Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.022
Filtrar
1.
Int J Mol Sci ; 22(10)2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-34068986

RESUMO

A therapeutic potential of the TRPA1 channel agonist cinnamaldehyde for use in inflammatory bowel disease is emerging, but the mechanisms are unclear. Semi-quantitative qPCR of various parts of the porcine gastrointestinal tract showed that mRNA for TRPA1 was highest in the colonic mucosa. In Ussing chambers, 1 mmol·L-1 cinnamaldehyde induced increases in short circuit current (ΔIsc) and conductance (ΔGt) across the colon that were higher than those across the jejunum or after 1 mmol·L-1 thymol. Lidocaine, amiloride or bumetanide did not change the response. The application of 1 mmol·L-1 quinidine or the bilateral replacement of 120 Na+, 120 Cl- or 25 HCO3- reduced ΔGt, while the removal of Ca2+ enhanced ΔGt with ΔIsc numerically higher. ΔIsc decreased after 0.5 NPPB, 0.01 indometacin and the bilateral replacement of 120 Na+ or 25 HCO3-. The removal of 120 Cl- had no effect. Cinnamaldehyde also activates TRPV3, but comparative measurements involving patch clamp experiments on overexpressing cells demonstrated that much higher concentrations are required. We suggest that cinnamaldehyde stimulates the secretion of HCO3- via apical CFTR and basolateral Na+-HCO3- cotransport, preventing acidosis and damage to the epithelium and the colonic microbiome. Signaling may involve the opening of TRPA1, depolarization of the epithelium and a rise in PGE2 following a lower uptake of prostaglandins via OATP2A1.


Assuntos
Acroleína/análogos & derivados , Antineoplásicos Fitogênicos/farmacologia , Bicarbonatos/metabolismo , Células Epiteliais/metabolismo , Trato Gastrointestinal/metabolismo , Canal de Cátion TRPA1/agonistas , Acroleína/farmacologia , Animais , Células Epiteliais/efeitos dos fármacos , Trato Gastrointestinal/efeitos dos fármacos , Suínos
2.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 52(2): 216-221, 2021 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-33829694

RESUMO

Objective: To investigate the effect of acrolein on the proliferation of pulmonary epithelial cells and its possible mechanism. Methods: Two strains of pulmonary epithelial cells, A549 cells and MLE15 cells, were used as in vitro models of pulmonary epithelial cell, and were treated with 80 µmol/L acrolein or phosphate buffer saline (PBS) as the control. The proliferation of pulmonary epithelial cells were determined with CCK-8 kit after cell culturing resumed for 12 h, 24 h, 36 h and 48 h post acrolein treatment, and the expression of period circadian regulator gene 1 ( Per1) was examined using Western blot test 24 h after acrolein treatment. In addition, after acrolein treatment, the cells were restored with transforming growth factor-ß (TGF-ß) added in the medium, and the cell proliferation and the expression of Per1 protein were also examined. Results: The proliferation of A549 cells and MLE15 cells decreased significantly after being treated with 80 µmol/L acrolein for 30 min, and the expression of Per1 protein was also downregulated significantly ( P<0.05). The addition of TGF-ß after acrolein treatment did not significantly change the reduction in cell proliferation caused by acrolein, but the expression of Per1 protein in pulmonary epithelial cells was significantly higher than that in cells restored without TGF-ß ( P<0.05). Conclusion: Acrolein treatment resulted in the decreased proliferation of pulmonary epithelial cells and the Per1 expression in pulmonary epithelial cells. Although TGF-ß addition did not reverse the reduction of cell proliferation after acrolein treatment, the Per1 expression levels were recovered to a certain extent compared to that in cells restored in medium without TGF-ß after acrolein treatment.


Assuntos
Acroleína , Células Epiteliais , Acroleína/farmacologia , Proliferação de Células , Expressão Gênica , Pulmão
3.
Molecules ; 26(9)2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33922682

RESUMO

The European Union is promoting regulatory changes to ban fungicides because of the impact their use has on the ecosystem and the adverse effects they can pose for humans. An ecofriendly alternative to these chemicals to fight against fungal species with low toxicity is essential oils and their compounds extracted from aromatic plants. The purpose of this study was to evaluate the in vitro antifungal capacity of the botanical compounds eugenol, carvacrol, thymol, and cinnamaldehyde, and the synergy or antagonism of their mixtures, against Botryotinia fuckeliana and Rhizoctonia solani. Different bioassays were performed at doses of 300, 200, 150, and 100 µg/mL using pure commercial compounds and their combination in potato dextrose agar culture medium. Growth rate and the mycelium growth inhibition parameters were calculated. Phenolic compounds and their combination inhibited the development of species at the different concentrations, with fungicidal or fungistatic activity shown under almost all the tested conditions. When comparing the growth rates of the species in the control plates and treatments, the statistical analysis showed that there were statistically significant differences. The mixture of compounds improved fungicidal activity against the studied species and at a lower concentration of monoterpenes.


Assuntos
Antifúngicos/farmacologia , Botrytis/efeitos dos fármacos , Rhizoctonia/efeitos dos fármacos , Acroleína/análogos & derivados , Acroleína/farmacologia , Ascomicetos/efeitos dos fármacos , Timol/farmacologia
4.
Int J Mol Sci ; 22(5)2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33803167

RESUMO

Methicillin-resistant Staphylococcus aureus (MRSA) is a major nosocomial pathogen worldwide and has acquired multiple resistance to a wide range of antibiotics. Hence, there is a pressing need to explore novel strategies to overcome the increase in antimicrobial resistance. The present study aims to investigate the efficacy and mechanism of plant-derived antimicrobials, trans-cinnamaldehyde (TCA) in decreasing MRSA's resistance to eight conventional antibiotics. A checkerboard dilution test and time-kill curve assay are used to determine the synergistic effects of TCA combined with the antibiotics. The results indicated that TCA increased the antibacterial activity of the antibiotics by 2-16-fold. To study the mechanism of the synergism, we analyzed the mecA transcription gene and the penicillin-binding protein 2a level of MRSA treated with TCA by quantitative RT-PCR or Western blot assay. The gene transcription and the protein level were significantly inhibited. Additionally, it was verified that TCA can significantly inhibit the biofilm, which is highly resistant to antibiotics. The expression of the biofilm regulatory gene hld of MRSA after TCA treatment was also significantly downregulated. These findings suggest that TCA maybe is an exceptionally potent modulator of antibiotics.


Assuntos
Acroleína/análogos & derivados , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/fisiologia , Acroleína/agonistas , Acroleína/farmacologia , Biofilmes/crescimento & desenvolvimento , Sinergismo Farmacológico
5.
Lett Appl Microbiol ; 72(6): 757-766, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33598964

RESUMO

The antibacterial activity of a Cinnamomum cassia essential oil (EO) and of its main component trans-cinnamaldehyde (90% w/w) was examined against five Listeria monocytogenes strains. The minimal inhibitory concentrations (MICs) of C. cassia EO against the five L. monocytogenes strains were identical (250 µg ml-1 ), while the minimal bactericidal concentrations (MBCs) ranged between 800 and 1200 µg ml-1 . In order to study if this EO and trans-cinnamaldehyde altered the five strains at the membrane level, fluorescence anisotropy of 1,6-diphenyl-1,3,5-hexatriene (DPH) was measured in presence of different concentrations (1/2MIC, MIC, 2MIC) of these antibacterial agents. A concentration-dependent increase of fluorescence anisotropy of DPH in their presence reflecting a rigidification of the membrane was observed for the five strains. This modification of the membrane fluidity was associated with a perturbation of the selective membrane permeability, as a perturbation of the gradient between intracellular and extracellular pH was also observed.


Assuntos
Acroleína/análogos & derivados , Antibacterianos/farmacologia , Cinnamomum aromaticum/química , Listeria monocytogenes/efeitos dos fármacos , Óleos Voláteis/farmacologia , Óleos Vegetais/farmacologia , Acroleína/farmacologia , Humanos , Testes de Sensibilidade Microbiana , Folhas de Planta/química
6.
Mol Med Rep ; 23(3)2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33495836

RESUMO

Osteoarthritis (OA) is the most prevalent joint disorder characterized by progressive cartilage damage, resulting in gradual disability among the elderly. We previously provided in vivo evidence that nuclear factor erythroid 2­related factor 2 (Nrf2) deficiency is associated with the development of OA. It has been reported that coniferaldehyde (CFA) acts as a potential Nrf2 activator. The aim of the present study was to investigate the protective effects of CFA against osteoarthritis. A murine model of surgical­induced OA was used in the present study and CFA was administered by peritoneal injection every day, and the knee joints were assessed by histological analysis. The results demonstrated that CFA activated the Nrf2 signaling pathway in primary chondrocytes and articular cartilage from the knee joints. Cartilage damage in mice subjected to the destabilization of the medial meniscus was evidently alleviated by CFA treatment. CFA also robustly suppressed apoptosis induced by H2O2 in murine chondrocytes and reduced the expression of matrix metalloproteinase (MMP)1, MMP3, interleukin (IL)­1 and IL­6 in vivo. On the whole, the findings suggested that CFA exerts a therapeutic effect against OA, and the activation of the Nrf2/heme oxygenase­1 pathway may play a crucial role in CFA­mediated cartilage protection.


Assuntos
Acroleína/análogos & derivados , Cartilagem Articular/metabolismo , Heme Oxigenase-1/metabolismo , Proteínas de Membrana/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Osteoartrite , Transdução de Sinais/efeitos dos fármacos , Acroleína/farmacologia , Animais , Cartilagem Articular/patologia , Células Cultivadas , Modelos Animais de Doenças , Camundongos , Osteoartrite/metabolismo , Osteoartrite/patologia , Osteoartrite/prevenção & controle
7.
Protein J ; 40(1): 78-86, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33392981

RESUMO

Amyloidosis is the process of fibril formation responsible for causing several diseases in the human being that involve protein aggregation such as Alzheimer's, Parkinson's, Huntington's disease, and type II diabetes. Natural phytocompounds such as curcumin shown promising anti-amyloidogenic activity. In the present study, selective phytocompounds such as piperine, cinnamaldehyde, eugenol, and cuminaldehyde present in Piper nigrum L, Cinnamomum zeylanicum Blume, Eugenia caryophyllus Thumb, and Cuminum cyminum L, respectively were analyzed for anti-amyloidogenic activity using hen egg white-lysozyme (HEWL) as a model system. Out of the selected phytocompounds, piperine showed the most significant anti-amyloidogenic activity, as evident from in vitro assays that were validated by in silico molecular docking study. Piperine showed 64.7 ± 3.74% inhibition of amyloid formation at 50 µM concentration, as observed by Thioflavin T assay. Subsequently, the anti-amyloidogenic activity of piperine was further validated by congo red, intrinsic fluorescence assay, and transmission electron microscopy analysis. The in silico molecular binding interaction showed piperine with the highest docking score and glide energy. Piperine was found to be interacting with amyloidogenic region residues and Trp62, the most important residue involved in the amyloidogenesis process. In conclusion, piperine can be used as a positive lead for a potential therapeutic role in targeting diseases involved amyloidogenesis.


Assuntos
Alcaloides/química , Proteínas Amiloidogênicas/química , Benzodioxóis/química , Eugenol/química , Muramidase/química , Compostos Fitoquímicos/química , Piperidinas/química , Alcamidas Poli-Insaturadas/química , Substâncias Protetoras/química , Acroleína/análogos & derivados , Acroleína/química , Acroleína/farmacologia , Alcaloides/farmacologia , Proteínas Amiloidogênicas/antagonistas & inibidores , Proteínas Amiloidogênicas/metabolismo , Animais , Benzaldeídos/química , Benzaldeídos/farmacologia , Benzodioxóis/farmacologia , Benzotiazóis/química , Sítios de Ligação , Galinhas , Cimenos/química , Cimenos/farmacologia , Eugenol/farmacologia , Corantes Fluorescentes/química , Humanos , Simulação de Acoplamento Molecular , Muramidase/antagonistas & inibidores , Muramidase/metabolismo , Compostos Fitoquímicos/farmacologia , Piperidinas/farmacologia , Alcamidas Poli-Insaturadas/farmacologia , Substâncias Protetoras/farmacologia , Agregados Proteicos , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Espectrometria de Fluorescência
8.
Mar Drugs ; 19(2)2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33513729

RESUMO

Diarrhetic shellfish toxins (DSTs), some of the most important phycotoxins, are distributed almost all over the world, posing a great threat to human health through the food chain. Therefore, it is of great significance to find effective methods to reduce toxin accumulation in shellfish. In this paper, we observed the effects of four phytochemicals including cinnamaldehyde (CA), quercetin, oridonin and allicin on the accumulation of DSTs in the digestive gland of Perna viridis after exposure to the DSTs-producing Prorocentrum lima. We found that, among the four phytochemicals, CA could effectively decrease the accumulation of DSTs (okadaic acid-eq) in the digestive gland of P. viridis. Further evidence demonstrated that CA could reduce the histological alterations of the digestive gland of a mussel caused by DSTs. RT-qPCR showed that CA could suppress the CYP3A4 induction by DSTs, suggesting that the DSTs' decrease induced by CA might be related to the inhibition of CYP3A4 transcription induction. However, further studies on the underlying mechanism, optimal treatment time, ecological safety and cost should be addressed before cinnamaldehyde is used to decrease the accumulation of DSTs in field.


Assuntos
Acroleína/análogos & derivados , Diarreia/tratamento farmacológico , Sistema Digestório/efeitos dos fármacos , Toxinas Marinhas/antagonistas & inibidores , Perna (Organismo)/efeitos dos fármacos , Intoxicação por Frutos do Mar/tratamento farmacológico , Acroleína/farmacologia , Acroleína/uso terapêutico , Animais , Diarreia/metabolismo , Diarreia/patologia , Sistema Digestório/metabolismo , Sistema Digestório/patologia , Toxinas Marinhas/metabolismo , Perna (Organismo)/metabolismo , Frutos do Mar , Intoxicação por Frutos do Mar/metabolismo , Intoxicação por Frutos do Mar/patologia
9.
Food Chem ; 347: 129051, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33476921

RESUMO

A way to reduce food waste is related to the increase of the shelf-life of food as a result of improving the package type. An innovative active food packaging material based on cocrystallization of microbiologically active compounds present in essential oils i.e. carvacrol, thymol and cinnamaldehyde was developed following the Quality by Design principles. The selected active components were used to produce antimicrobial plastic films with solidified active ingredients on their surface characterized by antimicrobial properties against four bacterial strains involved in fruit and vegetable spoilage. The developed packaging prototypes exhibited good antimicrobial activity in vitro providing inhibition percentage of 69 (±15)% by contact and inhibition diameters of 32 (±6) mm in the gas phase, along with a prolonged release of the active components. Finally, the prolonged shelf-life of grape samples up to 7 days at room temperature was demonstrated.


Assuntos
Anti-Infecciosos/química , Embalagem de Alimentos/métodos , Óleos Voláteis/química , Acroleína/análogos & derivados , Acroleína/química , Acroleína/farmacologia , Anti-Infecciosos/farmacologia , Cristalização , Cimenos/química , Cimenos/farmacologia , Escherichia coli/efeitos dos fármacos , Microbiologia de Alimentos , Qualidade dos Alimentos , Testes de Sensibilidade Microbiana , Salmonella typhimurium/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Timol/química , Timol/farmacologia
10.
Fitoterapia ; 149: 104824, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33388379

RESUMO

BACKGROUND: Cinnamomum cassia (L.) J.Presl (Cinnamon) was known as a kind of hot herb, improved circulation and warmed the body. However, the active components and mechanisms of dispelling cold remain unknown. METHODS: The effects of several Chinses herbs on thermogenesis were evaluated on body temperature and activation of brown adipose tissue. After confirming the effect, the components of cinnamon were identified using HPLC-Q-TOF/MS and screened with databases. The targets of components were obtained with TCMSP, SymMap, Swiss and STITCH databases. Thermogenesis genes were predicted with DisGeNET and GeneCards databases. The protein-protein interaction network was constructed with Cytoscape 3.7.1 software. GO enrichment analysis was accomplished with STRING databases. KEGG pathway analysis was established with Omicshare tools. The top 20 targets for four compounds were obtained according to the number of edges of PPI network. In addition, the network results were verified with experimental research for the effects of extracts and major compounds. RESULTS: Cinnamon extract significantly upregulated the body temperature during cold exposure.121 components were identified in HPLC-Q-TOF/MS. Among them, 60 compounds were included in the databases. 116 targets were obtained for the compounds, and 41 genes were related to thermogenesis. The network results revealed that 27 active ingredients and 39 target genes. Through the KEGG analysis, the top 3 pathways were PPAR signaling pathway, AMPK signaling pathway, thermogenesis pathway. The thermogenic protein PPARγ, UCP1 and PGC1-α was included in the critical targets of four major compounds. The three major compounds increased the lipid consumption and activated the brown adipocyte. They also upregulated the expression of UCP1, PGC1-α and pHSL, especially 2-methoxycinnamaldehyde was confirmed the effect for the first time. Furthermore, cinnamaldehyde and cinnamon extract activated the expression of TRPA1 on DRG cells. CONCLUSION: The mechanisms of cinnamon on cold resistance were investigated with network pharmacology and experiment validation. This work provided research direction to support the traditional applications of thermogenesis.


Assuntos
Tecido Adiposo Marrom/efeitos dos fármacos , Cinnamomum aromaticum/química , Medicamentos de Ervas Chinesas/farmacologia , Extratos Vegetais/farmacologia , Termogênese , Acroleína/análogos & derivados , Acroleína/farmacologia , Animais , Células Cultivadas , Temperatura Baixa , Regulação da Expressão Gênica , Ontologia Genética , Masculino , Potencial da Membrana Mitocondrial , Camundongos , Estrutura Molecular , Mapas de Interação de Proteínas , Ratos Sprague-Dawley , Transdução de Sinais
11.
ACS Appl Mater Interfaces ; 13(4): 4874-4885, 2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33464809

RESUMO

This work is strategically premeditated to study the potential of a herbal medicinal product as a natural bioactive ingredient to generate nanocellulose-based antibacterial architectures. In situ fibrillation of purified cellulose was done in cinnamon extract (ciE) to obtain microfibrillated cellulose (MFC). To this MFC suspension, carboxylated cellulose nanocrystals (cCNCs) were homogeneously mixed and the viscous gel thus obtained was freeze-dried to obtain lightweight and flexible composite aerogel architectures impregnated with ciE, namely, ciMFC/cCNCs. At an optimal concentration of 0.3 wt % cCNCs (i.e., for ciMFC/cCNCs_0.3), an improvement of around 106% in compressive strength and 175% increment in modulus were achieved as compared to pristine MFC architecture. The efficient loading and interaction of ciE components, specifically cinnamaldehyde, with MFC and cCNCs resulted in developing competent antibacterial surfaces with dense and uniform microstructures. Excellent and long-term antimicrobial activity of the optimized architectures (ciMFC/cCNCs_0.3) was confirmed through various antibacterial assays like the zone inhibition method, bacterial growth observation at OD600, minimum inhibitory concentration (MIC, here 1 mg/mL), minimum bactericidal concentration (MBC, here 3-5 mg/mL), and Live/Dead BacLight viability tests. The changes in the bacterial morphology with a disrupted membrane were further confirmed through various imaging techniques like confocal laser scanning microscopy, FESEM, AFM, and 3D digital microscopy. The dry composite architecture showed the persuasive capability of suppressing the growth of airborne bacteria, which in combination with antibacterial efficiency in the wet state is considered as an imperative aspect for a material to act as the novel biomaterial. Furthermore, these architectures demonstrated excellent antibacterial performance under real "in use" contamination prone conditions. Hence, this work provides avenues for the application of crude natural extracts in developing novel forms of advanced functional biomaterials that can be used for assorted biological/healthcare applications such as wound care and antimicrobial filtering units.


Assuntos
Acroleína/análogos & derivados , Antibacterianos/química , Celulose/química , Cinnamomum aromaticum/química , Nanogéis/química , Extratos Vegetais/química , Acroleína/química , Acroleína/farmacologia , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Aderência Bacteriana/efeitos dos fármacos , Infecções Bacterianas/prevenção & controle , Humanos , Testes de Sensibilidade Microbiana , Extratos Vegetais/farmacologia
12.
Int J Nanomedicine ; 15: 10285-10304, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33376322

RESUMO

Background: Combined chemotherapy is often affected by the different physicochemical properties of chemotherapeutic drugs, which should be improved by the reasonable design of co-loaded preparations. Purpose: A kind of simple but practical graphene oxide (GO) wrapped mesoporous silica nanoparticles (MSN) modified with hyaluronic acid (MSN@GO-HA) were developed for the co-delivery of cinnamaldehyde (CA) and doxorubicin (DOX), in order to enhance their combined treatment on tumor cells and reduce their application defects. Methods: The MSNCA@GODOX-HA was constructed by MSNCA (loading CA via physical diffusion) and GODOX-HA (modified with HA and loading DOX via π-π stacking) through the electrostatic adsorption, followed by the physicochemical characterization, serum stability and in vitro release study. Cytotoxicity on different cells was detected, followed by the tumor cell uptake tests. The intracellular reactive oxygen species (ROS) changes, mitochondrial functions and activities of caspase-3/-9 in MCF-7 cells were also evaluated, respectively. Results: The MSNCA@GODOX-HA nanoparticles kept stable in FBS solution and achieved pH-responsive release behavior, which was beneficial to increase the accumulation of CA and DOX in tumor cells to enhance the treatment. MSNCA@GODOX-HA exerted higher cytotoxicity to MCF-7 human breast cancer cells than H9c2 cardiac myocyte cells, which were not only attributed to the active targeting to tumor cells by HA, but also related with the activation of intrinsic apoptotic pathway in MCF-7 cells induced by CA, which was mediated by the specific ROS signal amplification and the interference with mitochondrial function. Moreover, the efficacy of DOX was also enhanced by the above process. Conclusion: The establishment of the MSNCA@GODOX-HA nanoparticles played a role in promoting strengths and restricting shortcomings of CA and DOX, thereby exerting their function and achieving efficient treatment against cancer.


Assuntos
Acroleína/análogos & derivados , Apoptose/efeitos dos fármacos , Doxorrubicina/farmacologia , Portadores de Fármacos/química , Grafite/química , Nanopartículas/química , Dióxido de Silício/química , Acroleína/química , Acroleína/farmacologia , Doxorrubicina/química , Humanos , Células MCF-7 , Porosidade , Espécies Reativas de Oxigênio/metabolismo
13.
Chin J Physiol ; 63(5): 218-226, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33109788

RESUMO

Cognitive impairments are associated with advancing age. Trans-cinnamaldehyde (CIN) and ellagic acid (ELA) have multiplex activities to reduce various age-related cognitive disorders. In this study, we investigated the effects of these compounds separately or in combination on the cognitive outcomes, mitochondrial function, and inflammatory and apoptotic mediators in aged male Wistar rats. Thirty-two old (22 months old) and eight young (5 months old) rats were randomly allocated to five groups of young control, aged control, ELA-aged, CIN-aged, and ELA + CIN-aged. ELA (15 mg/kg, orally) and CIN (50 mg/kg, intraperitoneally) separately or in combination were administered for 1 month in aged animals. Spatial memory and cognitive activity were evaluated by the Barnes maze and novel object recognition tests. Mitochondrial function (its reactive oxygen species [ROS], mitochondrial membrane potential and ATP level), pro-inflammatory cytokines such as interleukin (IL)-1ß and IL-6 and pro-apoptotic caspase 3 and Bax, and anti-apoptotic Bcl2 levels and their ratio were assessed in the prefrontal cortex. Behavioral results revealed that CIN separately or in combination with ELA significantly alleviates aging-induced memory impairment. Moreover, co-administration of agents effectively decreased inflammatory cytokines, cleaved-caspase 3, Bax and Bax/Bcl2 levels, mitochondrial ROS production, and mitochondrial membrane depolarization and increased Bcl2 and ATP level as compared with untreated aged control rats. Combination therapy was greater than those of individual treatments in all parameters. Therefore, combination therapy with CIN and ELA improved aging-induced cognitive impairment through anti-inflammatory, anti-apoptotic, and mitochondrial-boosting effects in aged rats.


Assuntos
Acroleína/análogos & derivados , Envelhecimento/patologia , Apoptose/efeitos dos fármacos , Disfunção Cognitiva , Ácido Elágico/farmacologia , Mitocôndrias/efeitos dos fármacos , Acroleína/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Disfunção Cognitiva/tratamento farmacológico , Masculino , Córtex Pré-Frontal , Ratos , Ratos Wistar
14.
Exp Parasitol ; 218: 107978, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32853633

RESUMO

One hundred and twenty one-day-old chukar partridges were randomly divided into eight groups which received diets with different supplementations. There were four unchallenged groups. One group received salinomycin (50 ppm), two groups received cinnamaldehyde (CINN) (100 and 200 mg/kg of diet), and another one received only the basal diet from the 1st to the 31st day. There were also four corresponding groups orally challenged by 3 × 105Eimeria kofoidi sporulated oocysts at the 21st day. Three samplings were done at the 24th, 26th, and 31st days of rearing for pathological and biochemical assessments. Fecal samples were daily taken to check the pattern of oocyst shedding from the 26th to 31st day. The body weight of birds was measured at 21st and 31st days. Along with the in vivo experiment, an in vitro sporulation inhibition test was carried out. The in vitro results showed that CINN decreased sporulation rate at 1 and 0.5 mg/ml. In vivo, it was found that CINN did not prevent the oocyst shedding. Furthermore, the histopathological findings revealed that CINN and salinomycin had no effect on infection establishment. However, our findings showed that CINN (200 mg/kg of diet) could enhance the body weight and improve antioxidant status. Although our results did not support the in vivo anticoccidial activity of CINN, it had a promising potential to improve antioxidant status and body weight in the chukar partridge.


Assuntos
Acroleína/análogos & derivados , Doenças das Aves/parasitologia , Coccidiose/veterinária , Eimeria/efeitos dos fármacos , Galliformes/parasitologia , Acroleína/farmacologia , Acroleína/uso terapêutico , Ração Animal/análise , Animais , Antioxidantes/metabolismo , Doenças das Aves/tratamento farmacológico , Peso Corporal , Coccidiose/tratamento farmacológico , Coccidiose/parasitologia , Coccidiostáticos/farmacologia , Coccidiostáticos/uso terapêutico , Fezes/parasitologia , Galliformes/crescimento & desenvolvimento , Intestinos/parasitologia , Intestinos/patologia , Contagem de Ovos de Parasitas/veterinária , Piranos/farmacologia , Piranos/uso terapêutico , Distribuição Aleatória , Esporos de Protozoários/efeitos dos fármacos , Esporos de Protozoários/fisiologia , Ganho de Peso/efeitos dos fármacos
15.
Life Sci ; 258: 118151, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32726661

RESUMO

AIMS: Hepatic glucose metabolism involves a variety of catabolic and anabolic pathways, and the dynamic balance of glucose metabolism is regulated in response to environmental and nutritional changes. The molecular mechanism of glucose metabolism in liver is complex and has not been fully elucidated so far. In this study, we hope to elucidate the target and mechanism of cinnamaldehyde (CA) in regulating glucose metabolism. MATERIALS AND METHODS: Molecular image tracing and magnetic capture in combination with an alkynyl-CA probe (Al-CA) was used to show CA covalently binds to α-enolase (ENO1) in both mouse liver and HepG2 cells. Accurate metabolic flow assays subsequently demonstrated that the utilization of glycogenic amino acids and the biosynthesis of tricarboxylic acid (TCA) cycle intermediates were strengthened, which was detected using nontargeted and targeted metabolomics analyses. KEY FINDINGS: Our study shows that CA covalently bonds with ENO1, which affects the stability and activity of ENO1 and changes the dynamic balance of glucose metabolism. The interruption of gluconeogenic reflux by ENO1 enhanced TCA cycle, and eventually led to a decrease in blood glucose and the improvement of mitochondrial efficiency. SIGNIFICANCE: These results provide a detailed description of how CA maintains the dynamic balance of glucose utilization and improves energy metabolism.


Assuntos
Acroleína/análogos & derivados , Biomarcadores Tumorais/metabolismo , Proteínas de Ligação a DNA/metabolismo , Ativação Enzimática/efeitos dos fármacos , Aromatizantes/farmacologia , Gluconeogênese/efeitos dos fármacos , Glucose/metabolismo , Fosfopiruvato Hidratase/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Acroleína/farmacologia , Animais , Ciclo do Ácido Cítrico/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Células Hep G2 , Humanos , Camundongos , Simulação de Acoplamento Molecular
16.
Lett Appl Microbiol ; 71(2): 195-202, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32357268

RESUMO

The aim of this study was to examine whether the process of initial colonization and the formation of mature biofilm structure of foodborne bacterial pathogens Listeria monocytogenes and Salmonella typhimurium can be impeded by active essential oil components ß-caryophyllene, cinnamaldehyde and eugenol at their individual and combined effects. Among the essential oil components tested, cinnamaldehyde and eugenol at their individual effect showed >50% degradation in biofilm biomass against preformed (matured) biofilms of both the studied bacteria, whereas ß-caryophyllene failed to do so. In combination, cinnamaldehyde/eugenol blend showed synergistic antibiofilm efficacy against preformed biofilms of both the studied bacteria L. monocytogenes (FICI: 0·24) and S. typhimurium (FICI: 0·40), whereas other tested combinations showed additive antibiofilm efficacy with FICI ranged from 2·02 to 2·35. Essential oil components alone and in combination also showed much higher inhibition effect on biofilm formation at the initial stage compared to their inhibition effect on preformed biofilms. The results provide evidence that cinnamaldehyde/eugenol combination may help in designing a more potent novel, natural antibiofilm blend at sufficiently low concentrations in the food and pharmaceutical industries. SIGNIFICANCE AND IMPACT OF THE STUDY: In the present work, synergistic antibiofilm efficacy of cinnamaldehyde/eugenol combination against established biofilms of foodborne bacterial pathogens Listeria monocytogenes and Salmonella typhimurium has been reported. These synergistic interactions may help in designing a more potent, safe and effective novel natural antibiofilm agent in food and pharmaceutical industries. Besides, this combination will also be helpful in reducing concentration of individual components, thereby minimizing the undesirable impact on sensory properties of food. To our knowledge, this is the first time, synergistic antibiofilm efficacy of cinnamaldehyde/eugenol blend against established biofilms of foodborne bacterial pathogens has been reported.


Assuntos
Acroleína/análogos & derivados , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Listeria monocytogenes/efeitos dos fármacos , Sesquiterpenos Policíclicos/farmacologia , Salmonella typhimurium/efeitos dos fármacos , Acroleína/farmacologia , Eugenol/farmacologia , Listeria monocytogenes/crescimento & desenvolvimento , Testes de Sensibilidade Microbiana , Óleos Voláteis/farmacologia , Salmonella typhimurium/crescimento & desenvolvimento
17.
Biofouling ; 36(3): 319-331, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32410461

RESUMO

Traditional herbal monomers (THMs) are widely distributed in many traditional Chinese formulas (TCFs) and decoctions (TCDs) and are frequently used for the prevention and treatment of fungal infections. The antifungal activities of five common THMs, including sodium houttuyfonate (SH), berberine (BER), palmatine (PAL), jatrorrhizine (JAT) and cinnamaldehyde (CIN), and their potential for inducing cell wall remodeling (CWR), were evaluated against Candida albicans SC5314 and Candida auris 12372. SH/CIN plus BER/PAL/JAT showed synergistic antifungal activity against both Candida isolates. Furthermore, SH-associated combinations (SH plus BER/PAL/JAT) induced stronger exposure of ß-glucan and chitin than their counterparts, while CIN triggered more marked exposure compared with CIN-associated combinations (CIN plus BER/PAL/JAT). Collectively, this study demonstrated the anti-Candida effect and the CWR induction potential of the five THMs and their associated combinations, providing a possibility of their in vivo application against fungal-associated infections.


Assuntos
Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Candida/efeitos dos fármacos , Parede Celular/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Acroleína/análogos & derivados , Acroleína/farmacologia , Alcanos/farmacologia , Berberina/análogos & derivados , Berberina/farmacologia , Alcaloides de Berberina/farmacologia , Humanos , Testes de Sensibilidade Microbiana , Sulfitos/farmacologia
18.
Exp Parasitol ; 214: 107904, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32371061

RESUMO

Hydatidosis or cystic echinococcosis is a disease caused by the larval stage of Echinococcus granulosus sensu lato. Chemotherapy can be used alone or in combination with surgery or percutaneous treatment. Benzimidazoles are the only agents used and approved for treatment, but their efficacy is extremely variable. Therefore, it is necessary to find new drugs to improve the treatment of this disease. In the last decades, the biological properties of essential oils and their components began to be investigated as alternatives in the treatment of different ailments. The aim of the present work was to evaluate the in vitro efficacy of the essential oil of Cinnamomum zeylanicum (cinnamon) and cinnamaldehyde against protoscoleces and metacestodes of E. granulosus. The essential oil and cinnamaldehyde, its major component, showed a dose and time dependent effect against protoscoleces. However, cinnamaldehyde showed a greater protoscolicidal effect than the essential oil. The maximum protoscolicidal effect was found with 50 µg/mL of cinnamaldehyde. Viability decreased by 1.7 ± 0.8% after 4 days of incubation and reached 0% at 8 days. Interestingly, there were no significant differences between the activity of cinnamaldehyde at the concentrations of 25 and 10 µg/mL and the efficacy observed with the essential oil at 200 and 50 µg/mL, respectively. Cinnamaldehyde also had a strong in vitro effect against murine cysts, while only the higher concentration of the essential oil caused ultrastructural alterations. Working with components instead of with essential oils has some advantages, particularly in relation to the reproducibility of the formulations and their effectiveness. For this reason, the results obtained in this work are promising in the search for pharmaceutical alternatives for the treatment of cystic echinococcosis.


Assuntos
Acroleína/análogos & derivados , Anticestoides/farmacologia , Cinnamomum zeylanicum/química , Echinococcus granulosus/efeitos dos fármacos , Óleos Voláteis/farmacologia , Acroleína/farmacologia , Animais , Equinococose/tratamento farmacológico , Echinococcus granulosus/crescimento & desenvolvimento , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento
19.
Food Chem ; 327: 126970, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32473414

RESUMO

The self-assembly of Tween 80 (T80) micelles loaded with plant-based oregano essential oil (OR) and trans-cinnamaldehyde (TCA) was studied. The effect of different factors, including the surfactant to oil ratio, the presence of sodium chloride, thermal treatment, and dilution on their formation and physicochemical stability was evaluated. The creation of nano-cargos was confirmed by TEM. The self-associated structures had z-average droplet diameters of 92 to 337 nm without any energy input. Whereas addition of 10% (w/v) NaCl prevented the formation of oregano essential oil nano-assemblies of T80, swollen micelles containing TCA were successfully produced. Moreover, the OR or TCA loaded-micelles had only a slight droplet size variation upon thermal treatment. Ultimately, their antibacterial activity analysis against some food pathogens revealed that the encapsulation of OR and TCA within micelles crucially improved their antibacterial activity. These straightforward and cost-effective designed systems can be applicable in different products, including foods and agrochemicals.


Assuntos
Acroleína/análogos & derivados , Origanum/química , Compostos Fitoquímicos/química , Polissorbatos/química , Acroleína/química , Acroleína/farmacologia , Antibacterianos/química , Antibacterianos/farmacologia , Emulsões/química , Micelas , Compostos Fitoquímicos/farmacologia , Salmonella/efeitos dos fármacos
20.
Am J Physiol Lung Cell Mol Physiol ; 318(5): L943-L952, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32233794

RESUMO

Transient receptor potential ankyrin-1 (TRPA1) is a ligand-gated cation channel that responds to endogenous and exogenous irritants. TRPA1 is expressed on multiple cell types throughout the lungs, but previous studies have primarily focused on TRPA1 stimulation of airway sensory nerves. We sought to understand the integrated physiological airway response to TRPA1 stimulation. The TRPA1 agonists allyl isothiocyanate (AITC) and cinnamaldehyde (CINN) were tested in sedated, mechanically ventilated guinea pigs in vivo. Reproducible bronchoconstrictions were induced by electrical stimulation of the vagus nerves. Animals were then treated with intravenous AITC or CINN. AITC and CINN were also tested on isolated guinea pig and mouse tracheas and postmortem human trachealis muscle strips in an organ bath. Tissues were contracted with methacholine, histamine, or potassium chloride and then treated with AITC or CINN. Some airways were pretreated with TRPA1 antagonists, the cyclooxygenase inhibitor indomethacin, the EP2 receptor antagonist PF 04418948, or tetrodotoxin. AITC and CINN blocked vagally mediated bronchoconstriction in guinea pigs. Pretreatment with indomethacin completely abolished the airway response to TRPA1 agonists. Similarly, AITC and CINN dose-dependently relaxed precontracted guinea pig, mouse, and human airways in the organ bath. AITC- and CINN-induced airway relaxation required TRPA1, prostaglandins, and PGE2 receptor activation. TRPA1-induced airway relaxation did not require epithelium or tetrodotoxin-sensitive nerves. Finally, AITC blocked airway hyperreactivity in two animal models of allergic asthma. These data demonstrate that stimulation of TRPA1 causes bronchodilation of intact airways and suggest that the TRPA1 pathway is a potential pharmacological target for bronchodilation.


Assuntos
Dinoprostona/metabolismo , Músculo Liso/metabolismo , Canal de Cátion TRPA1/genética , Traqueia/metabolismo , Acroleína/análogos & derivados , Acroleína/farmacologia , Animais , Broncoconstrição/efeitos dos fármacos , Estimulação Elétrica , Regulação da Expressão Gênica , Cobaias , Histamina/farmacologia , Humanos , Indometacina/farmacologia , Isotiocianatos/farmacologia , Masculino , Cloreto de Metacolina/farmacologia , Camundongos , Músculo Liso/efeitos dos fármacos , Técnicas de Cultura de Órgãos , Cloreto de Potássio/farmacologia , Prostaglandina-Endoperóxido Sintases/genética , Prostaglandina-Endoperóxido Sintases/metabolismo , Respiração Artificial , Transdução de Sinais , Canal de Cátion TRPA1/agonistas , Canal de Cátion TRPA1/antagonistas & inibidores , Canal de Cátion TRPA1/metabolismo , Tetrodotoxina/farmacologia , Traqueia/efeitos dos fármacos , Nervo Vago/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...