RESUMO
Intracerebral hemorrhage (ICH) is a significant health concern associated with high mortality. Cofilin plays a crucial role in stress conditions, but its signaling following ICH in a longitudinal study is yet to be ascertained. In the present study, we examined the cofilin expression in human ICH autopsy brains. Then, the spatiotemporal cofilin signaling, microglia activation, and neurobehavioral outcomes were investigated in a mouse model of ICH. Human autopsy brain sections from ICH patients showed increased intracellular cofilin localization within microglia in the perihematomal area, possibly associated with microglial activation and morphological changes. Various cohorts of mice were subjected to intrastriatal collagenase injection and sacrificed at time points of 1, 3, 7, 14, 21, and 28 days. Mice suffered from severe neurobehavioral deficits after ICH, lasting for 7 days, followed by a gradual improvement. Mice suffered post-stroke cognitive impairment (PSCI) both acutely and in the chronic phase. Hematoma volume increased from day 1 to 3, whereas ventricle size increased from day 21 to 28. Cofilin protein expression increased in the ipsilateral striatum on days 1 and 3 and then decreased from days 7 to 28. An increase in activated microglia was observed around the hematoma on days 1 to 7, followed by a gradual reduction up to day 28. Around the hematoma, activated microglia showed morphological changes from ramified to amoeboid. mRNA levels of inflammatory [tumor necrosis factor-α (TNF-α), interleukin 1ß (IL-1ß), and interleukin-6 (IL-6) and anti-inflammatory markers [interleukin-10 (IL-10), transforming growth factor-ß TGF-ß, and arginase I (Arg1)] increased during the acute phase and decreased in the chronic phase. Blood cofilin levels increased on day 3 and matched the increase in chemokine levels. slingshot protein phosphatase 1 (SSH1) protein, which activates cofilin, was increased from day 1 to 7. These results suggest that microglial activation might be the sequel of cofilin overactivation following ICH, leading to widespread neuroinflammation and consequent PSCI.
Assuntos
Lesões Encefálicas , Acidente Vascular Cerebral , Humanos , Camundongos , Animais , Microglia/metabolismo , Doenças Neuroinflamatórias , Fatores de Despolimerização de Actina/metabolismo , Estudos Longitudinais , Hemorragia Cerebral/patologia , Hematoma/patologia , Lesões Encefálicas/patologia , Acidente Vascular Cerebral/metabolismoRESUMO
Background: Vagus nerve stimulation (VNS) has a protective effect on neurological recovery in ischaemic stroke. However, its underlying mechanism remains to be clarified. Ubiquitin-specific protease 10 (USP10), a member of the ubiquitin-specific protease family, has been shown to inhibit the activation of the NF-κB signalling pathway. Therefore, this study investigated whether USP10 plays a key role in the protective effect of VNS against ischemic stroke and explore its mechanism. Methods: Ischaemic stroke model was constructed by transient middle cerebral artery occlusion (tMCAO) in mice. VNS was performed at 30 min, 24hr, and 48hr after the establishment of tMCAO model. USP10 expression induced by VNS after tMCAO was measured. LV-shUSP10 was used to establish the model with low expression of USP10 by stereotaxic injection technique. The effects of VNS with or without USP10 silencing on neurological deficits, cerebral infarct volume, NF-κB pathway activation, glial cell activation, and release of pro-inflammation cytokines were assessed. Results: VNS enhanced the expression of USP10 following tMCAO. VNS ameliorated neurological deficits and reduced cerebral infarct volume, but this effect was inhibited by silencing of USP10. Activation of the NF-κB pathway and the expression of inflammatory cytokines induced by tMCAO were suppressed by VNS. Moreover, VNS promoted the pro-to-anti-inflammatory response of microglia and inhibited activation of astrocytes, while silencing of USP10 prevented the neuroprotective and anti-neuroinflammatory effects of VNS. Conclusion: USP10 is a potential mediator for VNS to alleviate neurological deficits, neuroinflammation, and glial cell activation in ischaemic stroke by inhibiting NF-κB signalling pathway.
Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Ubiquitina Tiolesterase , Estimulação do Nervo Vago , Animais , Camundongos , Isquemia Encefálica/metabolismo , Citocinas/metabolismo , Infarto da Artéria Cerebral Média/terapia , AVC Isquêmico/terapia , Doenças Neuroinflamatórias , NF-kappa B/metabolismo , Acidente Vascular Cerebral/terapia , Acidente Vascular Cerebral/metabolismo , Estimulação do Nervo Vago/métodos , Ubiquitina Tiolesterase/genéticaRESUMO
Central poststroke pain (CPSP) induced by thalamic haemorrhage (TH) can be continuous or intermittent and is accompanied by paresthesia, which seriously affects patient quality of life. Advanced insights into CPSP mechanisms and therapeutic strategies require a deeper understanding of the molecular processes of the thalamus. Here, using single-nucleus RNA sequencing (snRNA-seq), we sequenced the transcriptomes of 32332 brain cells, which revealed a total of four major cell types within the four thalamic samples from mice. Compared with the control group, the experimental group possessed the higher sensitivity to mechanical, thermal, and cold stimuli, and increased microglia numbers and decreased neuron numbers. We analysed a collection of differentially expressed genes and neuronal marker genes obtained from bulk RNA sequencing (bulk RNA-seq) data and found that Apoe, Abca1, and Hexb were key genes verified by immunofluorescence (IF). Immune infiltration analysis found that these key genes were closely related to macrophages, T cells, related chemokines, immune stimulators and receptors. Gene Ontology (GO) enrichment analysis also showed that the key genes were enriched in biological processes such as protein export from nucleus and protein sumoylation. In summary, using large-scale snRNA-seq, we have defined the transcriptional and cellular diversity in the brain after TH. Our identification of discrete cell types and differentially expressed genes within the thalamus can facilitate the development of new CPSP therapeutics.
Assuntos
Neuralgia , Acidente Vascular Cerebral , Camundongos , Animais , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/genética , Acidente Vascular Cerebral/metabolismo , RNA-Seq , Qualidade de Vida , Hemorragia Cerebral/complicações , Hemorragia Cerebral/genética , Tálamo/metabolismo , RNA Nuclear PequenoRESUMO
OBJECTIVE: Animal studies and clinical trials demonstrated the effectiveness of a combination of transplanted bone marrow stromal cells (BMSC) and electroacupuncture (EA) treatment in improving neurological deficits. However, the ability of the BMSC-EA treatment to enhance brain repair processes or the neuronal plasticity of BMSC in ischemic stroke model is unclear. The purpose of this study was to investigate the neuroprotective effects and neuronal plasticity of BMSC transplantation combined with EA in ischemic stroke. MATERIALS AND METHODS: A male Sprague-Dawley (SD) rat middle cerebral artery occlusion (MCAO) model was used. Intracerebral transplantation of BMSC, transfected with lentiviral vectors expressing green fluorescent protein (GFP), was performed using a stereotactic apparatus after modeling. MCAO rats were treated with BMSC injection alone or in combination with EA. After the treatment, proliferation and migration of BMSC were observed in different groups by fluorescence microscopy. Quantitative real-time PCR (qRT-PCR), Western blotting, and immunohistochemistry were performed to examine changes in the levels of neuron-specific enolase (NSE) and nestin in the injured striatum. RESULTS: Epifluorescence microscopy revealed that most BMSC in the cerebrum were lysed; few transplanted BMSC survived, and some living cells migrated to areas around the lesion site. NSE was overexpressed in the striatum of MCAO rats, illustrating the neurological deficits caused by cerebral ischemia-reperfusion. The combination of BMSC transplantation and EA attenuated the expression of NSE, indicating nerve injury repair. Although the qRT-PCR results showed that BMSC-EA treatment elevated nestin RNA expression, less robust responses were observed in other tests. CONCLUSIONS: Our results show that the combination treatment significantly improved restoration of neurological deficits in the animal stroke model. However, further studies are required to see if EA could promote the rapid differentiation of BMSC into neural stem cells in the short term.
Assuntos
Isquemia Encefálica , Eletroacupuntura , AVC Isquêmico , Células-Tronco Mesenquimais , Acidente Vascular Cerebral , Ratos , Masculino , Animais , Ratos Sprague-Dawley , AVC Isquêmico/metabolismo , Nestina/metabolismo , Isquemia Encefálica/metabolismo , Acidente Vascular Cerebral/metabolismo , Células-Tronco Mesenquimais/metabolismo , Infarto da Artéria Cerebral Média/terapia , Infarto da Artéria Cerebral Média/metabolismo , Células da Medula Óssea , Células Estromais/metabolismo , Transplante de Medula Óssea/métodosRESUMO
BACKGROUND: Microglial activation contributes to both inflammatory damage and repair in experimental ischemic stroke. However, because of the logistical challenges, there have been few clinical imaging studies directly describing inflammatory activation and its resolution after stroke. The purpose of our pilot study was to describe the spatio-temporal profile of brain inflammation after stroke using 18kD translocator protein (TSPO) positron emission tomography (PET) with magnetic resonance (MR) co-registration in the subacute and chronic stage after stroke. METHODS: Three patients underwent magnetic resonance imaging (MRI) and PET scans with TSPO ligand [11C]PBR28 15 ± 3 and 90 ± 7 days after an ischaemic stroke. Regions of interest (ROI) were defined on MRI images and applied to the dynamic PET data to derive regional time-activity curves. Regional uptake was quantified as standardised uptake values (SUV) over 60 to 90 min post-injection. ROI analysis was applied to identify binding in the infarct, and in frontal, temporal, parietal, and occipital lobes and cerebellum excluding the infarcted area. RESULTS: The mean age of participants was 56 ± 20.4 years and mean infarct volume was 17.9 ± 18.1 ml. [11C]PBR28 showed increased tracer signal in the infarcted area compared to non-infarcted areas of the brain in the subacute phase of stroke (Patient 1 SUV 1.81; Patient 2 SUV 1.15; Patient 3 SUV 1.64). [11C]PBR28 uptake returned to the level of non-infarcted areas at 90 days Patient 1 SUV 0.99; Patient 3 SUV 0.80). No additional upregulation was detected elsewhere at either time point. CONCLUSIONS: The neuroinflammatory reaction after ischaemic stroke is limited in time and circumscribed in space suggesting that post-ischaemic inflammation is tightly controlled but regulatory mechanisms.
Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Humanos , Adulto , Pessoa de Meia-Idade , Idoso , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/metabolismo , Projetos Piloto , Isquemia Encefálica/metabolismo , Doenças Neuroinflamatórias , Receptores de GABA/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Imageamento por Ressonância Magnética , Proteínas de Transporte , InfartoRESUMO
Among the responses in the early stages of stroke, activation of neurodegenerative and proinflammatory processes in the hippocampus is of key importance for the development of negative post-ischemic functional consequences. However, it remains unclear, what genes are involved in these processes. The aim of this work was a comparative study of the expression of genes encoding glutamate and GABA transporters and receptors, as well as inflammation markers in the hippocampus one day after two types of middle cerebral artery occlusion (according to Koizumi et al. method, MCAO-MK, and Longa et al. method, MCAO-ML), and direct pro-inflammatory activation by central administration of bacterial lipopolysaccharide (LPS). Differences and similarities in the effects of these challenges on gene expression were observed. Expression of a larger number of genes associated with activation of apoptosis and neuroinflammation, glutamate reception, and markers of the GABAergic system changed after the MCAO-ML and LPS administration than after the MCAO-MK. Compared with the MCAO-ML, the MCAO-MK and LPS challenges caused changes in the expression of more genes involved in glutamate transport. The most pronounced difference between the responses to different challenges was the changes in expression of calmodulin and calmodulin-dependent kinases genes observed after MCAO, especially MCAO-ML, but not after LPS. The revealed specific features of the hippocampal gene responses to the two types of ischemia and a pro-inflammatory stimulus could contribute to further understanding of the molecular mechanisms underlying diversity of the post-stroke consequences both in the model studies and in the clinic.
Assuntos
Isquemia Encefálica , Acidente Vascular Cerebral , Ratos , Animais , Lipopolissacarídeos/metabolismo , Calmodulina/genética , Calmodulina/metabolismo , Calmodulina/farmacologia , Isquemia Encefálica/genética , Isquemia Encefálica/metabolismo , Hipocampo/metabolismo , Acidente Vascular Cerebral/metabolismo , Glutamatos/metabolismo , Glutamatos/farmacologiaRESUMO
An ischemic stroke usually causes blood-brain barrier (BBB) damage and excessive oxidative stress (OS) levels. Kinsenoside (KD), a major effective compound extracted in Chinese herbal medicine Anoectochilus roxburghii (Orchidaceae), has anti-OS effects. The present study focused on exploring KD's protection against OS-mediated cerebral endothelial cell damage and BBB damage within the mouse model. Intracerebroventricular administration of KD upon reperfusion after 1 h ischemia decreased infarct volumes, neurological deficit, brain edema, neuronal loss, and apoptosis 72 h post-ischemic stroke. KD improved BBB structure and function, as evidenced by a lower 18F-fluorodeoxyglucose pass rate of the BBB and upregulation of tight junction (TJ) proteins such as occludin, claudin-5, and zonula occludens-1 (ZO-1). KD protected bEnd.3 endothelial cells from oxygen and glucose deprivation/reoxygenation (OGD/R) injury in an in-vitro study. Meanwhile, OGD/R reduced transepithelial electronic resistance, whereas KD significantly increased TJ protein levels. Furthermore, based on in-vivo and in-vitro research, KD alleviated OS in endothelial cells, which is related to nuclear factor, erythroid 2 like 2 (Nrf2) nuclear translocation as well as Nrf2/haem oxygenase 1 signaling protein stimulation. Our findings demonstrated that KD might serve as a potential compound for treating ischemic stroke involving antioxidant mechanisms.
Assuntos
AVC Isquêmico , Traumatismo por Reperfusão , Acidente Vascular Cerebral , Camundongos , Animais , Barreira Hematoencefálica/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , AVC Isquêmico/metabolismo , Células Endoteliais , Estresse Oxidativo , Proteínas de Junções Íntimas/metabolismo , Oxigênio/metabolismo , Glucose/metabolismo , Traumatismo por Reperfusão/metabolismo , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/metabolismoRESUMO
Inflammation is a crucial part of the healing process after an ischemic stroke and is required to restore tissue homeostasis. However, the inflammatory response to stroke also worsens neurodegeneration and creates a tissue environment that is unfavorable to regeneration for several months, thereby postponing recovery. In animal models, inflammation can also contribute to the development of delayed cognitive deficits. Myeloid cells that take on a foamy appearance are one of the most prominent immune cell types within chronic stroke infarcts. Emerging evidence indicates that they form as a result of mechanisms of myelin lipid clearance becoming overwhelmed, and that they are a key driver of the chronic inflammatory response to stroke. Therefore, targeting lipid accumulation in foam cells may be a promising strategy for improving recovery. The aim of this review is to provide an overview of current knowledge regarding inflammation and foam cell formation in the brain in the weeks and months following ischemic stroke and identify targets that may be amenable to therapeutic intervention.
Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Animais , Células Espumosas/metabolismo , Acidente Vascular Cerebral/metabolismo , Isquemia Encefálica/metabolismo , Inflamação , LipídeosRESUMO
Ischemic stroke is characterized by the presence of reactive microglia. However, its precise involvement in stroke etiology is still unknown. We used metabolic profiling and showed that chemokine like factor 1 (CKLF1) causes acute microglial inflammation and metabolic reprogramming from oxidative phosphorylation to glycolysis, which was reliant on the AMP-activated protein kinase (AMPK)-mammalian target of rapamycin (mTOR)-hypoxia inducible factor 1α (HIF-1α) signaling pathway. Once activated, microglia enter a chronic tolerant state as a result of widespread energy metabolism abnormalities, which reduces immunological responses, including cytokine release and phagocytosis. Metabolically dysfunctional microglia were also found in mice using genome-wide RNA sequencing after chronic administration of CKLF1, and there was a decrease in the inflammatory response. Finally, we showed that the loss of CKLF1 reversed the defective immune response of microglia, as indicated by the maintenance its phagocytosis to neutrophils, thereby mitigating the long-term outcomes of ischemic stroke. Overall, CKLF1 plays a crucial role in the relationship between microglial metabolic status and immune function in stroke, which prepares a potential therapeutic strategy for ischemic stroke.
Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Animais , Camundongos , Citocinas/metabolismo , Tolerância Imunológica , AVC Isquêmico/metabolismo , Mamíferos/metabolismo , Microglia/metabolismo , Acidente Vascular Cerebral/metabolismoRESUMO
Reperfusion is the fundamental treatment for ischaemic stroke; however, many ischaemic stroke patients cannot undergo reperfusion treatment. Furthermore, reperfusion can cause ischaemic reperfusion injuries. This study aimed to determine the effects of reperfusion in an in vitro ischaemic stroke model-oxygen and glucose deprivation (OGD) (0.3% O2)-with rat pheochromocytoma (PC12) cells and cortical neurons. In PC12 cells, OGD resulted in a time-dependent increase in cytotoxicity and apoptosis, and reduction in MTT activity from 2 h onwards. Reperfusion following shorter periods (4 and 6 h) of OGD recovered apoptotic PC12 cells, whereas after 12 h, OGD increased LDH release. In primary neurons, 6 h OGD led to significant increase in cytotoxicity, reduction in MTT activity and dendritic MAP2 staining. Reperfusion following 6 h OGD increased the cytotoxicity. HIF-1a was stabilised by 4 and 6 h OGD in PC12 cells and 2 h OGD onwards in primary neurons. A panel of hypoxic genes were upregulated by the OGD treatments depending on the duration. In conclusion, the duration of OGD determines the mitochondrial activity, cell viability, HIF-1a stabilization, and hypoxic gene expression in both cell types. Reperfusion following OGD of short duration is neuroprotective, whereas OGD of long duration is cytotoxic.
Assuntos
Neoplasias das Glândulas Suprarrenais , Isquemia Encefálica , AVC Isquêmico , Fármacos Neuroprotetores , Feocromocitoma , Traumatismo por Reperfusão , Acidente Vascular Cerebral , Ratos , Animais , Oxigênio/metabolismo , Células PC12 , Glucose/metabolismo , Isquemia Encefálica/metabolismo , Feocromocitoma/metabolismo , Traumatismo por Reperfusão/metabolismo , Fármacos Neuroprotetores/farmacologia , Acidente Vascular Cerebral/metabolismo , Apoptose , Neoplasias das Glândulas Suprarrenais/metabolismo , Reperfusão , Neurônios/metabolismo , AVC Isquêmico/metabolismo , Sobrevivência CelularRESUMO
Stroke, especially ischemic stroke, is an important cause of neurological morbidity and mortality worldwide. Growing evidence suggests that the immune system plays an intricate function in the pathophysiology of stroke. Gelsevirine (Gs), an alkaloid from Gelsemium elegans, has been proven to decrease inflammation and neuralgia in osteoarthritis previously, but its role in stroke is unknown. In this study, the middle cerebral artery occlusion (MCAO) mice model was used to evaluate the protective effect of Gs on stroke, and the administration of Gs significantly improved infarct volume, Bederson score, neurobiological function, apoptosis of neurons, and inflammation state in vivo. According to the data in vivo and the conditioned medium (CM) stimulated model in vitro, the beneficial effect of Gs came from the downregulation of the over-activity of microglia, such as the generation of inflammatory factors, dysfunction of mitochondria, production of ROS and so on. By RNA-seq analysis and Western-blot analysis, the JAK-STAT signal pathway plays a critical role in the anti-inflammatory effect of Gs. According to the results of molecular docking, inhibition assay, and thermal shift assay, the binding of Gs on JAK2 inhibited the activity of JAK2 which inhibited the over-activity of JAK2 and downregulated the phosphorylation of STAT3. Over-expression of a gain-of-function STAT3 mutation (K392R) abolished the beneficial effects of Gs. So, the downregulation of JAK2-STAT3 signaling pathway by Gs contributed to its anti-inflammatory effect on microglia in stroke. Our study revealed that Gs was benefit to stroke treatment by decreasing neuroinflammation in stroke as a potential drug candidate regulating the JAK2-STAT3 signal pathway.
Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Camundongos , Animais , Isquemia Encefálica/metabolismo , AVC Isquêmico/tratamento farmacológico , AVC Isquêmico/metabolismo , Microglia/metabolismo , Doenças Neuroinflamatórias , Simulação de Acoplamento Molecular , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/metabolismo , Inflamação/metabolismo , Anti-Inflamatórios/uso terapêuticoRESUMO
Stroke-induced cerebral microvascular dysfunction contributes to aggravation of neuronal injury and compromises the efficacy of current reperfusion therapies. Understanding the molecular alterations in cerebral microvessels in stroke will provide original opportunities for scientific investigation of novel therapeutic strategies. Toward this goal, using a recently optimized method which minimizes cell activation and preserves endothelial cell interactions and RNA integrity, we conducted a genome-wide transcriptomic analysis of cerebral microvessels in a mouse model of stroke and compared these transcriptomic alterations with the ones observed in human, nonfatal, brain stroke lesions. Results from these unbiased comparative analyses have revealed the common alterations in mouse stroke microvessels and human stroke lesions and identified shared molecular features associated with vascular disease (e.g., Serpine1/Plasminogen Activator Inhibitor-1, Hemoxygenase-1), endothelial activation (e.g., Angiopoietin-2), and alterations in sphingolipid metabolism and signaling (e.g., Sphigosine-1-Phosphate Receptor 2). Sphingolipid profiling of mouse cerebral microvessels validated the transcript data and revealed the enrichment of sphingomyelin and sphingoid species in the cerebral microvasculature compared to brain and the stroke-induced increase in ceramide species. In summary, our study has identified novel molecular alterations in several microvessel-enriched, translationally relevant, and druggable targets, which are potent modulators of endothelial function. Our comparative analyses have revealed the presence of molecular features associated with cerebral microvascular dysfunction in human chronic stroke lesions. The results shared here provide a detailed resource for therapeutic discovery of candidates for neurovascular protection in stroke and potentially, other pathologies exhibiting cerebral microvascular dysfunction.
Assuntos
Acidente Vascular Cerebral , Camundongos , Humanos , Animais , Acidente Vascular Cerebral/metabolismo , Encéfalo/metabolismo , Endotélio/metabolismo , Microvasos/patologia , Esfingolipídeos/metabolismo , Barreira Hematoencefálica/metabolismoRESUMO
BACKGROUND: Ischemic stroke is the obstruction of cerebral blood flow with a high morbidity. Microglial polarization is a contributing factor for ischemic stroke-induced injury. Here, we focused on function and mechanism of RNA binding protein RPS3 in microglial polarization after ischemic stroke. METHODS: Transient middle cerebral artery occlusion (tMCAO) was conducted in SD rats. Infarct area was detected by TTC staining and neurological score was assessed. Fluorescence staining tested neuronal apoptosis and microglial differentiation. Oxygen and glucose deprivation/reoxygenation (OGD/R) was applied for treating microglia. Levels of RPS3, SIRT1, M1 and M2 polarization markers (CD86, iNOS, CD206, Arg-1) were determined by RT-qPCR. Western blot detected RPS3, SIRT1, NLRP3, ASC and Cleaved-caspase-1 expression. RIP assay validated that RPS3 interacted with SIRT1. CCK-8 measured cell viability. Flow cytometry and ELISA assessed M1 and M2 polarization markers. LDH release was detected using colorimetric CytoTox 96 Cytotoxicity kit. RESULTS: RPS3 depletion improved neurological dysfunction and reduced infarction area in rats after tMCAO. Knockdown of RPS3 resulted in increased SIRT1 expression and decreased NLRP3 inflammasome activation, and induced microglia M2 polarization after ischemia-reperfusion (I/R). Besides, RPS3 directly targeted SIRT1 and reduced its expression in microglia. RPS3 silencing suppressed OGD/R-triggered neuronal and microglial cell death through SIRT1. Moreover, RPS3 activated NLRP3 inflammasome and regulated microglial polarization via SIRT1. CONCLUSION: RPS3 regulates microglial polarization and neuronal injury through SIRT1/NLRP3 pathway, suggesting a novel target for ischemic stroke treatment.
Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Ratos , Animais , Inflamassomos/metabolismo , Microglia/metabolismo , AVC Isquêmico/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Sirtuína 1/genética , Sirtuína 1/metabolismo , Ratos Sprague-Dawley , Infarto da Artéria Cerebral Média/metabolismo , Glucose , Isquemia Encefálica/metabolismo , Acidente Vascular Cerebral/metabolismoRESUMO
The blood-brain barrier (BBB) is a highly regulated physical and functional boundarythat tightly controls the transport of materials between the blood and the brain. There is an increasing recognition that the BBB is dysfunctional in a wide range of neurological disorders; this dysfunction can be symptomatic of the disease but can also play a role in disease etiology. BBB dysfunction can be exploited for the delivery of therapeutic nanomaterials. Forexample, there can be a transient, physical disruption of the BBB in diseases such as brain injury and stroke, which allows temporary access of nanomaterials into the brain. Physicaldisruption of the BBB through external energy sources is now being clinically pursued toincrease therapeutic delivery into the brain. In other diseases, the BBB takes on new properties that can beleveraged by delivery carriers. For instance, neuroinflammation induces the expression ofreceptors on the BBB that can be targeted by ligand-modified nanomaterials, and theendogenous homing of immune cells into the diseased brain can be hijacked for the delivery ofnanomaterials. Lastly, BBB transport pathways can be altered to increase nanomaterial transport. In this review, we will describe changes that can occur in the BBB in disease, and how these changes have been exploited by engineered nanomaterials forincreased transport into the brain.
Assuntos
Nanoestruturas , Acidente Vascular Cerebral , Humanos , Barreira Hematoencefálica/metabolismo , Encéfalo , Transporte Biológico , Acidente Vascular Cerebral/metabolismoRESUMO
Current approaches to the treatment of stroke have significant limitations, and neuroprotective therapy is ineffective. In view of this, searching for effective neuroprotectors and developing new neuroprotective strategies remain a pressing topic in research of cerebral ischemia. Insulin and insulin-like growth factor-1 (IGF-1) play a key role in the brain functioning by regulating the growth, differentiation, and survival of neurons, neuronal plasticity, food intake, peripheral metabolism, and endocrine functions. Insulin and IGF-1 produce multiple effects in the brain, including neuroprotective action in cerebral ischemia and stroke. Experiments in animals and cell cultures have shown that under hypoxic conditions, insulin and IGF-1 improve energy metabolism in neurons and glial cells, promote blood microcirculation in the brain, restore nerve cell functions and neurotransmission, and produce the anti-inflammatory and antiapoptotic effects on brain cells. The intranasal route of insulin and IGF-1 administration is of particular interest in the clinical practice, since it allows controlled delivery of these hormones directly to the brain, bypassing the blood-brain barrier. Intranasally administered insulin alleviated cognitive impairments in elderly people with neurodegenerative and metabolic disorders; intranasally administered insulin and IGF-1 promoted survival of animals with ischemic stroke. The review discusses the published data and results of our own studies on the mechanisms of neuroprotective action of intranasally administered insulin and IGF-1 in cerebral ischemia, as well as the prospects of using these hormones for normalization of CNS functions and reduction of neurodegenerative changes in this pathology.
Assuntos
Isquemia Encefálica , Fármacos Neuroprotetores , Acidente Vascular Cerebral , Animais , Insulina/farmacologia , Insulina/uso terapêutico , Insulina/metabolismo , Fator de Crescimento Insulin-Like I/uso terapêutico , Fator de Crescimento Insulin-Like I/metabolismo , Isquemia Encefálica/metabolismo , Encéfalo/metabolismo , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêuticoRESUMO
Neuroinflammation is a critical factor in developing and progressing numerous brain diseases, including neurodegenerative diseases. Chronic or excessive neuroinflammation can lead to neurotoxicity, causing brain damage and contributing to the onset and progression of various brain diseases. Therefore, understanding neuroinflammation mechanisms and developing strategies to control them is crucial for treating brain diseases. Studies have shown that neuroinflammation plays a vital role in the progression of neurodegenerative diseases, such as Alzheimer's (AD) and Parkinson's (PD), and stroke. Additionally, the effects of PM2.5 pollution on the brain, including neuroinflammation and neurotoxicity, are well-documented. Quercetin is a flavonoid, a plant pigment in many fruits, vegetables, and grains. Quercetin has been studied for its potential health benefits, including its anti-inflammatory, antioxidant, and anti-cancer properties. Quercetin may also have a positive impact on immune function and allergy symptoms. In addition, quercetin has been shown to have anti-inflammatory and neuroprotective properties and can activate AMP-activated protein kinase (AMPK), a cellular energy sensor that modulates inflammation and oxidative stress. By reducing inflammation and protecting against neuroinflammatory toxicity, quercetin holds promise as a safe and effective adjunctive therapy for treating neurodegenerative diseases and other brain disorders. Understanding and controlling the mechanisms of NF-κB and NLRP3 inflammasome pathways are crucial for preventing and treating conditions, and quercetin may be a promising tool in this effort. This review article aims to discuss the role of neuroinflammation in the development and progression of various brain disorders, including neurodegenerative diseases and stroke, and the impact of PM2.5 pollution on the brain. The paper also highlights quercetin's potential health benefits and anti-inflammatory and neuroprotective properties.
Assuntos
Doenças Neurodegenerativas , Fármacos Neuroprotetores , Acidente Vascular Cerebral , Humanos , Quercetina/farmacologia , Quercetina/uso terapêutico , Quercetina/metabolismo , Doenças Neuroinflamatórias , Encéfalo/metabolismo , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/metabolismo , Acidente Vascular Cerebral/metabolismo , Material Particulado/farmacologia , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Fármacos Neuroprotetores/metabolismoRESUMO
BACKGROUND: Ischemic stroke (IS) is the primary cause of mortality and disability worldwide. Circular RNAs (circRNAs) have been proposed as crucial regulators in IS. This study focused on the role of circPDS5B in IS and its underlying mechanism. METHOD: Transient middle cerebral artery occlusion (tMCAO) mice and glucose deprivation/reoxygenation (OGD/R)-exposed human brain microvascular endothelial cells (BMECs) were used as IS models. Expression levels of circPDS5B, heterogenous nuclear ribonucleoprotein L (hnRNPL), runt-related transcription factor-1 (Runx1), and Zinc finger protein 24 (ZNF24) were quantified by qRT-PCR. MTT, wound healing, transwell and tube formation assays were employed to evaluate the cell proliferation, migration, and angiogenesis, respectively. Moreover, RNA pull-down, and RIP assay were performed to investigate the interaction among circPDS5B, hnRNPL and vascular endothelial growth factor-A (VEGF-A). RESULTS: circPDS5B was significantly up-regulated in IS patients and tMCAO mice. Deficiency of circPDS5B relieved brain infarction and neuronal injury of tMCAO mice. OGD/R-induced apoptosis, inhibition in viability, migration, and angiogenesis in BMECs were dramatically abrogated by circPDS5B knockdown. Mechanistically, circPDS5B stabilized Runx1 and ZNF24 via recruiting hnRNPL, thereby suppressing the transcription and expression of VEGFA. hnRNPL silencing strengthened circPDS5B knockdown-mediated beneficial effect on IS. CONCLUSION: Altogether, our study showed that high expression of circPDS5B exacerbated IS through recruitment of hnRNPL to stabilize Runx1/ZNF24 and subsequently inactivate VEGFA. Our findings suggest circPDS5B may be a novel therapeutic target for IS.
Assuntos
Ribonucleoproteínas Nucleares Heterogêneas Grupo L , AVC Isquêmico , MicroRNAs , Acidente Vascular Cerebral , Humanos , Camundongos , Animais , RNA Circular/genética , RNA Circular/metabolismo , RNA Circular/farmacologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Células Endoteliais/metabolismo , AVC Isquêmico/genética , AVC Isquêmico/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/farmacologia , MicroRNAs/metabolismo , Neovascularização Fisiológica , Infarto da Artéria Cerebral Média/metabolismo , Glucose/metabolismo , Acidente Vascular Cerebral/genética , Acidente Vascular Cerebral/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo L/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo L/farmacologiaRESUMO
Ischemic stroke triggers a cascade of events that facilitates neural protection and spontaneous recovery, which accounts for a major part of functional recovery. Despite the cellular and molecular facilitations on neural protection, the molecular mechanisms of spontaneous recovery have not been fully understood. Ca2+ -dependent activator protein for secretion 1 (CAPS1), a member of CAPS family, plays a major role in synaptic transmission and synaptic effectiveness by regulating vesicle exocytosis. Here, the molecular mechanism of CAPS1 in spontaneous recovery after ischemic stroke was studied. In this study, transient left middle cerebral artery occlusion (MCAO) was used as the ischemic stroke model. The whole brain magnetic resonance imaging (MRI) and neurological score analysis showed decreased infarct volume and neurological scores at 7 days as compared with 1 day after MCAO, suggesting the spontaneous recovery. Elisa and Western blot analysis showed elevated BDNF and CAPS1 expression levels in bilateral hippocampus at both 1 day and 3 days after MCAO. Then, inhibition of CAPS1 by adeno-associated virus (AAV) microinjection in the hippocampus attenuated the spontaneous recovery of both motor and memory impairment induced by MCAO. In addition, elevated p-TrkB levels were detected after MCAO, which were reduced by CAPS1-AAV microinjection, indicating that CAPS1 could induce BDNF secretion after ischemic stroke. Moreover, we found elevated combination of CAPS1 with dense core vesicles (DCV) in the hippocampus at both 1 day and 3 days after MCAO, which could also be inhibited by CAPS1-AAV microinjection, indicating the potential mechanism of CAPS1 in regulating BDNF release after MCAO. Finally, we found that CAPS1/BDNF signaling could influence the neurogenesis in the hippocampus after MCAO. In conclusion, CAPS1 regulates neurogenesis by up-regulating BDNF release in the hippocampus, which finally facilitate spontaneous recovery after ischemic stroke.
Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Humanos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , AVC Isquêmico/metabolismo , Encéfalo/metabolismo , Isquemia Encefálica/metabolismo , Transdução de Sinais , Infarto da Artéria Cerebral Média/metabolismo , Acidente Vascular Cerebral/metabolismoRESUMO
The gut-brain axis has been shown to play a vital role in the prognosis and recovery of ischemic stroke (IS), which is associated with gut microbiota dysfunction and changes in the gastrointestinal system and epithelial barrier integrity. In turn, gut microbiota and its derived metabolites can influence stroke outcomes. In this review, we first describe the relationship between IS (clinical and experimental IS) and the gut microbiota. Second, we summarize the role and specific mechanisms of microbiota-derived metabolites in IS. Further, we discuss the roles of natural medicines targeting the gut microbiota. Finally, the potential use of the gut microbiota and derived metabolites as a promising therapeutic opportunity for stroke prevention, diagnosis, and treatment is explored.
Assuntos
Microbioma Gastrointestinal , AVC Isquêmico , Microbiota , Acidente Vascular Cerebral , Humanos , AVC Isquêmico/metabolismo , Acidente Vascular Cerebral/metabolismo , Encéfalo/metabolismoRESUMO
Synthetic cannabidiol (CBD) derivative VCE-004.8 is a peroxisome proliferator-activated receptor gamma (PPARγ) and cannabinoid receptor type 2 (CB2) dual agonist with hypoxia mimetic activity. The oral formulation of VCE-004.8, termed EHP-101, possesses anti-inflammatory properties and is currently in phase 2 clinical trials for relapsing forms of multiple sclerosis. The activation of PPARγ or CB2 receptors exerts neuroprotective effects by dampening neuroinflammation in ischemic stroke models. However, the effect of a dual PPARγ/CB2 agonist in ischemic stroke models is not known. Here, we demonstrate that treatment with VCE-004.8 confers neuroprotection in young mice subjected to cerebral ischemia. Male C57BL/6J mice, aged 3-4 months, were subjected to 30-min transient middle cerebral artery occlusion (MCAO). We evaluated the effect of intraperitoneal VCE-004.8 treatment (10 or 20 mg/kg) either at the onset of reperfusion or 4h or 6h after the reperfusion. Seventy-two hours after ischemia, animals were subjected to behavioral tests. Immediately after the tests, animals were perfused, and brains were collected for histology and PCR analysis. Treatment with VCE-004.8 either at the onset or 4h after reperfusion significantly reduced infarct volume and improved behavioral outcomes. A trend toward reduction in stroke injury was observed in animals receiving the drug starting 6h after recirculation. VCE-004.8 significantly reduced the expression of pro-inflammatory cytokines and chemokines involved in BBB breakdown. Mice receiving VCE-004.8 had significantly lower levels of extravasated IgG in the brain parenchyma, indicating protection against stroke-induced BBB disruption. Lower levels of active matrix metalloproteinase-9 were found in the brain of drug-treated animals. Our data show that VCE-004.8 is a promising drug candidate for treating ischemic brain injury. Since VCE-004.8 has been shown to be safe in the clinical setting, the possibility of repurposing its use as a delayed treatment option for ischemic stroke adds substantial translational value to our findings.