Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.678
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Phytopathology ; 110(1): 174-186, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31502517

RESUMO

Mixed viral infections in plants are common, and can result in synergistic or antagonistic interactions. Except in complex diseases with severe symptoms, mixed infections frequently remain unnoticed, and their impact on insect vector transmission is largely unknown. In this study, we considered mixed infections of two unrelated viruses commonly found in melon plants, the crinivirus cucurbit yellow stunting disorder virus (CYSDV) and the potyvirus watermelon mosaic virus (WMV), and evaluated their vector transmission by whiteflies and aphids, respectively. Their dynamics of accumulation was analyzed until 60 days postinoculation (dpi) in mixed-infected plants, documenting reduced titers of WMV and much higher titers of CYSDV compared with single infections. At 24 dpi, corresponding to the peak of CYSDV accumulation, similar whitefly transmission rates were obtained when comparing either individual or mixed-infected plants as CYSDV sources, although its secondary dissemination was slightly biased toward plants previously infected with WMV, regardless of the source plant. However, at later time points, mixed-infected plants partially recovered from the initially severe symptoms, and CYSDV transmission became significantly higher. Interestingly, aphid transmission rates both at early and late time points were unaltered when WMV was acquired from mixed-infected plants despite its reduced accumulation. This lack of correlation between WMV accumulation and transmission could result from compensatory effects observed in the analysis of the aphid feeding behavior by electrical penetration graphs. Thus, our results showed that mixed-infected plants could provide advantages for both viruses, directly favoring CYSDV dissemination while maintaining WMV transmission.


Assuntos
Afídeos , Comportamento Animal , Coinfecção , Cucurbitaceae , Insetos Vetores , Animais , Afídeos/fisiologia , Afídeos/virologia , Cucurbitaceae/virologia , Insetos Vetores/fisiologia , Insetos Vetores/virologia , Doenças das Plantas/virologia
2.
Arch Insect Biochem Physiol ; 103(3): e21614, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31498475

RESUMO

Histone acetylation is an evolutionarily conserved epigenetic mechanism of eukaryotic gene regulation which is tightly controlled by the opposing activities of histone acetyltransferases (HATs) and histone deacetylases (HDACs). In insects, life-history traits such as longevity and fecundity are severely affected by the suppression of HAT/HDAC activity, which can be achieved by RNA-mediated gene silencing or the application of chemical inhibitors. We used both experimental approaches to investigate the effect of HAT/HDAC inhibition in the pea aphid (Acyrthosiphon pisum) a model insect often used to study complex life-history traits. The silencing of HAT genes (kat6b, kat7, and kat14) promoted survival or increased the number of offspring, whereas targeting rpd3 (HDAC) reduced the number of viviparous offspring but increased the number of premature nymphs, suggesting a role in embryogenesis and eclosion. Specific chemical inhibitors of HATs/HDACs showed a remarkably severe impact on life-history traits, reducing survival, delaying development, and limiting the number of offspring. The selective inhibition of HATs and HDACs also had opposing effects on aphid body weight. The suppression of HAT/HDAC activity in aphids by RNA interference or chemical inhibition revealed similarities and differences compared to the reported role of these enzymes in other insects. Our data suggest that gene expression in A. pisum is regulated by multiple HATs/HDACs, as indicated by the fitness costs triggered by inhibitors that suppress several of these enzymes simultaneously. Targeting multiple HATs or HDACs with combined effects on gene regulation could, therefore, be a promising approach to discover novel targets for the management of aphid pests.


Assuntos
Afídeos/enzimologia , Fertilidade/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Histona Acetiltransferases/metabolismo , Histona Desacetilases/metabolismo , Histonas/metabolismo , Acetilação , Animais , Afídeos/crescimento & desenvolvimento , Afídeos/metabolismo , Afídeos/fisiologia , Histona Acetiltransferases/genética , Histona Desacetilases/genética , Longevidade , Processamento de Proteína Pós-Traducional
3.
Insect Sci ; 27(2): 336-348, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30353689

RESUMO

The green peach aphid, Myzus persicae, is one of the most threatening pests in pepper cultivation and growers would benefit from resistant varieties. Previously, we identified two Capsicum accessions as susceptible and three as resistant to M. persicae using an aphid population originating from the Netherlands (NL). Later on we identified an aphid population originating from a different geographical region (Switserland, SW) that was virulent on all tested Capsicum accessions. The objective of the current work is to describe in detail different aspects of the interaction between two aphid populations and two selected Capsicum accessions (one that was susceptible [PB2013046] and one that was resistant [PB2013071] to population NL), including biochemical processes involved. Electrical penetration graph (EPG) recordings showed similar feeding activities for both aphid populations on PB2013046. On accession PB2013071 the aphid population SW was able to devote significantly more time to phloem ingestion than population NL. We also studied plant defense response and found that plants of accession PB2013046 could not induce an accumulation of reactive oxygen species and callose formation after infestation with either aphid population. However, plants of PB2013071 induced a stronger defense response after infestation by population NL than after infestation by population SW. Based on these results, population SW of M. persicae seems to have overcome the resistance of PB2013071 that prevented feeding of aphids from NL population. The potential mechanism by which SW population overcomes the resistance is discussed.


Assuntos
Afídeos/fisiologia , Capsicum/metabolismo , Herbivoria , Animais , Glucanos/metabolismo , Espécies Reativas de Oxigênio/metabolismo
4.
J Chem Ecol ; 46(1): 76-83, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31845135

RESUMO

Multiple species of phytophagous insects may co-occur on a plant and while plants can defend themselves from insect herbivory, plant responses to damage by different species and feeding guilds of insects may be asymmetric. Plants can trigger specific responses to elicitors/effectors in insect secretions altering herbivore performance. Recently, maize chitinases present in fall armyworm (FAW, Spodoptera frugiperda) frass were shown to act as effectors suppressing caterpillar-induced defenses in maize while increasing caterpillar performance. We investigated the effect of frass chitinase-mediated suppression of herbivore defenses in maize on the performance and preference of a subsequent insect herbivore from a different feeding guild, corn leaf aphid (Rhopalosiphum maidis). Aphid performance was highest on plants with FAW damage without frass chitinases compared to damaged plants with frass chitinases or undamaged plants. Plant exposure to frass chitinases post FAW damage also altered the production of herbivore-induced volatile compounds compared to damaged, buffer-treated plants. However, aphid preference to damaged, frass chitinase-treated plants was not different from damaged, buffer-treated plants or undamaged plants. This study suggests that frass effector-mediated alteration of plant defenses affects insect herbivores asymmetrically; while it enhances the performance of caterpillars, it suppresses the performance of subsequent herbivores from a different feeding guild.


Assuntos
Afídeos/fisiologia , Herbivoria/fisiologia , Zea mays/química , Animais , Afídeos/crescimento & desenvolvimento , Quitinases/metabolismo , Quitinases/farmacologia , Cromatografia Gasosa-Espectrometria de Massas , Larva/fisiologia , Folhas de Planta/química , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Spodoptera/fisiologia , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/química , Zea mays/metabolismo
5.
Insect Sci ; 27(1): 86-98, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29749703

RESUMO

Bacterial endosymbionts play important roles in ecological traits of aphids. In this study, we characterize the bacterial endosymbionts of A. gossypii collected in Karaj, Iran and their role in the performance of the aphid. Our results indicated that beside Buchnera aphidicola, A. gossypii, also harbors both Hamiltonella defensa and Arsenophonus sp. Quantitative PCR (qPCR) results revealed that the populations of the endosymbionts increased throughout nymphal development up to adult emergence; thereafter, populations of Buchnera and Arsenophonus were diminished while the density of H. defensa constantly increased. Buchnera reduction caused prolonged development and no progeny production. Furthermore, secondary symbiont reduction led to reduction of the total life span and intrinsic rate of natural increase as well as appearance of the deformed dead offspring in comparison with the control insects. Reduction of the secondary symbionts did not affect parasitism rate of the aphid by the parasitic wasp Aphidius matricariae. Together these findings showed that H. defensa and Arsenophonus contributed to the fitness of A. gossypii by enhancing its performance, but not through parasitoid resistance.


Assuntos
Afídeos/microbiologia , Afídeos/fisiologia , Buchnera/fisiologia , Enterobacteriaceae/fisiologia , Simbiose , Animais , Afídeos/crescimento & desenvolvimento , Irã (Geográfico) , Ninfa/crescimento & desenvolvimento , Ninfa/microbiologia , Reprodução , Especificidade da Espécie
6.
Insect Sci ; 27(1): 33-48, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29845727

RESUMO

Feeding behavior and plant response to feeding were studied for the aphid Aphis gossypii Glover on susceptible and resistant melons (cv. Iroquois and TGR-1551, respectively). Average phloem phase bout duration on TGR-1551 was <7% of the duration on Iroquois. Sixty-seven percent of aphids on TGR-1551 never produced a phloem phase that attained ingestion (EPG waveform E2) in contrast to only 7% of aphids on Iroquois. Average bout duration of waveform E2 (scored as zero if phloem phase did not attain E2) on TGR-1551 was <3% of the duration on Iroquois. Conversely, average bout duration of EPG waveform E1 (sieve element salivation) was 2.8 times greater on TGR-1551 than on Iroquois. In a second experiment, liquid nitrogen was used to rapidly cryofix leaves and aphids within a few minutes after the aphids penetrated a sieve element. Phloem near the penetration site was then examined by confocal laser scanning microscopy. Ninety-six percent of penetrated sieve elements were occluded by protein in TGR-1551 in contrast to only 28% in Iroquois. Usually in TGR-1551, occlusion was also observed in nearby nonpenetrated sieve elements. Next, a calcium channel blocker, trivalent lanthanum, was used to prevent phloem occlusion in TGR-1551, and A. gossypii feeding behavior and the plant's phloem response were compared between lanthanum-treated and control TGR-1551. Lanthanum treatment eliminated the sieve element protein occlusion response and the aphids readily ingested phloem sap from treated plants. This study provides strong evidence that phloem occlusion is a mechanism for resistance against A. gossypii in TGR-1551.


Assuntos
Antibiose , Afídeos/fisiologia , Cucumis melo/fisiologia , Animais , Afídeos/crescimento & desenvolvimento , Comportamento Alimentar , Ninfa/crescimento & desenvolvimento , Ninfa/fisiologia
7.
Insect Sci ; 27(1): 170-184, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29938899

RESUMO

Elevated concentrations of atmospheric CO2 can alter plant secondary metabolites, which play important roles in the interactions among plants, herbivorous insects and natural enemies. However, few studies have examined the cascading effects of host plant secondary metabolites on tri-trophic interactions under elevated CO2 (eCO2 ). In this study, we determined the effects of eCO2 on the growth and foliar phenolics of Medicago truncatula and the cascading effects on two color genotypes of Acyrthosiphon pisum (pink vs. green) and their parasitoid Aphidius avenae in the field open-top chambers. Our results showed that eCO2 increased photosynthetic rate, nodule number, yield and the total phenolic content of M. truncatula. eCO2 had contrasting effects on two genotypes of A. pisum; the green genotype demonstrated increased population abundance, fecundity, growth and feeding efficiency, while the pink genotype showed decreased fitness and these were closely associated with the foliar genstein content. Furthermore, eCO2 decreased the parasitic rate of A. avenae independent of aphid genotypes. eCO2 prolonged the emergence time and reduced the emergence rate and percentage of females when associated with the green genotype, but little difference, except for increased percentage of females, was observed in A. avenae under eCO2 when associated with the pink genotype, indicating that parasitoids can perceive and discriminate the qualities of aphid hosts. We concluded that eCO2 altered plant phenolics and thus the performance of aphids and parasitoids. Our results indicate that plant phenolics vary by different abiotic and biotic stimuli and could potentially deliver the cascading effects of eCO2 to the higher trophic levels. Our results also suggest that the green genotype is expected to perform better in future eCO2 because of decreased plant resistance after its infestation and decreased parasitic rate.


Assuntos
Afídeos/fisiologia , Afídeos/parasitologia , Dióxido de Carbono/metabolismo , Medicago truncatula/química , Fenóis/metabolismo , Vespas/fisiologia , Animais , Afídeos/crescimento & desenvolvimento , Herbivoria , Interações Hospedeiro-Parasita , Larva/crescimento & desenvolvimento , Larva/fisiologia , Ninfa/crescimento & desenvolvimento , Ninfa/parasitologia , Ninfa/fisiologia , Vespas/crescimento & desenvolvimento
8.
Insect Sci ; 27(1): 99-112, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30039604

RESUMO

This study sheds light on a poorly understood area in insect-plant-microbe interactions, focusing on aphid probing and feeding behavior on plants with varying levels of arbuscular mycorrhizal (AM) fungus root colonization. It investigates a commonly occurring interaction of three species: pea aphid Acyrthosiphon pisum, barrel medic Medicago truncatula, and the AM fungus Rhizophagus irregularis, examining whether aphid-feeding behavior changes when insects feed on plants at different levels of AM fungus colonization (42% and 84% root length colonized). Aphid probing and feeding behavior was monitored throughout 8 h of recording using the electrical penetration graph (EPG) technique, also, foliar nutrient content and plant growth were measured. Summarizing, aphids took longer to reach their 1st sustained phloem ingestion on the 84% AM plants than on the 42% AM plants or on controls. Less aphids showed phloem ingestion on the 84% AM plants relative to the 42% AM plants. Shoots of the 84% AM plants had higher percent carbon (43.7%) relative to controls (40.5%), and the 84% AM plants had reduced percent nitrogen (5.3%) relative to the 42% AM plants (6%). In conclusion, EPG and foliar nutrient data support the hypothesis that modifications in plant anatomy (e.g., thicker leaves), and poor food quality (reduced nitrogen) in the 84% AM plants contribute to reduced aphid success in locating phloem and ultimately to differences in phloem sap ingestion. This work suggests that M. truncatula plants benefit from AM symbiosis not only because of increased nutrient uptake but also because of reduced susceptibility to aphids.


Assuntos
Afídeos/fisiologia , Herbivoria , Medicago truncatula/microbiologia , Medicago truncatula/fisiologia , Micorrizas/fisiologia , Animais , Antibiose , Comportamento Alimentar , Nutrientes/análise , Folhas de Planta/fisiologia
9.
Genome Biol Evol ; 11(12): 3510-3522, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31725149

RESUMO

Heritable symbionts are common in terrestrial arthropods and often provide beneficial services to hosts. Unlike obligate, nutritional symbionts that largely persist under strict host control within specialized host cells, heritable facultative symbionts exhibit large variation in within-host lifestyles and services rendered with many retaining the capacity to transition among roles. One enigmatic symbiont, Candidatus Fukatsuia symbiotica, frequently infects aphids with reported roles ranging from pathogen, defensive symbiont, mutualism exploiter, and nutritional co-obligate symbiont. Here, we used an in vitro culture-assisted protocol to sequence the genome of a facultative strain of Fukatsuia from pea aphids (Acyrthosiphon pisum). Phylogenetic and genomic comparisons indicate that Fukatsuia is an aerobic heterotroph, which together with Regiella insecticola and Hamiltonella defensa form a clade of heritable facultative symbionts within the Yersiniaceae (Enterobacteriales). These three heritable facultative symbionts largely share overlapping inventories of genes associated with housekeeping functions, metabolism, and nutrient acquisition, while varying in complements of mobile DNA. One unusual feature of Fukatsuia is its strong tendency to occur as a coinfection with H. defensa. However, the overall similarity of gene inventories among aphid heritable facultative symbionts suggests that metabolic complementarity is not the basis for coinfection, unless playing out on a H. defensa strain-specific basis. We also compared the pea aphid Fukatsuia with a strain from the aphid Cinara confinis (Lachninae) where it is reported to have transitioned to co-obligate status to support decaying Buchnera function. Overall, the two genomes are very similar with no clear genomic signatures consistent with such a transition, which suggests co-obligate status in C. confinis was a recent event.


Assuntos
Afídeos/fisiologia , Gammaproteobacteria/fisiologia , Animais , Gammaproteobacteria/classificação , Gammaproteobacteria/genética , Gammaproteobacteria/patogenicidade , Genoma Bacteriano , Simbiose
10.
Arthropod Struct Dev ; 52: 100883, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31568972

RESUMO

Many aphid species reproduce parthenogenetically throughout most of the year, with individuals having identical genomes. Nevertheless, aphid clones display a marked polyphenism with associated behavioural differences. Pea aphids (Acyrthosiphon pisum), when crowded, produce winged individuals, which have a larger dispersal range than wingless individuals. We examined here if brain structures linked to primary sensory processing and high-order motor control change in size as a function of wing polyphenism. Using micro-computing tomography (micro-CT) scans and immunocytochemical staining with anti-synapsin antibody, we reconstructed primary visual (optic lobes) and olfactory (antennal lobes) neuropils, together with the central body of winged and wingless parthenogenetic females of A. pisum for volume measurements. Absolute neuropil volumes were generally bigger in anti-synapsin labelled brains compared to micro-CT scans. This is potentially due to differences in rearing conditions of the used aphids. Independent of the method used, however, winged females consistently had larger antennal lobes and optic lobes than wingless females in spite of a larger overall body size of wingless compared to winged females. The volume of the central body, on the other hand was not significantly different between the two morphs. The larger primary sensory centres in winged aphids might thus provide the neuronal substrate for processing different environmental information due to the increased mobility during flight.


Assuntos
Afídeos/anatomia & histologia , Afídeos/fisiologia , Voo Animal , Animais , Encéfalo/anatomia & histologia , Feminino , Tamanho do Órgão
11.
J Insect Sci ; 19(5)2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31612945

RESUMO

The green peach aphid, Myzus persicae Sulzer (Hemiptera: Aphididae), is an important agricultural pest with a wide range of host plants. To study effects of host species on the life history traits of M. persicae, aphids were individually reared on five host plants: Brassica campestris L. (Brassicales: Brassicaceae), Capsicum annuum L. (Tubiflorae: Solanaceae), Nicotiana tabacum L. (Tubiflorae: Solanaceae), Raphanus sativus L. (Brassicales: Brassicaceae), and Vicia faba L. (Rosales: Leguminosae). TWOSEX-MSchart software was used for the statistical analysis according to the age-stage, two-sex life table theory. The results showed that the shortest preadult stage and adult/total prereproductive period of M. persicae were 6.48, 0.19, and 6.67 d on V. faba, respectively. While the adult and total longevity of M. persicae on R. sativus (25.00 and 31.62 d) and N. tabacum (24.40 and 30.56 d) were significantly longer than that on the other three hosts, as was the reproductive period. The fecundity of M. persicae on R. sativus (80.83 nymphs per female), N. tabacum (71.72 nymphs per female), and V. faba (70.39 nymphs per female) was also greater than that on B. campestris and C. annuum. It was demonstrated that V. faba, R. sativus, and N. tabacum were more suitable plants for the growth of M. persicae exhibiting a shorter preadult stage, longer longevity, and greater fecundity than the remaining two species, as confirmed by the higher intrinsic rate of increase and net reproductive rate.


Assuntos
Afídeos/fisiologia , Cadeia Alimentar , Herbivoria , Traços de História de Vida , Animais , Afídeos/crescimento & desenvolvimento , Feminino , Longevidade , Magnoliopsida/fisiologia , Masculino , Ninfa/crescimento & desenvolvimento , Ninfa/fisiologia , Crescimento Demográfico
12.
Int J Mol Sci ; 20(18)2019 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-31547315

RESUMO

Nicotine is one of the most toxic secondary plant metabolites in nature and it is highly toxic to herbivorous insects. The overexpression of CYP6CY3 and its homologous isozyme CYP6CY4 in Myzus persicae nicotianae is correlated with nicotine tolerance. The expanded (AC)n repeat in promoter is the cis element for CYP6CY3 transcription. These repeat sequences are conserved in the CYP6CY3 gene from Aphis gossypii and the homologous P450 genes in Acyrthosiphon pisum. The potential transcriptional factors that may regulate CYP6CY3 were isolated by DNA pulldown and sequenced in order to investigate the underlying transcriptional regulation mechanism of CYP6CY3. These identified transcriptional factors, AhR and ARNT, whose abundance was highly correlated with an abundance of the CYP6CY3 gene, were validated. RNAi and co-transfection results further confirm that AhR and ARNT play a major role in the transcriptional regulation of the CYP6CY3 gene. When the CYP6CY3 transcript is destabilized by AhR/ARNT RNAi, the transcription of the CYP6CY4 is dramatically up-regulated, indicating a compensatory mechanism between the CYP6CY3 and CYP6CY4 genes. Our present study sheds light on the CYP6CY3 and CYP6CY4 mediated nicotine adaption of M. persicae nicotianae to tobacco. The current studies shed light on the molecular mechanisms that underlie the genotypic and phenotypic changes that are involved in insect host shifts and we conclude that AhR/ARNT regulate the expression of CYP6CY3 and CYP6CY4 cooperatively, conferring the nicotine adaption of M. persicae nicotianae to tobacco.


Assuntos
Afídeos/fisiologia , Translocador Nuclear Receptor Aril Hidrocarboneto/metabolismo , Família 6 do Citocromo P450/metabolismo , Proteínas de Insetos/metabolismo , Nicotina/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Adaptação Fisiológica , Animais , Afídeos/genética , Família 6 do Citocromo P450/genética , Interações Hospedeiro-Parasita , Proteínas de Insetos/genética , Tabaco/metabolismo , Tabaco/parasitologia , Ativação Transcricional
13.
Sensors (Basel) ; 19(16)2019 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-31395823

RESUMO

An electronic nose (E-nose) system equipped with a sensitive sensor array was developed for fast diagnosis of aphid infestation on greenhouse tomato plants at early stages. Volatile organic compounds (VOCs) emitted by tomato plants with and without aphid attacks were detected using both the developed E-nose system and gas chromatography mass spectrometry (GC-MS), respectively. Sensor performance, with fast sensor responses and high sensitivity, were observed using the E-nose system. A principle component analysis (PCA) indicated accurate diagnosis of aphid-stressed plants compared to healthy ones, with the first two PCs accounting for 86.7% of the classification. The changes in VOCs profiles of the healthy and infested tomato plants were quantitatively determined by GC-MS. Results indicated that a group of new VOCs biomarkers (linalool, carveol, and nonane (2,2,4,4,6,8,8-heptamethyl-)) played a role in providing information on the infestation on the tomato plants. More importantly, the variation in the concentration of sesquiterpene VOCs (e.g., caryophyllene) and new terpene alcohol compounds was closely associated with the sensor responses during E-nose testing, which verified the reliability and accuracy of the developed E-nose system. Tomato plants growing in spring had similar VOCs profiles as those of winter plants, except several terpenes released from spring plants that had a slightly higher intensity.


Assuntos
Afídeos/fisiologia , Cromatografia Gasosa-Espectrometria de Massas/métodos , Lycopersicon esculentum/parasitologia , Compostos Orgânicos Voláteis/análise , Animais , Biomarcadores/análise , Nariz Eletrônico , Cromatografia Gasosa-Espectrometria de Massas/instrumentação , Lycopersicon esculentum/química , Lycopersicon esculentum/metabolismo , Doenças das Plantas/parasitologia , Folhas de Planta/química , Folhas de Planta/metabolismo , Folhas de Planta/parasitologia , Análise de Componente Principal
14.
Int J Mol Sci ; 20(15)2019 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-31370193

RESUMO

Prior experiments illustrated reactive oxygen species (ROS) overproduction in maize plants infested with bird-cherry-oat (Rhopalosiphum padi L.) aphids. However, there is no available data unveiling the impact of aphids feeding on oxidative damages of crucial macromolecules in maize tissues. Therefore, the purpose of the current study was to evaluate the scale of oxidative damages of genomic DNA, total RNA and mRNA, proteins, and lipids in seedling leaves of two maize genotypes (Zlota Karlowa and Waza cvs-susceptible and relatively resistant to the aphids, respectively). The content of oxidized guanosine residues (8-hydroxy-2'-deoxyguanosine; 8-OHdG) in genomic DNA, 8-hydroxyguanosine (8-OHG) in RNA molecules, protein carbonyl groups, total thiols (T-SH), protein-bound thiols (PB-SH), non-protein thiols (NP-SH), malondialdehyde (MDA) and electrolyte leakage (EL) levels in maze plants were determined. In addition, the electrical penetration graphs (EPG) technique was used to monitor and the aphid stylet positioning and feeding modes in the hosts. Maize seedlings were infested with 0 (control), 30 or 60 R. padi adult apterae per plant. Substantial increases in the levels of RNA, protein and lipid oxidation markers in response to aphid herbivory, but no significant oxidative damages of genomic DNA, were found. Alterations in the studied parameters were dependent on maize genotype, insect abundance and infestation time.


Assuntos
Afídeos/fisiologia , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Parasita/genética , Folhas de Planta/genética , Proteínas de Plantas/genética , Zea mays/genética , /metabolismo , Animais , Afídeos/patogenicidade , DNA de Plantas/genética , DNA de Plantas/metabolismo , Genótipo , Guanosina/análogos & derivados , Guanosina/metabolismo , Lipídeos/química , Malondialdeído/metabolismo , Oxirredução , Estresse Oxidativo , Doenças das Plantas/genética , Doenças das Plantas/parasitologia , Folhas de Planta/parasitologia , Proteínas de Plantas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Plantas/genética , RNA de Plantas/metabolismo , Plântula/genética , Plântula/parasitologia , Compostos de Sulfidrila/metabolismo , Zea mays/parasitologia
15.
Insect Biochem Mol Biol ; 112: 103185, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31291597

RESUMO

Aphids were the first animals reported as photoperiodic as their life cycles are strongly determined by the photoperiod. During the favourable seasons (characterised by long days) aphid populations consist exclusively of viviparous parthenogenetic females (known as virginoparae). Shortening of the photoperiod in autumn is perceived by aphids as the signal that anticipates the harsh season, leading to a switch in the reproductive mode giving place to the sexual morphs (oviparae females and males) that mate and lay winter-resistant (diapause-like) eggs. The molecular and cellular basis governing the switch between the two reproductive modes are far from being understood. Classical experiments identified a group of neurosecretory cells in the pars intercerebralis of the aphid brain (the so called group I of neurosecretory cells) that were essential for the development of embryos as parthenogenetic females and were thus proposed to synthesise a parthenogenesis promoting substance that was termed "virginoparin". Since insulin-like peptides (ILPs) have been implicated in the control of diapause in other insects, we investigated their involvement in aphid photoperiodism. We compared the expression of two ILPs (ILP1 and ILP4) and an Insulin receptor coding genes in A. pisum aphids reared under long- and short-day conditions. The three genes showed higher expression in long-day reared aphids. In addition, we localised the site of expression of the two ILP genes in the aphid brain. Both genes were found to be expressed in the group I of neurosecretory cells. Altogether, our results suggest that ILP1 and ILP4 play an important role in the control of the aphid life-cycle by promoting the parthenogenetic development during long-day seasons while their repression by short days would activate the sexual development. Thus we propose these ILPs correspond to the so called "virginoparin" by early bibliography. A possible connection with the circadian system is also discussed.


Assuntos
Afídeos/fisiologia , Peptídeos/metabolismo , Fotoperíodo , Adaptação Fisiológica/genética , Animais , Afídeos/genética , Afídeos/crescimento & desenvolvimento , Afídeos/metabolismo , Feminino , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Masculino , Partenogênese/genética , Partenogênese/fisiologia , Receptor de Insulina , Estações do Ano
16.
J Chem Ecol ; 45(7): 610-625, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31281942

RESUMO

Plants use volatile organic compounds (VOCs) to cue natural enemies to their herbivore prey on plants. Simultaneously, herbivores utilize volatile cues to identify appropriate hosts. Despite extensive efforts to understand sources of variation in plant communication by VOCs, we lack an understanding of how ubiquitous belowground mutualists, such as arbuscular mycorrhizal fungi (AMF), influence plant VOC emissions. In a full factorial experiment, we subjected plants of two milkweed (Asclepias) species under three levels of AMF availability to damage by aphids (Aphis nerii). We then measured plant headspace volatiles and chemical defenses (cardenolides) and compared these to VOCs emitted and cardenolides produced by plants without herbivores. We found that AMF have plant species-specific effects on constitutive and aphid-induced VOC emissions. High AMF availability increased emissions of total VOCs, two green leaf volatiles (3-hexenyl acetate and hexyl acetate), and methyl salicylate in A. curassavica, but did not affect emissions in A. incarnata. In contrast, aphids consistently increased emissions of 6-methyl-5-hepten-2-one and benzeneacetaldehyde in both species, independent of AMF availability. Both high AMF availability and aphids alone suppressed emissions of individual terpenes. However, aphid damage on plants under high AMF availability increased, or did not affect, emissions of those terpenes. Lastly, aphid feeding suppressed cardenolide concentrations only in A. curassavica, and AMF did not affect cardenolides in either plant species. Our findings suggest that by altering milkweed VOC profiles, AMF may affect both herbivore performance and natural enemy attraction.


Assuntos
Afídeos/fisiologia , Asclepias/química , Micorrizas/fisiologia , Compostos Orgânicos Voláteis/análise , Animais , Asclepias/metabolismo , Asclepias/parasitologia , Cardenolídeos/análise , Cromatografia Gasosa-Espectrometria de Massas , Herbivoria , Interações entre Hospedeiro e Microrganismos , Interações Hospedeiro-Parasita , Folhas de Planta/química , Folhas de Planta/metabolismo , Folhas de Planta/parasitologia , Análise de Componente Principal
17.
Int J Mol Sci ; 20(15)2019 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-31349586

RESUMO

Uridine diphosphate (UDP)-glycosyltransferases (UGTs) are major phase II detoxification enzymes involved in glycosylation of lipophilic endobiotics and xenobiotics, including phytoalexins. Nicotine, one of the most abundant secondary plant metabolites in tobacco, is highly toxic to herbivorous insects. Plant-herbivore competition is the major impetus for the evolution of large superfamilies of UGTs and other detoxification enzymes. However, UGT functions in green peach aphid (Myzus persicae) adaptation are unknown. In this study, we show that UGT inhibitors (sulfinpyrazone and 5-nitrouracil) significantly increased nicotine toxicity in M. persicae nicotianae, suggesting that UGTs may be involved in nicotine tolerance. In total, 101 UGT transcripts identified in the M. persicae genome/transcriptome were renamed according to the UGT Nomenclature Committee guidelines and grouped into 11 families, UGT329, UGT330, UGT339, UGT341-UGT345, and UGT348-UGT350, with UGT344 containing the most (57). Ten UGTs (UGT330A3, UGT339A2, UGT341A6, UGT342B3, UGT343C3, UGT344D5, UGT344D8, UGT348A3, UGT349A3, and UGT350A3) were highly expressed in M. persicae nicotianae compared to M. persicae sensu stricto. Knockdown of four UGTs (UGT330A3, UGT344D5, UGT348A3, and UGT349A3) significantly increased M. persicae nicotianae sensitivity to nicotine, suggesting that UGT expression in this subspecies may be associated with nicotine tolerance and thus host adaptation. This study reveals possible UGTs relevant to nicotine adaptation in tobacco-consuming M. persicae nicotianae, and the findings will facilitate further validation of the roles of these UGTs in nicotine tolerance.


Assuntos
Adaptação Biológica , Afídeos/fisiologia , Glucuronosiltransferase/metabolismo , Nicotina/metabolismo , Sequência de Aminoácidos , Animais , Afídeos/classificação , Afídeos/efeitos dos fármacos , Sequência Conservada , Resistência a Medicamentos/genética , Expressão Gênica , Técnicas de Silenciamento de Genes , Glucuronosiltransferase/antagonistas & inibidores , Glucuronosiltransferase/química , Glucuronosiltransferase/genética , Família Multigênica , Nicotina/farmacologia , Filogenia , Domínios Proteicos
18.
J Plant Physiol ; 240: 152996, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31352020

RESUMO

This study demonstrates the impact of lead at hormetic (0.075 mM Pb(NO3)2) and sublethal (0.5 mM Pb(NO3)2) doses on the intensity of oxidative stress in pea seedlings (Pisum sativum L. cv. 'Cysterski'). Our first objective was to determine how exposure of pea seedlings to Pb alters the plant defence responses to pea aphid (Acyrthosiphon pisum Harris), and whether these responses could indirectly affect A. pisum. The second objective was to investigate the effects of various Pb concentrations in the medium on demographic parameters of pea aphid population and the process of its feeding on edible pea. We found that the dose of Pb sublethal for pea seedlings strongly reduced net reproductive rate and limited the number of A. pisum individuals reaching the phloem. An important defence line of pea seedlings growing on Pb-supplemented medium and next during combinatory effect of the two stressors Pb and A. pisum was a high generation of superoxide anion (O2-). This was accompanied by a considerable reduction in superoxide dismutase (SOD) activity, and a decrease in the level of Mn2+ ions. A the same time, weak activity of Mn-SOD was detected in the roots of the seedlings exposed to the sublethal dose of Pb and during Pb and aphid interaction. Apart from the marked increase in O2-, an increase in semiquinone radicals occurred, especially in the roots of the seedlings treated with the sublethal dose of Pb and both infested and non-infested with aphids. Also, hydrogen peroxide (H2O2) generation markedly intensified in aphid-infested leaves. It reached the highest level 24 h post infestation (hpi), mainly in the cell wall of leaf epidermis. This may be related to the function of H2O2 as a signalling molecule that triggers defence mechanisms. The activity of peroxidase (POX), an important enzyme involved in scavenging H2O2, was also high at 24 hpi and at subsequent time points. Moreover, the contents of thiobarbituric acid reactive substances (TBARS), products of lipid peroxidation, rose but to a small degree thanks to an efficient antioxidant system. Total antioxidant capacity (TAC) dependent on the pool of fast antioxidants, both in infested and non-infested and leaves was higher than in the control. In conclusion, the reaction of pea seedlings to low and sublethal doses of Pb and then A. pisum infestation differed substantially and depended on a direct contact of the stress factor with the organ (Pb with roots and A. pisum with leaves). The probing behavior of A. pisum also depended on Pb concentration in the plant tissues.


Assuntos
Afídeos/fisiologia , Poluentes Ambientais/efeitos adversos , Herbivoria , Chumbo/efeitos adversos , Estresse Oxidativo , Ervilhas/fisiologia , Animais , Relação Dose-Resposta a Droga , Hormese , Ervilhas/efeitos dos fármacos , Ervilhas/imunologia , Imunidade Vegetal/imunologia
19.
BMC Res Notes ; 12(1): 325, 2019 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-31182145

RESUMO

OBJECTIVES: Soybean aphid (Aphis glycines Matsumura; SBA) is the most economically damaging insect of soybean (Glycine max) in the United States. One previous study demonstrated that avirulent (biotype 1) and virulent (biotype 2) biotypes could co-occur and interact on resistant (i.e., Rag1) and susceptible soybean resulting in induced susceptibility after 11 days of feeding. The main objective of this research was to employ RNA sequencing (RNA-seq) technique to compare the induced susceptibility effect of biotype 2 on susceptible and resistant soybean at day 1 and day 11 (i.e., both susceptible and resistant soybean were initially challenged by biotype 2 and the effect was monitored through biotype 1 populations). DATA DESCRIPTION: We investigated susceptible and Rag1 transcriptome response to SBA feeding in soybean plants colonized by biotype 1 in the presence or absence of an inducer population (i.e., biotype 2). Ten RNA datasets are reported with 266,535,654 sequence reads (55.2 GB) obtained from pooled samples derived from the leaves collected at day 1 and day 11 post SBA infestation. A comprehensive understanding of these transcriptome data will enhance our understanding of interactions among soybean and two different biotypes of soybean aphids at the molecular level.


Assuntos
Afídeos/fisiologia , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Parasita/genética , RNA de Plantas/genética , Soja/genética , Transcriptoma , Animais , Conjuntos de Dados como Assunto , Perfilação da Expressão Gênica , Herbivoria/fisiologia , Disseminação de Informação , Internet , Folhas de Planta/genética , Folhas de Planta/parasitologia , RNA de Plantas/metabolismo , Soja/parasitologia
20.
Braz J Microbiol ; 50(3): 697-704, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31218645

RESUMO

Information on the biology and ecology of Beauveria bassiana in different habitats could provide essential knowledge in their development as biocontrol agents of insect pests. In this study, phylogenetic and genotypic information was used to evaluate the genetic diversity of B. bassiana within semi natural and agricultural habitats in Karnataka State of South India and assessed their extracellular chitinase activity and pathogenicity against cowpea aphid, Aphis craccivora. Multilocus phylogeny and microsatellite genotyping of B. bassiana conjointly resolved three phylogenetic species, Bb_1, Bb_2, and Bb_3, in semi natural and agricultural habitats. None of the three phylogenetic species of B. bassiana were associated with crop plants in agroecosystem or insect hosts in semi natural habitat. All the three phylogenetic species were detected with four genotypes each. All isolates of B. bassiana were pathogenic to A. craccivora in greenhouse bioassays. Isolate GKVK 01_13 caused a significantly high mortality of aphids and detected with an increased level of chitinase activity. The study results suggest that application of indigenous virulent strain of B. bassiana could provide effective control of native insect pest A. craccivora.


Assuntos
Afídeos/microbiologia , Beauveria/genética , Beauveria/patogenicidade , Microbiologia do Solo , Animais , Afídeos/fisiologia , Beauveria/classificação , Beauveria/isolamento & purificação , Ecossistema , Variação Genética , Índia , Controle Biológico de Vetores , Filogenia , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA