyltransferase. Finally, we employed the mutant experiments to demonstrate the acetylation sites contributing to CRT acetyltransferase activity. KEY FINDINGS: Microwave radiation induced severe cell injury and endothelial contact dysfunction, reduced the polymerization of actin filaments, and destroyed the actin arrangement, ultimately reducing acetylated actin expression. CRT treatment upregulated actin acetylation levels, promoted polymerization, and facilitated thicker and longer F-actin stress fibre formation. Pre-incubation with CRT rescued microwave-induced cell injury, decreased actin acetylation, and rendered the actin cytoskeleton radiation-retardant. The level of acetyl-actin was positively correlated with actin polymerization. Actin was identified as a novel substrate of CRT, being acetylated mainly through the CRT P-domain at lys-206 and -207. SIGNIFICANCE: This work provides a better understanding of the underlying mechanism of CRT-induced cytoprotection, and suggests a novel therapeutic target for microwave radiation-related diseases with endothelial dysfunction.


Assuntos
Actinas/metabolismo , Calreticulina/farmacologia , Microvasos/efeitos dos fármacos , Acetilação/efeitos dos fármacos , Citoesqueleto de Actina/metabolismo , Linhagem Celular , Citoproteção , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Humanos , Microvasos/efeitos da radiação , Micro-Ondas , Substâncias Protetoras , Processamento de Proteína Pós-Traducional , Transdução de Sinais
6.
Eur J Med Chem ; 178: 116-130, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31177073

RESUMO

In this study, a series of novel HDAC inhibitors, using 1,2,4-oxadiazole-containing as the cap group, were synthesized and evaluated in vitro. Compound 14b, N-hydroxy-2-(methyl((3-(1-(4-methylbenzyl)piperidin-4-yl)-1,2,4-oxadiazol-5-yl)methyl)amino)pyrimidine-5-carboxamide, displayed the most potent histone deacetylase (HDAC) inhibition, especially against HDAC1, 2, and 3 with IC50 values of 1.8, 3.6 and 3.0 nM, respectively. In vitro antiproliferative studies confirmed that 14b was more potent than SAHA, with IC50 values against 12 types of cancer cell lines ranging from 9.8 to 44.9 nM. The results of Western blot assays showed that compound 14b can significantly up-regulate the acetylation of the biomarker his-H3 and molecular docking analyses revealed the mode of action of compound 14b against HDAC1. The results of flow-cytometry analysis suggested that compound 14b induces cell cycle arrest at the G1 phase and has apoptotic effects. Further investigation of the activity of 14b on the primary cells of three patients, showed IC50 values of 21.3, 61.1, and 77.4 nM. More importantly, an oral bioavailability of up to 53.52% was observed for 14b. An in vivo pharmacodynamic evaluation demonstrated that compound 14b can significantly inhibit tumor growth in a Daudi Burkitt's lymphoma xenograft model, with tumor inhibition rates of 53.8 and 46.1% observed at 20 and 10 mg/kg when administered p.o. and i.v., respectively. These results indicate that compound 14b may be a suitable lead for further evaluation and development as an HDAC inhibitor and a potent anticancer agent.


Assuntos
Antineoplásicos/uso terapêutico , Linfoma de Burkitt/tratamento farmacológico , Inibidores de Histona Desacetilases/uso terapêutico , Ácidos Hidroxâmicos/uso terapêutico , Oxidiazóis/uso terapêutico , Acetilação/efeitos dos fármacos , Animais , Antineoplásicos/síntese química , Antineoplásicos/farmacocinética , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Descoberta de Drogas , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Histona Desacetilase 1/química , Histona Desacetilase 1/metabolismo , Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/farmacocinética , Histonas/metabolismo , Humanos , Ácidos Hidroxâmicos/síntese química , Ácidos Hidroxâmicos/farmacocinética , Camundongos Endogâmicos NOD , Camundongos SCID , Simulação de Acoplamento Molecular , Estrutura Molecular , Oxidiazóis/síntese química , Oxidiazóis/farmacocinética , Ligação Proteica , Ratos Sprague-Dawley , Relação Estrutura-Atividade , Tubulina (Proteína)/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Eur J Med Chem ; 178: 259-286, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31195169

RESUMO

Acetylation, a key component in post-translational modification regulated by HATs and HDACs, is relevant to many crucial cellular contexts in organisms. Based on crucial pharmacophore patterns and the structure of targeted proteins, HAT inhibitors are designed and modified for higher affinity and better bioactivity. However, there are still some challenges, such as cell permeability, selectivity, toxicity and synthetic availability, which limit the improvement of HAT inhibitors. So far, only few HAT inhibitors have been approved for commercialization, indicating the urgent need for more successful and effective structure-based drug design and synthetic strategies. Here, we summarized three classes of HAT inhibitors based on their sources and structural scaffolds, emphasizing on their synthetic methods and structure-activity relationships and molecular mechanisms, hoping to facilitate the development and further application of HAT inhibitors.


Assuntos
Inibidores Enzimáticos/farmacologia , Histona Acetiltransferases/antagonistas & inibidores , Acetilação/efeitos dos fármacos , Animais , Domínio Catalítico , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Histona Acetiltransferases/química , Humanos , Camundongos , Estrutura Molecular , Relação Estrutura-Atividade
8.
Curr Top Med Chem ; 19(15): 1350-1362, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31215380

RESUMO

Macrophages are essential for supporting tissue homeostasis, regulating immune response, and promoting tumor progression. Due to its heterogeneity, macrophages have different phenotypes and functions in various tissues and diseases. It is becoming clear that epigenetic modification playing an essential role in determining the biological behavior of cells. In particular, changes of DNA methylation, histone methylation and acetylation regulated by the corresponding epigenetic enzymes, can directly control macrophages differentiation and change their functions under different conditions. In addition, epigenetic enzymes also have become anti-tumor targets, such as HDAC, LSD1, DNMT, and so on. In this review, we presented an overview of the latest progress in the study of macrophages phenotype and function regulated by epigenetic modifications, including DNA methylation and histone modifications, to better understand how epigenetic modification controls macrophages phenotype and function in inflammation-associated diseases, and the application prospect in anti-tumor.


Assuntos
Antineoplásicos/farmacologia , Epigênese Genética/efeitos dos fármacos , Inflamação/tratamento farmacológico , Macrófagos/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Acetilação/efeitos dos fármacos , Animais , Antineoplásicos/química , Metilação de DNA/efeitos dos fármacos , Epigênese Genética/genética , Histonas/efeitos dos fármacos , Histonas/metabolismo , Humanos , Inflamação/metabolismo , Inflamação/patologia , Macrófagos/metabolismo , Macrófagos/patologia , Metilação/efeitos dos fármacos , Neoplasias/metabolismo , Neoplasias/patologia
9.
Biochim Biophys Acta Proteins Proteom ; 1867(9): 794-801, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31202897

RESUMO

SIRT1 (Silent mating type information regulation 2 homolog 1) play a neuroprotective effect through deacetylation target proteins in various neuronal diseases. However, the precise mechanisms remain elusive. In this study, we aim to identify those novel interacting partners of SIRT1 in rat brain tissue. By using a pre-clear GST-Pull down assay followed by the LC-MS/MS analysis, we've identified potential SIRT1's interacting partners, which function annotation by GO and KEGG analysis indicating some metabolic pathways are among the most enriched. Then we confirmed two candidates Enolase-1 (and NSE (Neuron-Specific Enolase) in brain) and PKM (Pyruvate Kinase Muscle) are associated with SIRT1 in brain tissue lysis by co-immunoprecipitation. Furthermore, increase or decrease the SIRT1 enzyme activity by its agonist SRT1720 or antagonist EX527 could significantly affect the acetylation level of endogenous NSE and PKM, SIRT1 overexpression or knock out expreiments also showed the same results as use SIRT1's agonist or antagonist. Moreover, the acetylation changes on NSE or PKM could finally lead to affection on their catalytic activity. Taken together, our findings suggest that the function of SIRT1 binding proteins is enriched in metabolic pathways. NSE and PKM are new SIRT1 binding molecules. SIRT1 may regulate acetylation level of NSE and PKM through deacetylation and further regulate their catalytic activity. Our study provides new evidence for the involvement of SIRT1 in the mechanisms of metabolic regulation in central nervous system.


Assuntos
Encéfalo/enzimologia , Fosfopiruvato Hidratase/metabolismo , Piruvato Quinase/metabolismo , Sirtuína 1/metabolismo , Acetilação/efeitos dos fármacos , Animais , Carbazóis/farmacologia , Catálise/efeitos dos fármacos , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Fosfopiruvato Hidratase/genética , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/genética , Piruvato Quinase/genética , Ratos , Ratos Sprague-Dawley , Sirtuína 1/antagonistas & inibidores , Sirtuína 1/genética
10.
Folia Biol (Praha) ; 65(1): 43-52, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31171081

RESUMO

Rhabdomyosarcoma (RMS) is a malignant tumour of soft tissues, occurring mainly in children and young adults. RMS cells derive from muscle cells, which due to mutations and epigenetic modifications have lost their ability to differentiate. Epigenetic modifications regulate expression of genes responsible for cell proliferation, maturation, differentiation and apoptosis. HDAC inhibitors suppress histone acetylation; therefore, they are a promising tool used in cancer therapy. Trichostatin A (TsA) is a pan-inhibitor of HDAC. In our study, we investigated the effect of TsA on RMS cell biology. Our findings strongly suggest that TsA inhibits RMS cell proliferation, induces cell apoptosis, and reactivates tumour cell differentiation. TsA up-regulates miR-27b expression, which is involved in the process of myogenesis. Moreover, TsA increases susceptibility of RMS cells to routinely used chemotherapeutics. In conclusion, TsA exhibits anti-cancer properties, triggers differentiation, and thereby can complement an existing spectrum of chemotherapeutics used in RMS therapy.


Assuntos
Ácidos Hidroxâmicos/farmacologia , Rabdomiossarcoma/metabolismo , Acetilação/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Epigênese Genética/genética , Inibidores de Histona Desacetilases/farmacologia , Humanos , MicroRNAs/metabolismo , Desenvolvimento Muscular/efeitos dos fármacos , Desenvolvimento Muscular/genética
11.
J Agric Food Chem ; 67(25): 7060-7072, 2019 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-31240928

RESUMO

As one of the main metabolites of anthocyanin, protocatechuic acid (PCA) possesses strong antioxidant activity. In the present study, we explored the capacity of PCA on the alleviation of endothelial oxidative stress and investigated the underlying mechanisms using RNA sequencing (RNA-Seq). In comparison with palmitic acid (PA)-treated cells, PCA (100 µM) significantly decreased the generations of 3-nitrotyrosine (3-NT) and 8-hydroxydeoxyguanosine (8-OHdG) (0.82 ± 0.01 vs 1.16 ± 0.05 and 0.80 ± 0.01 vs 1.48 ± 0.15, respectively, p < 0.01), two biomarkers of oxidative damage, and restored the levels of nitric oxide (NO) (0.97 ± 0.04 vs 0.54 ± 0.02, p < 0.01) and mitochondrial membrane potential (MMP) (0.96 ± 0.03 vs 0.86 ± 0.02, p < 0.01) in human umbilical vein endothelial cells (HUVECs). PCA also obviously reduced the level of reactive oxygen species (ROS) (0.86 ± 0.15 vs 2.67 ± 0.09, p < 0.01) in aorta from high-fat diet (HFD)-fed mice. RNA-Seq and Western blot analysis indicated that PCA markedly reduced the expression of cluster of differentiation 36 (CD36), a membrane fatty acid transporter, and reduced the generations of adenosine triphosphate (ATP) and acetyl coenzyme A (Ac-CoA). These effects of PCA were associated with decreased level of acetylated-lysine and restored the activity of manganese-dependent superoxide dismutase (MnSOD) through reducing the generation of Ac-CoA or activating Sirt1 and Sirt3 via a CD36/AMP-kinase (AMPK) dependent pathway.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Antígenos CD36/metabolismo , Hidroxibenzoatos/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/genética , Acetilação/efeitos dos fármacos , Animais , Aorta/efeitos dos fármacos , Aorta/metabolismo , Antígenos CD36/genética , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo
12.
Int J Oral Sci ; 11(2): 20, 2019 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-31201303

RESUMO

There are large knowledge gaps regarding how to control stem cells growth and differentiation. The limitations of currently available technologies, such as growth factors and/or gene therapies has led to the search of alternatives. We explore here how a cell's epigenome influences determination of cell type, and potential applications in tissue engineering. A prevalent epigenetic modification is the acetylation of DNA core histone proteins. Acetylation levels heavily influence gene transcription. Histone deacetylase (HDAC) enzymes can remove these acetyl groups, leading to the formation of a condensed and more transcriptionally silenced chromatin. Histone deacetylase inhibitors (HDACis) can inhibit these enzymes, resulting in the increased acetylation of histones, thereby affecting gene expression. There is strong evidence to suggest that HDACis can be utilised in stem cell therapies and tissue engineering, potentially providing novel tools to control stem cell fate. This review introduces the structure/function of HDAC enzymes and their links to different tissue types (specifically bone, cardiac, neural tissues), including the history, current status and future perspectives of using HDACis for stem cell research and tissue engineering, with particular attention paid to how different HDAC isoforms may be integral to this field.


Assuntos
Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Engenharia Tecidual , Acetilação/efeitos dos fármacos , Histonas/isolamento & purificação , Histonas/metabolismo , Humanos
13.
Med Sci Monit ; 25: 3212-3220, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31041919

RESUMO

BACKGROUND Liver failure after resection for liver cancer is associated with increased patient mortality. This study aimed to investigate the mechanism of the protective effects of resveratrol, a natural plant-derived compound, on liver injury in a rat model of partial hepatectomy. MATERIAL AND METHODS Adult male Sprague-Dawley (SD) rats (n=60) were divided into the sham group (n=20), the liver resection group (n=20), and the liver resection plus resveratrol-treated group (n=20). Liver resection removed 2/3 of the liver resection; resveratrol was given at a dose of 30 mg/kg/day from one week before surgery until death. Liver injury was assessed by serum liver function tests, including alanine aminotransferase (ALT), aspartate aminotransferase (AST), γ-glutamyl-transferase (γ-GT) and total bilirubin, histological examination of the rat liver, and liver cell apoptosis using the TUNEL assay. High mobility group box 1 (HMGB1) expression was measured by enzyme-linked immunoassay (ELISA). Sirtuin 1 (SIRT1) and acetylated HMGB1 (Ac-HMGB1) expression were detected by Western blot. Normal human liver cells and HepG2 liver cancer cells were incubated with acetylated HMGB1, and albumin production and ammonia elimination assays were performed. RESULTS Resveratrol reduced postoperative liver injury as shown by reduced ALT, AST, γ-GT, and total bilirubin levels, maintained liver structure, and reduced cell apoptosis. Resveratrol treatment reduced the expression and acetylation levels of HMGB1 via the SIRT1 signaling pathway. Resveratrol reversed Ac-HMGB1 induced dysfunction in liver cells cultured in vitro. CONCLUSIONS Resveratrol reduced liver damage after liver resection in a rat model by upregulating SIRT1 and reducing the acetylation of HMGB1.


Assuntos
Proteína HMGB1/metabolismo , Hepatopatias/prevenção & controle , Fígado/efeitos dos fármacos , Resveratrol/farmacologia , Sirtuína 1/metabolismo , Acetilação/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Modelos Animais de Doenças , Células Hep G2 , Hepatectomia/efeitos adversos , Hepatectomia/métodos , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Fígado/patologia , Fígado/cirurgia , Hepatopatias/tratamento farmacológico , Hepatopatias/etiologia , Hepatopatias/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Regulação para Cima
14.
Int J Mol Sci ; 20(9)2019 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-31071955

RESUMO

Since imatinib (Glivec or Gleevec) has been used to target the BCR-ABL fusion protein, chronic myeloid leukemia (CML) has become a manageable chronic disease with long-term survival. However, 15%-20% of CML patients ultimately develop resistance to imatinib and then progress to an accelerated phase and eventually to a blast crisis, limiting treatment options and resulting in a poor survival rate. Thus, we investigated whether histone deacetylase inhibitors (HDACis) could be used as a potential anticancer therapy for imatinib-resistant CML (IR-CML) patients. By applying a noninvasive apoptosis detection sensor (NIADS), we found that panobinostat significantly enhanced cell apoptosis in K562 cells. A further investigation showed that panobinostat induced apoptosis in both K562 and imatinib-resistant K562 (IR-K562) cells mainly via H3 and H4 histone acetylation, whereas panobinostat targeted cancer stem cells (CSCs) in IR-K562 cells. Using CRISPR/Cas9 genomic editing, we found that HDAC1 and HDAC2 knockout cells significantly induced cell apoptosis, indicating that the regulation of HDAC1 and HDAC2 is extremely important in maintaining K562 cell survival. All information in this study indicates that regulating HDAC activity provides therapeutic benefits against CML and IR-CML in the clinic.


Assuntos
Proteínas de Fusão bcr-abl/genética , Histona Desacetilase 1/genética , Histona Desacetilase 2/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Acetilação/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Sistemas CRISPR-Cas/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Proteínas de Fusão bcr-abl/antagonistas & inibidores , Técnicas de Inativação de Genes , Inibidores de Histona Desacetilases/farmacologia , Humanos , Mesilato de Imatinib/efeitos adversos , Mesilato de Imatinib/farmacologia , Células K562 , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Panobinostat/farmacologia
15.
BMC Complement Altern Med ; 19(1): 107, 2019 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-31118021

RESUMO

BACKGROUND: Excessive activation of NLRP3 inflammasome and down-regulation of Sirt1/Smad3 deacetylation pathway play a significant role in the evolution of renal fibrosis. In China, it has been well known that Chinese herbal medicine is markedly effective in treating chronic kidney disease (CKD). Shen Shuai IIRecipe (SSR) has been used clinically for more than 20 years and has been confirmed to be effective in improvements of renal function and fibrosis. However, the specific mechanisms under the efficacy require further research. The purpose of this study was to evaluate whether SSR could alleviate renal injury and fibrosis by regulating NLRP3 inflammasome and Sirt1/Smad3 deacetylation pathway. METHODS: Four weeks after 5/6 ablation/infarction (A/I) surgery, Sprague-Dawley rats were randomly divided into the following groups: sham operation group, 5/6 (A/I) group, 5/6 (A/I) + SSR group, and 5/6 (A/I) + Losartan group (5/6 (A/I) + Los). After 8 weeks intervention,we mainly assessed the severity of renal injury and fibrosis along with the activation of NLRP3 inflammasome and Sirt1/Smad3 deacetylation pathway. RESULTS: SSR significantly attenuated renal injury and fibrosis in the remnant kidneys. In addition, we found that SSR effectively inhibited activation of NLRP3/ASC/Caspase-1/IL-1ßcascade, decreased inflammatory infiltration and up-regulated Sirt1/Smad3 deacetylation pathway. CONCLUSIONS: SSR could contribute to renal protection by inhibiting the activation of NLRP3 inflammasome and, furthermore, strengthen the antifibrotic effects by up-regulating Sirt1/Smad3 deacetylation pathway in 5/6 renal (A/I) model.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Inflamassomos/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Insuficiência Renal Crônica/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sirtuína 1/metabolismo , Proteína Smad3/metabolismo , Acetilação/efeitos dos fármacos , Animais , Fibrose/metabolismo , Rim/efeitos dos fármacos , Masculino , Ratos , Ratos Sprague-Dawley
16.
Environ Pollut ; 246: 1008-1019, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31126002

RESUMO

Exposure to the emerging contaminant bisphenol A (BPA) is ubiquitous and associated with cardiovascular disorders. BPA effect as endocrine disruptor is widely known but other mechanisms underlying heart disease, such as epigenetic modifications, remain still unclear. A compound of green tea, epigallocatechin gallate (EGCG), may act both as anti-estrogen and as inhibitor of some epigenetic enzymes. The aims of this study were to analyze the molecular processes related to BPA impairment of heart development and to prove the potential ability of EGCG to neutralize the toxic effects caused by BPA on cardiac health. Zebrafish embryos were exposed to 2000 and 4000 µg/L BPA and treated with 50 and 100 µM EGCG. Heart malformations were assessed at histological level and by confocal imaging. Expression of genes involved in cardiac development, estrogen receptors and epigenetic enzymes was analyzed by qPCR whereas epigenetic modifications were evaluated by whole mount immunostaining. BPA embryonic exposure led to changes in cardiac phenotype, induced an overexpression of hand2, a crucial factor for cardiomyocyte differentiation, increased the expression of estrogen receptor (esr2b), promoted an overexpression of a histone acetyltransferase (kat6a) and also caused an increase in histone acetylation, both mechanisms being able to act in sinergy. EGCG treatment neutralized all the molecular alterations caused by BPA, allowing the embryos to go on with a proper heart development. Both molecular mechanisms of BPA action (estrogenic and epigenetic) likely lying behind cardiogenesis impairment were successfully counteracted by EGCG treatment.


Assuntos
Compostos Benzidrílicos/toxicidade , Catequina/análogos & derivados , Disruptores Endócrinos/toxicidade , Organogênese/efeitos dos fármacos , Fenóis/toxicidade , Acetilação/efeitos dos fármacos , Animais , Catequina/farmacologia , Epigênese Genética , Estrogênios/metabolismo , Histonas/metabolismo , Receptores Estrogênicos/metabolismo , Peixe-Zebra/embriologia
17.
Cell Mol Life Sci ; 76(18): 3621-3640, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30953095

RESUMO

α-Tubulin acetyltransferase 1 (ATAT1) catalyzes acetylation of α-tubulin at lysine 40 in various organisms ranging from Tetrahymena to humans. Despite the importance in mammals suggested by studies of cultured cells, the mouse Atat1 gene is non-essential for survival, raising an intriguing question about its real functions in vivo. To address this question, we systematically analyzed a mouse strain lacking the gene. The analyses revealed that starting at postnatal day 5, the mutant mice display enlarged lateral ventricles in the forebrain, resembling ventricular dilation in human patients with ventriculomegaly. In the mice, ventricular dilation is due to hypoplasia in the septum and striatum. Behavioral tests of the mice uncovered deficits in motor coordination. Birth-dating experiments revealed that neuronal migration to the mutant septum and striatum is impaired during brain development. In the mutant embryonic fibroblasts, we found mild defects in cell proliferation and primary cilium formation. Notably, in these cells, ATAT1 is indispensable for tubulin hyperacetylation in response to high salt, high glucose, and hydrogen peroxide-induced oxidative stress. We investigated the role of ATAT1 in the hematopoietic system using multicolor flow cytometry and found that this system remains normal in the mutant mice. Although tubulin acetylation was undetectable in a majority of mutant tissues, residual levels were detected in the heart, skeletal muscle, trachea, oviduct, thymus and spleen. This study thus not only establishes the importance of ATAT1 in regulating mouse forebrain development and governing tubulin hyperacetylation during stress responses, but also suggests the existence of an additional α-tubulin acetyltransferase.


Assuntos
Acetiltransferases/metabolismo , Proteínas dos Microtúbulos/metabolismo , Estresse Oxidativo , Prosencéfalo/metabolismo , Tubulina (Proteína)/metabolismo , Acetilação/efeitos dos fármacos , Acetiltransferases/genética , Animais , Comportamento Animal , Movimento Celular , Proliferação de Células , Células Cultivadas , Cílios/metabolismo , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Peróxido de Hidrogênio/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas dos Microtúbulos/genética , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Neurogênese , Estresse Oxidativo/efeitos dos fármacos , Prosencéfalo/crescimento & desenvolvimento , Prosencéfalo/patologia
18.
Cell Mol Life Sci ; 76(15): 3005-3018, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31006037

RESUMO

The accumulation of intracellular ß-amyloid peptide (Aß) is important pathological characteristic of Alzheimer's disease (AD). However, the exact underlying molecular mechanism remains to be elucidated. Here, we reported that Nuclear Paraspeckle Assembly Transcript 1 (NEAT1), a long n on-coding RNA, exhibits repressed expression in the early stage of AD and its down-regulation declines neuroglial cell mediating Aß clearance via inhibiting expression of endocytosis-related genes. We find that NEAT1 is associated with P300/CBP complex and its inhibition affects H3K27 acetylation (H3K27Ac) and H3K27 crotonylation (H3K27Cro) located nearby to the transcription start site of many genes, including endocytosis-related genes. Interestingly, NEAT1 inhibition down-regulates H3K27Ac but up-regulates H3K27Cro through repression of acetyl-CoA generation. NEAT1 also mediates the binding between STAT3 and H3K27Ac but not H3K27Cro. Therefore, the decrease of H3K27Ac and/or the increase of H3K27Cro declines expression of multiple related genes. Collectively, this study first reveals the different roles of H3K27Ac and H3K27Cro in regulation of gene expression and provides the insight of the epigenetic regulatory mechanism of NEAT1 in gene expression and AD pathology.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Fragmentos de Peptídeos/metabolismo , RNA Longo não Codificante/metabolismo , Acetilcoenzima A/metabolismo , Acetilação/efeitos dos fármacos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/farmacologia , Animais , Caveolina 2/antagonistas & inibidores , Caveolina 2/genética , Caveolina 2/metabolismo , Modelos Animais de Doenças , Epigênese Genética , Expressão Gênica/efeitos dos fármacos , Histonas/metabolismo , Camundongos , Camundongos Transgênicos , Neuroglia/citologia , Neuroglia/metabolismo , Fragmentos de Peptídeos/farmacologia , Interferência de RNA , RNA Longo não Codificante/antagonistas & inibidores , RNA Longo não Codificante/genética , RNA Interferente Pequeno/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo I/antagonistas & inibidores , Receptor do Fator de Crescimento Transformador beta Tipo I/genética , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo , Fator de Transcrição STAT3/metabolismo , Fator de Crescimento Transformador beta2/antagonistas & inibidores , Fator de Crescimento Transformador beta2/genética , Fator de Crescimento Transformador beta2/metabolismo , Fatores de Transcrição de p300-CBP/metabolismo
19.
Eur J Pharmacol ; 854: 328-337, 2019 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-31028741

RESUMO

Cancer metabolism is an attractive target of the therapeutic strategy for cancer. The present study identified bouchardatine (Bou) as a potent suppressor of rectal cancer growth by cycle-arresting independent of apoptosis. In cultured HCT-116 rectal cancer cells, Bou increased glucose uptake/oxidation and capacity of mitochondrial oxidation. These effects were associated with an upregulation of uncoupling protein 2 (UCP2) and the activation of its upstream Sirtuin 1 (SIRT1)/(Liver kinase B1) LKB1- (Adenosine monophosphate-activated protein kinase) AMPK axis. The pivotal role of UCP2 in the cancer-suppressing effect was demonstrated by overexpressing UCP2 in HCT-116 cells with similar metabolic effects to those produced by Bou. Interestingly, Bou activated peroxisome proliferators activated receptor γ coactivator 1α (PGC-1α) and recruited it to the promoter of UCP2 in HCT-116 cells along with deacetylation (thus activation) by SIRT1. The requirement of SIRT1 for the cancer-suppressing effect through the PGC-1α-UCP2 was confirmed by the reciprocal responses to Bou in HCT-116 with defected and overexpressed SIRT1. Whereas knockdown, mutation or pharmacological inhibition of SIRT1 all abolished Bou-induced deacetylation/activation of PGC-1α, the opposing effects were observed after overexpressing SIRT1. In mice, administration of Bou (50 mg/kg) also suppressed the growth of rectal cancer associated with increases the UCP2 expression and mitochondria capacity in the tumor. Collectively, our findings suggest that Bou has a therapeutic potential for the treatment of rectal cancer by disrupting the metabolic path of cancer cells via activating the PGC-1α-UCP2 axis with SIRT1 as its primary target.


Assuntos
Alcaloides Indólicos/farmacologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Neoplasias Retais/tratamento farmacológico , Sirtuína 1/metabolismo , Proteína Desacopladora 2/metabolismo , Acetilação/efeitos dos fármacos , Aerobiose/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Alcaloides Indólicos/uso terapêutico , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Oxirredução/efeitos dos fármacos , Neoplasias Retais/metabolismo , Neoplasias Retais/patologia , Regulação para Cima/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Nat Commun ; 10(1): 1289, 2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30894531

RESUMO

Cellular proteins continuously undergo non-enzymatic covalent modifications (NECMs) that accumulate under normal physiological conditions and are stimulated by changes in the cellular microenvironment. Glycation, the hallmark of diabetes, is a prevalent NECM associated with an array of pathologies. Histone proteins are particularly susceptible to NECMs due to their long half-lives and nucleophilic disordered tails that undergo extensive regulatory modifications; however, histone NECMs remain poorly understood. Here we perform a detailed analysis of histone glycation in vitro and in vivo and find it has global ramifications on histone enzymatic PTMs, the assembly and stability of nucleosomes, and chromatin architecture. Importantly, we identify a physiologic regulation mechanism, the enzyme DJ-1, which functions as a potent histone deglycase. Finally, we detect intense histone glycation and DJ-1 overexpression in breast cancer tumors. Collectively, our results suggest an additional mechanism for cellular metabolic damage through epigenetic perturbation, with implications in pathogenesis.


Assuntos
Neoplasias da Mama/genética , Epigênese Genética , Produtos Finais de Glicação Avançada/genética , Histonas/metabolismo , Nucleossomos/química , Proteína Desglicase DJ-1/genética , Processamento de Proteína Pós-Traducional , Acetilação/efeitos dos fármacos , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Produtos Finais de Glicação Avançada/metabolismo , Glicosilação/efeitos dos fármacos , Xenoenxertos , Histonas/genética , Humanos , Camundongos , Nucleossomos/metabolismo , Proteína Desglicase DJ-1/metabolismo , Aldeído Pirúvico/farmacologia , Microambiente Tumoral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA