Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.662
Filtrar
1.
Chem Biol Interact ; 317: 108965, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32001260

RESUMO

Endocrine therapies (e.g. tamoxifen and aromatase inhibitors) targeting estrogen action are effective in decreasing mortality of breast cancer. However, their efficacy is limited by intrinsic and acquired resistance. Our previous study demonstrated that overexpression of a histone methyltransferase NSD2 drives tamoxifen resistance in breast cancer cells and that NSD2 is a potential biomarker of tamoxifen resistant breast cancer. Here, we found that DZNep, an indirect inhibitor of histone methyltransferases, potently induces the degradation of NSD2 protein and inhibits the expression of NSD2 target genes (HK2, G6PD, GLUT1 and TIGAR) involved in the pentose phosphate pathway (PPP). DZNep treatment of tamoxifen-resistant breast cancer cells and xenograft tumors also strongly inhibits tumor growth and the cancer cell survival through decreasing cell production of NADPH and glutathione (GSH) and invoking elevated ROS to cause apoptosis. These findings suggest that DZNep-like agents can be developed to target NSD2 histone methyltransferase for effective treatment of tamoxifen-resistant breast cancer.


Assuntos
Adenosina/análogos & derivados , Histona-Lisina N-Metiltransferase/metabolismo , Metiltransferases/antagonistas & inibidores , Proteínas Repressoras/metabolismo , S-Adenosil-Homocisteína/metabolismo , Adenosina/farmacologia , Antígenos Ly , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Histona-Lisina N-Metiltransferase/genética , Homeostase , Humanos , Oxirredução , Proteólise/efeitos dos fármacos , Espécies Reativas de Oxigênio , Proteínas Repressoras/genética , Tamoxifeno , Ativador de Plasminogênio Tipo Uroquinase
2.
Yakugaku Zasshi ; 140(1): 15-22, 2020.
Artigo em Japonês | MEDLINE | ID: mdl-31902879

RESUMO

The development of serious lung diseases, such as pulmonary fibrosis, is associated with several drugs. A recent study has shown that the epithelial-mesenchymal transition (EMT) plays an essential role in the development of pulmonary fibrosis. However, the mechanisms underlying drug-induced EMT in alveolar epithelial cells have not been characterized. The present study showed that methotrexate (MTX), a drug known to cause lung injury, induced EMT-like phenotypic changes in an A549 cell model of the alveolar epithelium. We also found that the transforming growth factor (TGF)-ß1-mediated signaling pathway was associated with MTX-induced EMT. In addition, our results showed that certain secreted factors and microRNAs, a class of small noncoding RNAs, may be involved in MTX-induced EMT. The effects of COA-Cl, a novel synthetic small molecule, on TGF-ß1-induced EMT were evaluated to determine the therapeutic potential of COA-Cl against drug-induced lung injury. COA-Cl significantly suppressed TGF-ß1-induced EMT-like phenotypic changes, as evidenced by the inhibition of EMT-related transcription factors. Furthermore, MTX-induced EMT was completely suppressed by co-treatment with folic acid. Thus, these compounds may be promising therapeutic agents against drug-induced lung injury. In conclusion, the present study elucidated mechanisms underlying drug-induced EMT and highlighted a potential novel therapeutic approach to drug-induced lung diseases.


Assuntos
Lesão Pulmonar/induzido quimicamente , Metotrexato/efeitos adversos , Adenosina/análogos & derivados , Adenosina/farmacologia , Adenosina/uso terapêutico , Animais , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Ácido Fólico/administração & dosagem , Ácido Fólico/uso terapêutico , Humanos , Lesão Pulmonar/tratamento farmacológico , MicroRNAs , Terapia de Alvo Molecular , Transdução de Sinais/fisiologia , Fator de Crescimento Transformador beta1/fisiologia
3.
Life Sci ; 240: 117068, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31751583

RESUMO

AIMS: Bradycardia contributes to tachy-brady arrhythmias or sinus arrest during heart failure (HF). Sinoatrial node (SAN) adenosine A1 receptors (ADO A1Rs) are upregulated in HF, and adenosine is known to exert negative chronotropic effects on the SAN. Here, we investigated the role of A1R signaling at physiologically relevant ADO concentrations on HF SAN pacemaker cells. MAIN METHODS: Dogs with tachypacing-induced chronic HF and normal controls (CTL) were studied. SAN tissue was collected for A1R and GIRK mRNA quantification. SAN cells were isolated for perforated patch clamp recordings and firing rate (bpm), slope of slow diastolic depolarization (SDD), and maximum diastolic potential (MDP) were measured. Action potentials (APs) and currents were recorded before and after addition of 1 and 10 µM ADO. To assess contributions of A1R and G protein-coupled Inward Rectifier Potassium Current (GIRK) to ADO effects, APs were measured after the addition of DPCPX (selective A1R antagonist) or TPQ (selective GIRK blocker). KEY FINDINGS: A1R and GIRK mRNA expression were significantly increased in HF. In addition, ADO induced greater rate slowing and membrane hyperpolarization in HF vs CTL (p < 0.05). DPCPX prevented ADO-induced rate slowing in CTL and HF cells. The ADO-induced inward rectifying current, IKado, was observed significantly more frequently in HF than in CTL. TPQ prevented ADO-induced rate slowing in HF. SIGNIFICANCE: An increase in A1R and GIRK expression enhances IKAdo, causing hyperpolarization, and subsequent negative chronotropic effects in canine chronic HF at relevant [ADO]. GIRK blockade may be a useful strategy to mitigate bradycardia in HF.


Assuntos
Agonistas do Receptor A1 de Adenosina/farmacologia , Adenosina/farmacologia , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/agonistas , Insuficiência Cardíaca/fisiopatologia , Frequência Cardíaca/efeitos dos fármacos , Receptor A1 de Adenosina/metabolismo , Nó Sinoatrial/citologia , Nó Sinoatrial/efeitos dos fármacos , Potenciais de Ação/efeitos dos fármacos , Antagonistas do Receptor A1 de Adenosina/farmacologia , Animais , Venenos de Abelha/farmacologia , Relógios Biológicos , Doença Crônica , Cães , Feminino , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/antagonistas & inibidores , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/efeitos dos fármacos , Técnicas In Vitro , Masculino , Técnicas de Patch-Clamp , Bloqueadores dos Canais de Potássio/farmacologia , Receptor A1 de Adenosina/efeitos dos fármacos , Xantinas/farmacologia
4.
Postepy Biochem ; 65(2): 109-117, 2019 06 06.
Artigo em Polonês | MEDLINE | ID: mdl-31642649

RESUMO

Cytokinins are a group of plant hormones which play an important role in plant growth and development. They produce various effects when applied to intact plants. They particularly stimulate protein synthesis and participate in cell cycle control. First discovered cytokinin was N6-furfuryladenine (kinetin). It is a strong inhibitor of proteins and nucleic acids oxidation in vitro and in vivo. Both kinetin and its ribosides (N6-furfuryladenosine, kinetin riboside) as natural compounds occur in the milk of coconuts on the nanomole level. Kinetin riboside selectively inhibits the proliferation of cancer cells and induce their apoptosis. This review focuses on the kinetin riboside occurrence, and primarily on its metabolism, and biological activity.


Assuntos
Adenosina/metabolismo , Adenosina/farmacologia , Cinetina/metabolismo , Cinetina/farmacologia , Reguladores de Crescimento de Planta/metabolismo , Reguladores de Crescimento de Planta/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Plantas/efeitos dos fármacos
5.
Cell Physiol Biochem ; 53(4): 731-745, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31613064

RESUMO

BACKGROUND/AIMS: 3-Deazaneplanocin, DZNep, has been reported to inhibit the EZH2 histone methylase and to induce cell apoptosis in chondrosarcomas (CS). The present study aims to confirm the therapeutic potential of EZH2 inhibitors and investigate the molecular mechanisms of DZNep in chondrosarcomas. METHODS: CS cell lines and primary cultures were used. Apoptosis was investigated using PARP cleavage, caspase 3/7 activity, or Apo2.7 expression. S-adenosylhomocysteine (SAH) and S-adenosylmethionine (SAM) were quantified by UHPLC-MS/MS. Differentially expressed genes in treated-chondrosarcomas and chondrocytes were researched by microarray analysis. RESULTS: DZNep induced apoptosis in chondrosarcomas both in vivo and in vitro. However, this effect was not correlated to EZH2 expression nor activity, and EZH2 knock-down by siRNA did not reduce CS viability. Additionally, the reduction of H3K27me3 induced by GSK126 or tazemetostat (EPZ-6438) did not provoke chondrosarcoma death. However, as expected, DZNep induced SAH accumulation and reduced SAM:SAH ratio. Further, microarray analysis suggests a key role of EGFR in antitumoral effect of DZNep, and pharmacological inhibition of EGFR reduced chondrosarcoma survival. CONCLUSION: EZH2 is not an adequate target for chondrosarcoma treatment. However, DZNep induces apoptosis in chondrosarcomas in vitro and in vivo, by a mechanism likely mediated though EGFR expression. Consequently, it would be worth initiating clinical trials to evaluating efficiency to S-adenosylhomocysteine hydrolase or EGFR inhibitors in patients with chondrosarcomas.


Assuntos
Adenosina/análogos & derivados , Regulação para Baixo/efeitos dos fármacos , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Adenosina/farmacologia , Animais , Apoptose/efeitos dos fármacos , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Condrossarcoma/metabolismo , Condrossarcoma/patologia , Dano ao DNA/efeitos dos fármacos , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Receptores ErbB/genética , Receptores ErbB/metabolismo , Histonas/metabolismo , Humanos , Masculino , Camundongos , Camundongos Nus , Mapas de Interação de Proteínas/efeitos dos fármacos , Interferência de RNA , RNA Interferente Pequeno/metabolismo , S-Adenosil-Homocisteína/metabolismo
6.
EBioMedicine ; 47: 114-127, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31495718

RESUMO

BACKGROUND: There are many reports of the anti-tumour effects of exogenous adenosine in gastrointestinal tumours. Gemcitabine, a first line agent for patients with poor performance status, and adenosine have structural similarities. For these reasons, it is worth exploring the therapeutic efficacy of adenosine and its underlying mechanism in pancreatic cancer. METHODS: Tumour volumes and survival periods were measured in a patient-derived xenograft (PDX) model of pancreatic cancer. The Akt-p21 signalling axis was blocked by p21 silencing or by the Akt inhibitor GSK690693. The combined effect of GSK690693 and adenosine was calculated by the Chou-Talalay equation and verified by measuring fluorescent areas in orthotopic models. FINDINGS: Among the PDX mice, the tumour volume in the adenosine treatment group was only 61% of that in the saline treatment group. Adenosine treatment in combination with the Akt inhibitor, GSK690693, or the silencing of p21 to interfere with the Akt-p21 axis can switch the senescence-to-apoptosis signal and alleviate drug resistance. A GSK690693-adenosine combination caused 37.4% further reduction of tumour fluorescent areas in orthotopic models compared with that observed in adenosine monotherapy. INTERPRETATION: Our data confirmed the therapeutic effect of adenosine on pancreatic cancer, and revealed the potential of Akt inhibitors as sensitization agents in this treatment. FUND: The work is supported by grants from the National Natural Science Foundation of China to Dongqin Yang (81572336, 81770579) and Jie Liu (81630016, 81830080), and jointly by the Development Fund for Shanghai Talents (201660).


Assuntos
Adenosina/farmacologia , Apoptose/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Neoplasias Pancreáticas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas ras/metabolismo , Animais , Apoptose/genética , Biomarcadores Tumorais , Linhagem Celular Tumoral , Senescência Celular/genética , Modelos Animais de Doenças , Inativação Gênica , Humanos , Imuno-Histoquímica , Camundongos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas ras/genética
7.
Biomed Pharmacother ; 118: 109202, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31545232

RESUMO

BACKGROUND: IFC-305, an adenosine derivative, has been proved to exert a therapeutic effect on radiation-induced intestinal toxicity in colon cancer (CC). The aim of the present study was to investigate the underlying molecular mechanism of protective role of IFC-305 in CC by modifying the methylation of peroxisome proliferator-activated receptor (PPAR)-r promoter. METHOD: Peripheral blood and cancerous tissues samples were collected from the CC patients. Irradiation (IR) mice models were established in comparison with control mice accordingly. Bisulfite sequencing, real-time PCR, Western-blot analysis, immunohistochemistry (IHC) and hematoxylin eosin (HE) staining were performed upon both human and animal samples. RESULT: The results upon the human CC samples demonstrated that the level of methylation of PPAR-r promoter in methylated patients was increased, while the risk of radiation-induced intestinal toxicity in methylated patients was also increased compared with unmethylated patients. Also, the PPAR-r mRNA/protein expression was lower in methylated patients compared with unmethylated patients, thus indicating the presence of PPAR-r promoter methylation repressed PPAR-r expression in vivo. Moreover, in the mice models, IFC-305 treatment partially alleviated radiation-induced toxicity in the columnar epithelia and tubular glands of IR mice, and villus height and the number/circumference of crypts were also increased while the relative number of inflammatory cells was decreased in IR + IFC-305 mice group compared with the control mice. Compared with the control group, the levels of PPAR-r mRNA/protein expression were significantly decreased in IR mice, while the presence of IFC-305 exerted therapeutic effect upon IR rats via elevating the PPAR-r mRNA/protein expression to a certain extent. CONCLUSION: In this study, we demonstrated the relationship between PPAR-r promoter methylation and the risk of radiation-induced intestinal toxicity via studying the clinical samples collected from CC patients. And the study upon mice models suggested that the administration of IFC-305 could alleviate radiation-induced intestinal toxicity through decreasing the methylation of PPAR-r promoter and enhancing the expression of PPAR-r in IR mice.


Assuntos
Adenosina/análogos & derivados , Neoplasias Colorretais/radioterapia , Metilação de DNA/efeitos dos fármacos , PPAR gama/genética , Lesões por Radiação/prevenção & controle , Protetores contra Radiação/farmacologia , Adenosina/farmacologia , Idoso , Animais , Neoplasias Colorretais/metabolismo , Feminino , Humanos , Masculino , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Regiões Promotoras Genéticas/efeitos dos fármacos , Regiões Promotoras Genéticas/genética , Lesões por Radiação/genética , Lesões por Radiação/metabolismo , Lesões Experimentais por Radiação/genética , Lesões Experimentais por Radiação/metabolismo , Lesões Experimentais por Radiação/prevenção & controle
8.
Oncogene ; 38(46): 7181-7195, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31417187

RESUMO

MLL rearrangements play a crucial role in leukemogenesis and comprise a poor prognosis. Therefore, new treatment strategies are urgently needed. We used the CRISPR/Cas9 system to generate an innovative leukemia model based on 100% pure MLL-AF4 or -AF9 rearranged cells derived from umbilical cord blood with indefinite growth in cell culture systems. Our model shared phenotypical, morphological and molecular features of patient cells faithfully mimicking the nature of the disease. Thus, it serves as a fundamental basis for pharmacological studies: inhibition of histone methyltransferase disruptor of telomeric silencing 1-like (DOT1L) is one specific therapeutic approach currently tested in clinical trials. However, success was limited by restricted response warranting further investigation of drug combinations. Recently, it has been shown that the inhibition of protein arginine methyltransferase 5 (PRMT5) exhibits anti-tumoral activity against human cell lines and in MLL mouse models. Here, we used DOT1L and PRMT5 inhibitors in our human MLL-rearranged model demonstrating dose-dependent reduced proliferation, impairment of cell cycle, increasing differentiation, apoptosis, downregulation of target genes and sensitization to chemotherapy. Strikingly, the combination of both compounds led to synergistic anti-tumoral effects. Our study provides a strong rationale for novel targeted combination therapies to improve the outcome of MLL-rearranged leukemias.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Leucemia , Modelos Biológicos , Proteína-Arginina N-Metiltransferases/antagonistas & inibidores , Adenosina/análogos & derivados , Adenosina/farmacologia , Sistemas CRISPR-Cas , Proliferação de Células/efeitos dos fármacos , Sinergismo Farmacológico , Edição de Genes/métodos , Células-Tronco Hematopoéticas , Humanos , Isoquinolinas/farmacologia , Leucemia/genética , Proteína de Leucina Linfoide-Mieloide/genética , Compostos de Fenilureia/farmacologia , Pirimidinas/farmacologia
9.
EBioMedicine ; 47: 195-207, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31409574

RESUMO

BACKGROUND: Accumulating evidence has revealed the critical roles of N6-methyladenosine (m6A) modification of mRNA in various cancers. However, the biological function and regulation of m6A in bladder cancer (BC) are not yet fully understood. METHODS: We performed cell phenotype analysis and established in vivo mouse xenograft models to assess the effects of m6A-modified ITGA6 on BC growth and progression. Methylated RNA immunoprecipitation (MeRIP), RNA immunoprecipitation and luciferase reporter and mutagenesis assays were used to define the mechanism of m6A-modified ITGA6. Immunohistochemical analysis was performed to assess the correlation between METTL3 and ITGA6 expression in bladder cancer patients. FINDINGS: We show that the m6A writer METTL3 and eraser ALKBH5 altered cell adhesion by regulating ITGA6 expression in bladder cancer cells. Moreover, upregulation of ITGA6 is correlated with the increase in METTL3 expression in human BC tissues, and higher expression of ITGA6 in patients indicates a lower survival rate. Mechanistically, m6A is highly enriched within the ITGA6 transcripts, and increased m6A methylations of the ITGA6 mRNA 3'UTR promotes the translation of ITGA6 mRNA via binding of the m6A readers YTHDF1 and YTHDF3. Inhibition of ITGA6 results in decreased growth and progression of bladder cancer cells in vitro and in vivo. Furthermore, overexpression of ITGA6 in METTL3-depleted cells partially restores the BC adhesion, migration and invasion phenotypes. INTERPRETATION: Our results demonstrate an oncogenic role of m6A-modified ITGA6 and show its regulatory mechanisms in BC development and progression, thus identifying a potential therapeutic target for BC. FUND: This work was supported by National Natural Science Foundation of China (81772699, 81472999).


Assuntos
Adenosina/análogos & derivados , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Integrina alfa6/genética , RNA Mensageiro/genética , Neoplasias da Bexiga Urinária/genética , Adenosina/farmacologia , Adulto , Idoso , Homólogo AlkB 5 da RNA Desmetilase/genética , Animais , Adesão Celular/genética , Linhagem Celular Tumoral , Proliferação de Células , Modelos Animais de Doenças , Progressão da Doença , Feminino , Humanos , Imuno-Histoquímica , Integrina alfa6/metabolismo , Masculino , Metiltransferases/genética , Camundongos , Pessoa de Meia-Idade , Gradação de Tumores , Estadiamento de Neoplasias , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/patologia
10.
Int J Mol Sci ; 20(15)2019 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-31366130

RESUMO

Carbamazepine (CBZ) binds adenosine receptors, but detailed effects of CBZ on astroglial transmission associated with adenosine receptor still need to be clarified. To clarify adenosinergic action of CBZ on astroglial transmission, primary cultured astrocytes were acutely or chronically treated with CBZ, proinflammatory cytokines (interferon γ (IFNγ) and tumor necrosis factor α (TNFα)), and adenosine A2A receptor (A2AR) agonist (CGS21680). IFNγ and TNFα increased basal, adenophostin-A (AdA)-evoked, and 2-amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl)propanoic acid (AMPA)-evoked astroglial L-glutamate releases. In physiological condition, CGS21680 increased basal astroglial L-glutamate release but glutamate transporter inhibition prevented this CGS21680 action. CBZ did not affect basal release, whereas glutamate transporter inhibition generated CBZ-induced glutamate release. Furthermore, AdA-evoked and AMPA-evoked releases were inhibited by CBZ but were unaffected by CGS21680. Contrary to physiological condition, chronic administrations of IFNγ and TNFα enhanced basal, AdA-, and AMPA-evoked releases, whereas IFNγ and TNFα decreased and increased CGS21680-evoked releases via modulation A2AR expression. Both chronic administration of CGS21680 and CBZ suppressed astroglial L-glutamate release responses induced by chronic cytokine exposer. Especifically, chronic administration of CBZ and CGS21680 prevented the reduction and elevation of A2AR expression by respective IFNγ and TNFα. These findings suggest that A2AR agonistic effects of CBZ contribute to chronic prevention of pathomechanisms developments of several neuropsychiatric disorders associated with proinflammatory cytokines.


Assuntos
Astrócitos/efeitos dos fármacos , Carbamazepina/farmacologia , Ácido Glutâmico/metabolismo , Receptor A2A de Adenosina/metabolismo , Adenosina/análogos & derivados , Adenosina/farmacologia , Agonistas do Receptor A2 de Adenosina/farmacologia , Animais , Astrócitos/metabolismo , Células Cultivadas , Interferon gama/farmacologia , Fenetilaminas/farmacologia , Ratos , Ratos Sprague-Dawley , Fator de Necrose Tumoral alfa/farmacologia
11.
Mol Med Rep ; 20(3): 2101-2110, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31257518

RESUMO

Ischemia­reperfusion injury (IRI) is a notable cause of tissue damage during surgical procedures and a major risk factor in graft dysfunction in liver transplantation. Livers obtained from donors after circulatory death (DCD) are prone to IRI and toll­like receptor 4 (TLR4) serves a prominent role in the inflammatory response associated with DCD liver IRI. The present study was designed to investigate whether TAK242, a specific TLR4 inhibitor, improves hepatic IRI following a DCD graft and to investigate its underlying protective mechanisms. Male Sprague­Dawley rats were randomized into 4 groups: Control, TAK242, DCD and DCD+TAK242 groups. Rats were pretreated with TAK242 or its vehicle for 30 min, then the livers were harvested without warm ischemia (control group and TAK242 group) or with warm ischemia in situ for 30 min. The livers were stored in cold University of Wisconsin solution for 24 h and subsequently perfused for 60 min with an isolated perfused rat liver system. Rat liver injury was evaluated thereafter. When compared with the DCD group, DCD livers with TAK242 pretreatment displayed significantly improved hepatic tissue injury and less tissue necrosis (P<0.05). Compared with DCD livers, mechanistic experiments revealed that TAK242 pretreatment alleviated mitochondrial dysfunction, reduced reactive oxygen species and malondialdehyde levels and inhibited apoptosis. Additionally, TAK242 significantly inhibited the IRI­associated inflammatory response, indicated by the decreased expression of TLR4, interleukin (IL)­1ß, IL­6 and cyclooxygenase 2 at the mRNA and protein levels (P<0.05). TAK242 ameliorates DCD liver IRI via suppressing the TLR4 signaling pathway in rats. The results of the present study have revealed that TAK242 pretreatment harbors a potential benefit for liver transplantation.


Assuntos
Anti-Inflamatórios/farmacologia , Fígado/efeitos dos fármacos , Preservação de Órgãos/métodos , Traumatismo por Reperfusão/imunologia , Sulfonamidas/farmacologia , Receptor 4 Toll-Like/antagonistas & inibidores , Adenosina/farmacologia , Alopurinol/farmacologia , Animais , Glutationa/farmacologia , Insulina/farmacologia , Fígado/imunologia , Fígado/patologia , Fígado/ultraestrutura , Transplante de Fígado , Masculino , Soluções para Preservação de Órgãos/farmacologia , Rafinose/farmacologia , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/imunologia , Isquemia Quente
12.
PLoS One ; 14(7): e0213114, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31295264

RESUMO

BACKGROUND: 2-Cl-C.OXT-A (COA-Cl) is a novel synthesized adenosine analog that activates Sphingosine-1-phosphate 1 receptor (S1P1R) and combines with the adenosine A1 receptor (A1R) in G proteins and was shown to enhance angiogenesis and improve the brain function in rat stroke models. However, the role of COA-Cl in hearts remains unclear. COA-Cl, which has a similar structure to xanthine derivatives, has the potential to suppress phosphodiesterase (PDE), which is an important factor involved in the beating of heart muscle. METHODS AND RESULTS: Cardiac organoids with fibroblasts, human induced pluripotent stem cell-derived cardiac myocytes (hiPSC-CMs), and hiPSC-derived endothelial cells (hiPSC-ECs) were cultured until they started beating. The beating and contraction of organoids were observed before and after the application of COA-Cl. COA-Cl significantly increased the beating rate and fractional area change in organoids. To elucidate the mechanism underlying these effects of COA-Cl on cardiac myocytes, pure hiPSC-CM spheroids were evaluated in the presence/absence of Suramin (antagonist of A1R). The effects of COA-Cl, SEW2871 (direct stimulator of S1P1R), two positive inotropes (Isoproterenol [ISO] and Forskolin [FSK]), and negative inotrope (Propranolol [PRP]) on spheroids were assessed based on the beating rates and cAMP levels. COA-Cl stimulated the beating rates about 1.5-fold compared with ISO and FSK, while PRP suppressed the beating rate. However, no marked changes were observed with SEW2871. COA-Cl, ISO, and FSK increased the cAMP level. In contrast, the level of cAMP did not change with PRP or SEW2871 treatment. The results were the same in the presence of Suramin as absence. Furthermore, an enzyme analysis showed that COA-Cl suppressed the PDE activity by half. CONCLUSIONS: COA-Cl, which has neovascularization effects, suppressed PDE and increased the contraction of cardiac organoids, independent of S1P1R and A1R. These findings suggest that COA-Cl may be useful as an inotropic agent for promoting angiogenesis in the future.


Assuntos
Adenosina/farmacologia , Células-Tronco Pluripotentes Induzidas/citologia , Contração Miocárdica/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Inibidores de Fosfodiesterase/farmacologia , Adenosina/análogos & derivados , Linhagem Celular , Humanos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Organoides/citologia , Organoides/efeitos dos fármacos , Organoides/metabolismo , Inibidores de Fosfodiesterase/química , Diester Fosfórico Hidrolases/metabolismo
13.
Hell J Nucl Med ; 22(2): 135-139, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31273356

RESUMO

SUBJECT AND METHODS: A total of 40 patients (M:F::26:14; age range: 37-84yrs; mean: 64.1yrs) with known chronic obstructive pulmonary disease (COPD) (ranging from mild to severe), referred for a stress myocardial perfusion study, were included in this study over a period of one year. All patients underwent adenosine stress in a titrated protocol and pre-infusion of short acting bronchodilator salbutamol 2 puffs few minutes prior to start adenosine infusion. In a fraction of 26 patients, pulmonary function tests (PFT) were performed and used in addition to clinical examination to classify the severity of pulmonary obstruction. On the basis of forced expiratory volume in one second (FEV1) on PFT, 4 patients had a mild disease (FEV1 60%-80%), 17 had a moderate obstructive disease (FEV1 41%-59%) and 4 had severe COPD/asthma (FEV1 <40%) while 2 patients had normal >95% FEV1. Post-stress questionnaire to assess subjective tolerance and symptoms were undertaken for all patients. RESULTS: The results demonstrated an excellent tolerance to adenosine infusion in this group of patients, with adequate stress achieved in all. None had complaints of severe dyspnoea or respiratory distress requiring medical intervention. Thirteen patients had mild to moderate degree dyspnoea during infusion. The study included a significant number of 23 elderly patients (>65 years), who showed better tolerance than the younger patients. CONCLUSION: In this pilot study in patients with COPD who referred for myocardial perfusion scintigraphy, the feasibility and safety of adenosine in a graded protocol along with a good pre-stress assessment and a short acting bronchodilator treatment was documented.


Assuntos
Adenosina/farmacologia , Asma/diagnóstico por imagem , Imagem de Perfusão do Miocárdio/efeitos adversos , Imagem de Perfusão do Miocárdio/métodos , Doença Pulmonar Obstrutiva Crônica/diagnóstico por imagem , Segurança , Estresse Fisiológico/efeitos dos fármacos , Adenosina/efeitos adversos , Adulto , Idoso , Idoso de 80 Anos ou mais , Asma/fisiopatologia , Estudos de Viabilidade , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Tomografia Computadorizada de Emissão de Fóton Único
14.
Future Med Chem ; 11(10): 1107-1117, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31280673

RESUMO

Aim: SMYD3 enzyme is overexpressed in many types of cancer and its role in the methylation of cytoplasmic mitogen-activated protein kinase, kinase kinase 2 (MAP3K2), has been linked to promotion of Kras-driven cancer in pancreatic ductal and lung adenocarcinoma. Materials & methods: A hybrid 3D structure-based pharmacophore model was generated using crystal structures of SMYD3 complexed with sinefungin and was used to search for potential SMYD3 inhibitors through virtual screening of the Maybridge database. The retrieved hits from screening were further docked into the binding site of SMYD3 using CDOCKER docking algorithms. The top-ranked hits were selected and their inhibitory activity was evaluated. Results & conclusion: The results obtained helped us to find an SMYD3 small molecule hit inhibitor scaffold.


Assuntos
Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Adenosina/análogos & derivados , Adenosina/química , Adenosina/farmacologia , Algoritmos , Descoberta de Drogas , Histona-Lisina N-Metiltransferase/química , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Simulação de Acoplamento Molecular , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Relação Estrutura-Atividade
15.
Eur J Med Chem ; 179: 310-324, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31255928

RESUMO

To obtain potential A2A adenosine receptor agonists, a series of 2-hydrazinyladenosine derivatives were synthesized and assayed for adenosine receptors activity using radioligand binding activity assays. The binding activity of the subtypes was examined, and the structure-activity relationship of this class of compounds at the A2A receptor was investigated. A fragment-based computer-aided design method was used to modify the 2-position side chain structures with different structural fragments, and the newly generated molecules were docked to the A2A receptor to assess scoring and screening activity. To synthesize compounds with better scoring activity, the newly synthesized compounds were tested for in vitro receptor binding activity. 2-Hydrazinyladenosine derivatives of 32 new structural types were designed and synthesized, with the most potent adenosine derivative 23 exhibiting a Ki value of 1.8 nM for A2AAR and significant selectivity for the A2A receptor compared to the A1 receptor. In addition to, compound 23, 24, 30, 31, and 42 also exhibited potent A2A receptor selectivity, with Ki values for the A2A receptor of 6.4, 20, 67 and 6.3 nM, respectively. We also found that compound 35 has a high A1 receptor selectivity, with a Ki value for the A1 receptor of 4.5 nM. Further functional assays also demonstrated that these compounds have potent A2A receptor agonist activity. The study shows the applicability of an in silico fragment-based molecular design for rational lead optimization in A2AAR.


Assuntos
Adenosina/farmacologia , Desenho de Drogas , Hidrazinas/farmacologia , Receptor A2A de Adenosina/metabolismo , Adenosina/análogos & derivados , Adenosina/química , AMP Cíclico/análise , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Hidrazinas/síntese química , Hidrazinas/química , Ligantes , Estrutura Molecular , Relação Estrutura-Atividade
16.
Cells ; 8(6)2019 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-31234425

RESUMO

Osteoclast-mediated bone destruction is amplified in the hypoxic synovial microenvironment of rheumatoid arthritis (RA). This increased bone resorption is driven by the hypoxia-inducible transcription factor HIF. We identified hypoxic induction of the HIF-regulated adenosine A2B receptor in primary human osteoclasts (mRNA, 3.8-fold increase, p < 0.01) and sought to identify the role(s) of purinergic signaling via this receptor in the bone resorption process. Primary human osteoclasts were differentiated from CD14+ monocytes and exposed to hypoxia (2% O2) and A2B receptor inhibitors (MRS1754, PSB603). The hypoxic increase in bone resorption was prevented by the inhibition of the A2B receptor, at least partly by the attenuation of glycolytic and mitochondrial metabolism via inhibition of HIF. A2B receptor inhibition also reduced osteoclastogenesis in hypoxia by inhibiting early cell fusion (day 3-4, p < 0.05). The A2B receptor is only functional in hypoxic or inflammatory environments when the extracellular concentrations of adenosine (1.6-fold increase, p < 0.05) are sufficient to activate the receptor. Inhibition of the A2B receptor under normoxic conditions therefore did not affect any parameter tested. Reciprocal positive regulation of HIF and the A2B receptor in a hypoxic microenvironment thus enhances glycolytic and mitochondrial metabolism in osteoclasts to drive increased bone resorption. A2B receptor inhibition could potentially prevent the pathological osteolysis associated with hypoxic diseases such as rheumatoid arthritis.


Assuntos
Reabsorção Óssea/metabolismo , Microambiente Celular , Osteoclastos/metabolismo , Receptor A2B de Adenosina/metabolismo , Adenosina/farmacologia , Trifosfato de Adenosina/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Hipóxia Celular/efeitos dos fármacos , Microambiente Celular/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Osteoclastos/efeitos dos fármacos , Osteoclastos/patologia
17.
Molecules ; 24(12)2019 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-31212849

RESUMO

In earlier studies, we generated concentration-response (E/c) curves with CPA (N6-cyclopentyladenosine; a selective A1 adenosine receptor agonist) or adenosine, in the presence or absence of S-(2-hydroxy-5-nitrobenzyl)-6-thioinosine (NBTI, a selective nucleoside transport inhibitor), and with or without a pretreatment with 8-cyclopentyl-N3-[3-(4-(fluorosulfonyl)-benzoyloxy)propyl]-N1-propylxanthine (FSCPX, a chemical known as a selective, irreversible A1 adenosine receptor antagonist), in isolated, paced guinea pig left atria. Meanwhile, we observed a paradoxical phenomenon, i.e. the co-treatment with FSCPX and NBTI appeared to enhance the direct negative inotropic response to adenosine. In the present in silico study, we aimed to reproduce eight of these E/c curves. Four models (and two additional variants of the last model) were constructed, each one representing a set of assumptions, in order to find the model exhibiting the best fit to the ex vivo data, and to gain insight into the paradoxical phenomenon in question. We have obtained in silico evidence for an interference between effects of FSCPX and NBTI upon our ex vivo experimental setting. Regarding the mechanism of this interference, in silico evidence has been gained for the assumption that FSCPX inhibits the effect of NBTI on the level of endogenous (but not exogenous) adenosine. As an explanation, it may be hypothesized that FSCPX inhibits an enzyme participating in the interstitial adenosine formation. In addition, our results suggest that NBTI does not stop the inward adenosine flux in the guinea pig atrium completely.


Assuntos
Antagonistas do Receptor A1 de Adenosina/química , Proteínas de Transporte de Nucleobases/química , Receptor A1 de Adenosina/química , Xantinas/química , Adenosina/química , Adenosina/farmacologia , Antagonistas do Receptor A1 de Adenosina/farmacologia , Animais , Relação Dose-Resposta a Droga , Cobaias , Proteínas de Transporte de Nucleobases/antagonistas & inibidores , Xantinas/farmacologia
18.
J Pharmacol Sci ; 140(2): 153-161, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31253430

RESUMO

A novel AMP-activated protein kinase (AMPK) activator, IMM-H007 (H007), has been reported to reduce serum lipid levels and inhibit lipid accumulation in the liver in hyperlipidemic animal models. However, how H007 ameliorates hepatic steatosis and inflammation remains unknown. In the present study, H007, at 200 mg/kg, reduced hepatic lipid levels and the levels of collagenous fiber in the liver in high-fat diet (HFD)-fed hamsters compared to those in the HFD group. Meanwhile, compared to the controls, H007 significantly inhibited sterol-regulatory element binding protein (SREBP)-1c and acetyl CoA carboxylase (ACC) expression by upregulating the AMPK activity, suppressing the saturated fatty acid accumulation and increasing polyunsaturated fatty acid synthesis in the liver. Compared to the controls, H007 treatment inhibited the expression of monocyte chemotactic protein (MCP-1) in fatty acid-treated HepG2 cells; suppressed leukocyte adherence and rolling on the liver microvasculature; and suppressed hepatic macrophage infiltration. H007 also suppressed the expression of nuclear factor-κB (NF-κB) p65 in fatty acid- and lipopolysaccharide-treated HepG2 cells compared to that in the controls by activating AMPK. These data suggested that H007 had a beneficial effect by improving the lipid composition in the liver and inhibiting inflammatory cell trafficking in the development of nonalcoholic fatty liver disease.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Adenosina/análogos & derivados , Adesão Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Ativadores de Enzimas/administração & dosagem , Ativadores de Enzimas/farmacologia , Fígado Gorduroso/tratamento farmacológico , Fígado Gorduroso/metabolismo , Leucócitos/fisiologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/metabolismo , Adenosina/administração & dosagem , Adenosina/farmacologia , Animais , Modelos Animais de Doenças , Células Hep G2 , Humanos , Inflamação , Masculino , Mesocricetus
19.
Eur J Pharmacol ; 857: 172442, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31181209

RESUMO

Cardiac dysfunction is a pathological state characterized by damaged ability of the left ventricle (LV) to either eject or fill blood accompanied by cardiac hypertrophy and fibrosis. IMM-H007, an adenosine derivative, is an activator of AMP-Activated Protein Kinase (AMPK). AMPK can decrease the transforming growth factor-ß1 (TGF-ß1) expression during fibrosis. Therefore, we hypothesized that IMM-H007 contributed to cardiac dysfunction by mediating cardiac fibrosis. To test this hypothesis, we used angiotensin II (AngII)-induced cardiac remodeling model treated with IMM-H007 or vehicle. Echocardiography measurements showed that IMM-H007 significantly improved heart function indicated by increased LV ejection fraction (%LVEF) and LV fractional shortening (%LVFS). Histological staining and qRT-PCR analysis revealed that IMM-H007 markedly reduced AngII-induced cardiac fibroblast activation (α-smooth muscle actin and periostin) and matrix protein production (Collagen I and Collagen III). However, IMM-H007 did not affect AngII-induced cardiac hypertrophy. Immunoblotting analysis revealed that IMM-H007 activated AMPK, decreased the expression of TGF-ß1, and inhibited the activation of Smad2 in heart tissues. In mouse primary cultured cardiac fibroblasts, pharmacological activation of AMPK by IMM-H007 significantly reduced AngII-induced TGF-ß1 expression as well. Consistently, in human cardiac fibroblasts-adult ventricular (HCF-av), IMM-H007 activated AMPK and markedly suppressed AngII-induced TGF-ß1 expression. These results together reveal that IMM-H007 improves heart function, and alleviates AngII-induced cardiac fibrosis by regulating AMPK-TGF-ß1 signaling. These findings suggest IMM-H007 as a potential drug for treating cardiac dysfunction.


Assuntos
Adenosina/análogos & derivados , Coração/efeitos dos fármacos , Coração/fisiopatologia , Miocárdio/patologia , Proteínas Quinases Ativadas por AMP/metabolismo , Adenosina/farmacologia , Angiotensina II/farmacologia , Animais , Colágeno/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/patologia , Fibrose , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miocárdio/metabolismo , Miofibroblastos/efeitos dos fármacos , Miofibroblastos/patologia , Fosforilação/efeitos dos fármacos , Proteína Smad2/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
20.
Biol Pharm Bull ; 42(6): 968-976, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31155593

RESUMO

Previously, we reported that adenosine N1-oxide (ANO), which is found in royal jelly, inhibited the secretion of inflammatory mediators by activated macrophages and reduced lethality in lipopolysaccharide (LPS)-induced endotoxin shock. Here, we examined the regulatory mechanisms of ANO on the release of pro-inflammatory cytokines, with a focus on the signaling pathways activated by toll-like receptor (TLR)4 in response to LPS. ANO inhibited both tumor necrosis factor (TNF)-α and interleukin (IL)-6 secretion from LPS-stimulated RAW264.7 cells without affecting cell proliferation. In this response, phosphorylation of mitogen-activated protein kinase (MAPK) family members (extracellular signal-regulated kinase (ERK)1/2, p38 and SAPK/c-Jun N-terminal kinase (JNK)) and nuclear factor-κB (NF-κB) p65 was not affected by treatment with ANO. In contrast, phosphorylation of Akt (Ser473) and its downstream molecule glycogen synthase kinase-3ß (GSK-3ß) (Ser9) was up-regulated by ANO, suggesting that ANO stimulated GSK-3ß phosphorylation via phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway. The phosphorylation of GSK-3ß on Ser9 has been shown to negatively regulate the LPS-induced inflammatory response. Activation of PI3K/Akt signaling pathway has also been implicated in differentiation of mesenchymal stem cells into osteoblasts and adipocytes. As expected, ANO induced alkaline phosphatase activity and promoted calcium deposition in a mouse pre-osteoblastic MC3T3-E1 cell line. The ANO-induced differentiation into osteoblasts was abrogated by coincubation with Wortmannin. Furthermore, ANO promoted insulin/dexamethasone-induced differentiation of mouse 3T3-L1 preadipocytes into adipocytes at much lower concentrations than adenosine. The protective roles of PI3K/Akt/GSK-3ß signaling pathway in inflammatory disorders have been well documented. Our data suggest that ANO may serve as a potential candidate for the treatment of inflammatory disorders. Promotion of osteogenic and adipocyte differentiation further suggests its application for regenerative medicine.


Assuntos
Adenosina/análogos & derivados , Adipócitos/efeitos dos fármacos , Anti-Inflamatórios/farmacologia , Óxidos N-Cíclicos/farmacologia , Glicogênio Sintase Quinase 3 beta/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Adenosina/farmacologia , Adipócitos/fisiologia , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Osteogênese/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA