Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 747
Filtrar
1.
J Agric Food Chem ; 70(28): 8725-8737, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35816703

RESUMO

ß-1,3-Glucan synthases play key roles in glucan synthesis, cell wall assembly, and growth of fungi. However, their multi-transmembrane domains (over 14 TMHs) and large molecular masses (over 100 kDa) significantly hamper understanding of their catalytic characteristics and mechanisms. In the present study, the 5841-bp gene CMGLS encoding the 221.7 kDa membrane-bound ß-1,3-glucan synthase CMGLS in Cordyceps militaris was cloned, identified, and structurally analyzed. CMGLS was partially purified with a specific activity of 87.72 pmol/min/µg, a purification fold of 121, and a yield of 10.16% using a product-entrapment purification method. CMGLS showed a strict specificity to UDP-glucose with a Km value of 84.28 µM at pH 7.0 and synthesized ß-1,3-glucan with a maximum degree of polymerization (DP) of 70. With the assistance of AlphaFold and molecular docking, the 3D structure of CMGLS and its binding features with substrate UDP-glucose were proposed for the first time to our knowledge. UDP-glucose potentially bound to at least 11 residues via hydrogen bonds, π-stacking ,and salt bridges, and Arg 1436 was predicted as a key residue directly interacting with the moieties of glucose, phosphate, and the ribose ring on UDP-glucose. These findings would open an avenue to recognize and understand the glucan synthesis process and catalytic mechanism of ß-1,3-glucan synthases in mushrooms.


Assuntos
Agaricales , Cordyceps , Agaricales/metabolismo , Cordyceps/genética , Cordyceps/metabolismo , Glucanos , Glucose , Glucosiltransferases/metabolismo , Simulação de Acoplamento Molecular , Uridina Difosfato Glucose/metabolismo , beta-Glucanas
2.
Int J Biol Macromol ; 215: 560-570, 2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-35772637

RESUMO

The acetylated Stropharia rugoso-annulata polysaccharides (ASRP) was successfully characterized, and the effects and mechanism on alleviating NAFLD were investigated in HFD-induced mice models. The characterization showed that ASRP was successfully acetylated and rich in galactose. The animal studies demonstrated that ASRP at the dose of 400 mg/kg possessed hepatoprotective effects by potential antioxidation, anti-inflammation and improving hepatocellular histopathology, with the possible mechanisms on regulating the JNK1/AP-1 and activating the Nrf2 signaling pathways. Besides, ASRP could improve the fat metabolism by activating the AMPK/SREBP-1c signaling pathways. The results provided basal theories for the development of ASRP on treating the NAFLD and its complications.


Assuntos
Agaricales , Hepatopatia Gordurosa não Alcoólica , Proteínas Quinases Ativadas por AMP/metabolismo , Agaricales/metabolismo , Animais , Dieta Hiperlipídica , Fator de Transcrição de Proteínas de Ligação GA , Metabolismo dos Lipídeos , Fígado , Camundongos , Camundongos Endogâmicos C57BL , Proteína Quinase 8 Ativada por Mitógeno , Fator 2 Relacionado a NF-E2/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Polissacarídeos/metabolismo , Polissacarídeos/farmacologia , Polissacarídeos/uso terapêutico , Transdução de Sinais
3.
J Agric Food Chem ; 70(23): 7110-7121, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35652418

RESUMO

ß-d-glucans have the potential of serving as both macrophage-targeted carriers and immune stimulators via inducing trained immunity in macrophages. In this study, a carboxymethylated ß-glucan from mushroom sclerotium of Pleurotus tuber-regium (CMPTR) was combined with iron oxide nanoparticles (IONPs) to form nanocomplexes (CMPTR/IONPs) with particle size around 193 ± 7 nm, which could exert a concerted effect on inducing proinflammatory M1 phenotype macrophages for immunotherapy. This nanocomplex exhibited good stability and low cytotoxicity (over 80% cellular viability of RAW 264.7 and THP-1) and higher cellular uptake by murine macrophages compared with B16F10 cells (p < 0.05). CMPTR/IONPs could convert M2-like bone marrow-derived macrophages into M1 phenotypes with upregulated expression of pro-inflammatory cytokines (IL12 and TNF-α, p < 0.05) and reduced immune-suppressive cytokines (IL10 and TGF-ß, p < 0.05). Such polarization was mediated by the combined signaling regulatory factors, including IONP-stimulated IRF5 and CMPTR-triggered TLRs-NF-κB pathways (p < 0.05). Accordingly, CMPTR could have a dual function as a macrophage-targeting carrier for IONPs and an immunostimulant to induce inflammatory M1 macrophage polarization for immunotherapy.


Assuntos
Agaricales , Glucanos , Agaricales/metabolismo , Animais , Citocinas/genética , Glucanos/metabolismo , Imunoterapia , Fatores Reguladores de Interferon/metabolismo , Macrófagos , Nanopartículas Magnéticas de Óxido de Ferro , Camundongos
4.
Food Chem ; 393: 133423, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35691066

RESUMO

A new method for studying tyrosinase kinetics and inhibition by oxygen sensing is described and matched to the conventional spectrophotometric approach. The stoichiometric ratio of O2 uptake to dopachrome formation was 1.5 ±â€¯0.2 for substrate l-tyrosine and 1.0 ±â€¯0.1 for l-DOPA. With both methods, we reinvestigated mushroom tyrosinase inhibition by glabridin from Glycyrrhiza glabra. The two methods agreed showing mixed-type inhibition for monophenolase and diphenolase activities, at variance with previous literature. Average KI (KSI) values for glabridin were 13.6 ±â€¯3.5 (281 ±â€¯89) nM and 57 ±â€¯8 (1312 ±â€¯550) nM, for monophenolase and diphenolase inhibition, respectively, with IC50 of 80 ±â€¯8 nM and 294 ±â€¯25 nM, respectively, at 1 mM substrate. For reference kojic acid KI (KSI) were 10.9 ±â€¯8 (217 ±â€¯55) µM and 9.9 ±â€¯1.4 (21.0 ±â€¯5.2) µM, for monophenolase and diphenolase, respectively, with respective IC50 of 33 ±â€¯8 µM and 17 ±â€¯3 µM. Glabridin's activity is among the highest in nature, being about three orders of magnitude higher than previously reported.


Assuntos
Agaricales , Monofenol Mono-Oxigenase , Agaricales/metabolismo , Inibidores Enzimáticos/farmacologia , Isoflavonas , Cinética , Oxigênio , Fenóis
5.
Food Res Int ; 157: 111433, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35761673

RESUMO

Bisphenol A (BPA) has been reported to have neurotoxic properties that may increase the risk of neurodegenerative diseases by inducing neuroinflammation. Auricularia polytricha (AP) is an edible mushroom with several medicinal properties. Herein, the anti-neuroinflammatory effects of AP extracts against BPA-induced inflammation of BV2 microglial cells were investigated. Hexane (APH) and ethanol (APE) extracts of AP inhibited BPA-induced neuroinflammation in BV2 microglia by reducing microglial activation and the expression of pro-inflammatory cytokines. These anti-inflammatory effects were regulated by the NF-κB signaling pathway. In addition, APH and APE exhibited antioxidative effects by increasing the activity of the SOD-1 enzyme and restoring the accumulation of reactive oxygen species (ROS) in BPA-induced BV2 cells. Moreover, the conditioned medium prepared using BPA-induced BV2 cells demonstrated that the presence of APH or APE could attenuate ROS production in HT-22 cells. Further, ergosterol was isolated from APE and also showed anti-inflammatory and antioxidative activities. In conclusion, AP extracts and ergosterol attenuated neuroinflammation against BPA induction in BV2 microglial cells through the NF-κB signaling pathway.


Assuntos
Agaricales , Microglia , Agaricales/metabolismo , Anti-Inflamatórios/metabolismo , Auricularia , Compostos Benzidrílicos , Ergosterol/metabolismo , Ergosterol/farmacologia , Inflamação/metabolismo , Microglia/metabolismo , NF-kappa B/metabolismo , Fenóis , Espécies Reativas de Oxigênio/metabolismo
6.
Int J Mol Sci ; 23(11)2022 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35682928

RESUMO

The tyrosinase enzyme, which catalyzes the hydroxylation of monophenols and the oxidation of o-diphenols, is typically involved in the synthesis of the dark product melanin starting from the amino acid tyrosine. Contributing to the browning of plant and fruit tissues and to the hyperpigmentation of the skin, leading to melasma or age spots, the research of possible tyrosinase inhibitors has attracted much interest in agri-food, cosmetic, and medicinal industries. In this study, we analyzed the capability of antamanide, a mushroom bioactive cyclic decapeptide, and some of its glycine derivatives, compared to that of pseudostellarin A, a known tyrosinase inhibitor, to hinder tyrosinase activity by using a spectrophotometric method. Additionally, computational docking studies were performed in order to elucidate the interactions occurring with the tyrosinase catalytic site. Our results show that antamanide did not exert any inhibitory activity. On the contrary, the three glycine derivatives AG9, AG6, and AOG9, which differ from each other by the position of a glycine that substitutes phenylalanine in the parent molecule, improving water solubility and flexibility, showed tyrosinase inhibition by spectrophotometric assays. Analytical data were confirmed by computational studies.


Assuntos
Agaricales , Monofenol Mono-Oxigenase , Agaricales/metabolismo , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Glicina/farmacologia , Melaninas/metabolismo , Simulação de Acoplamento Molecular , Monofenol Mono-Oxigenase/metabolismo , Peptídeos Cíclicos
7.
Toxins (Basel) ; 14(6)2022 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-35737065

RESUMO

rRNA N-glycosylases (EC 3.2.2.22) remove a specific adenine (A4324, rat 28S rRNA) in the sarcin ricin loop (SRL) involved into ribosome interaction with elongation factors, causing the inhibition of translation, for which they are known as plant 'ribosome inactivating proteins' (RIPs). However, protein synthesis inactivation could be the result of other enzymes, which often have rRNA as the target. In this scenario, Endo's assay is the most used method to detect the enzymes that are able to hydrolyze a phosphodiester bond or cleave a single N-glycosidic bond (rRNA N-glycosylases). Indeed, the detection of a diagnostic fragment from rRNA after enzymatic action, with or without acid aniline, allows one to discriminate between the N-glycosylases or hydrolases, which release the ß-fragment after acid aniline treatment or α-fragment without acid aniline treatment, respectively. This assay is of great importance in the mushroom kingdom, considering the presence of enzymes that are able to hydrolyze phosphodiester bonds (e.g., ribonucleases, ribotoxins and ribotoxin-like proteins) or to remove a specific adenine (rRNA N-glycosylases). Thus, here we used the ß-fragment experimentally detected by Endo's assay as a hallmark to revise the literature available on enzymes from mushrooms and other fungi, whose action consists of protein biosynthesis inhibition.


Assuntos
Agaricales , Ricina , Adenina/metabolismo , Agaricales/metabolismo , Compostos de Anilina , Animais , Proteínas de Plantas/metabolismo , Inibidores da Síntese de Proteínas/farmacologia , RNA Ribossômico/análise , RNA Ribossômico/metabolismo , Ratos , Proteínas Inativadoras de Ribossomos/metabolismo , Ribossomos/metabolismo , Ricina/metabolismo
8.
mBio ; 13(3): e0062822, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35604096

RESUMO

Wood-decaying fungi of the class Agaricomycetes (phylum Basidiomycota) are saprotrophs that break down lignocellulose and play an important role in nutrient recycling. They secrete a wide range of extracellular plant cell wall degrading enzymes that break down cellulose, hemicellulose, and lignin, the main building blocks of plant biomass. Although the production of these enzymes is regulated mainly at the transcriptional level, no activating regulators have been identified in any wood-decaying fungus in the class Agaricomycetes. We studied the regulation of cellulase expression in the wood-decaying fungus Schizophyllum commune. Comparative genomics and transcriptomics on two wild isolates revealed a Zn2Cys6-type transcription factor gene (roc1) that was highly upregulated during growth on cellulose, compared to glucose. It is only conserved in the class Agaricomycetes. A roc1 knockout strain showed an inability to grow on medium with cellulose as sole carbon source, and growth on cellobiose and xylan (other components of wood) was inhibited. Growth on non-wood-related carbon sources was not inhibited. Cellulase gene expression and enzyme activity were reduced in the Δroc1 strain. ChIP-Seq identified 1474 binding sites of the Roc1 transcription factor. Promoters of genes involved in lignocellulose degradation were enriched with these binding sites, especially those of LPMO (lytic polysaccharide monooxygenase) CAZymes, indicating that Roc1 directly regulates these genes. A conserved motif was identified as the binding site of Roc1, which was confirmed by a functional promoter analysis. Together, Roc1 is a key regulator of cellulose degradation and the first identified in wood-decaying fungi in the phylum Basidiomycota. IMPORTANCE Wood-degrading fungi in the phylum Basidiomycota play a crucial role in nutrient recycling by breaking down all components of wood. Fungi have evolved transcriptional networks that regulate expression of wood-degrading enzymes, allowing them to prioritize one nutrient source over another. However, to date all these transcription factors have been identified in the phylum Ascomycota, which is only distantly related to the phylum Basidiomycota. Here, we identified the transcription factor Roc1 as a key regulator of cellulose degradation in the mushroom-forming and wood-degrading fungus Schizophyllum commune. Roc1 is highly conserved in the phylum Basidiomycota. Using comparative genomics, transcriptomics, ChIP-Seq and promoter analysis we have identified direct targets of Roc1, as well as other aspects of the transcriptional response to cellulose.


Assuntos
Agaricales , Basidiomycota , Celulase , Schizophyllum , Agaricales/genética , Agaricales/metabolismo , Basidiomycota/genética , Carbono/metabolismo , Celulase/metabolismo , Celulose/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Lignina/metabolismo , Schizophyllum/genética , Schizophyllum/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
9.
PLoS One ; 17(5): e0268292, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35576219

RESUMO

Suillus luteus (L.) Roussel is an edible mushroom commonly known as slippery jack or "Kallampa" by indigenous people from Loja province. It is used in traditional medicine to manage gastrointestinal disorders and headaches. In addition, edible mushrooms have been used for neurodegenerative diseases; however, there is no report about the anticholinesterase effect produced by this species. The aim of this work was to isolate the main secondary metabolite of Suillus luteus and characterize its inhibitory potential against acetylcholinesterase. Fruiting bodies were extracted with ethanol (EtOH) and ethyl acetate (EtOAc). From the EtOAc, suillin, is reported as the major compound. The cholinesterase inhibitory potential of extracts and the major isolated compound was assessed by Ellman´s method and progression curves were recorded at 405 nm for 60 min. Donepezil hydroclhoride was used as a positive control. The samples were dissolved in methanol at 10 mg/mL and two more 10× dilutions were included to obtain final concentrations of 1, 0.1 and 0.01 mg/mL at the mix of reaction. IC50, Km, Vmax, and Ki were calculated for suillin. Suillin (200 mg) along with linoleic acid, ergosterol peroxide and ergosterol were isolated. The EtOH and EtOAc extracts exerted a moderate inhibitory effect (IC50 > 200 µg/mL. In adittion, suillin exerted a non-competitive mixed mechanism. against AChE with an IC50 value of 31.50 µM and Ki of 17.25 µM. To the best of our knowledge, this is the first report of the anticholinesterase effect of Suillus luteus and suillin. The kinetic parameters and the moderate potency of the compound determined in this study, encourage us to propose suillin as a promising chemopreventing agent for the treatment of neurodegenerative diseases such as Alzheimer.


Assuntos
Agaricales , Inibidores da Colinesterase , Diterpenos , Fenóis , Acetilcolinesterase/metabolismo , Agaricales/metabolismo , Basidiomycota , Inibidores da Colinesterase/metabolismo , Inibidores da Colinesterase/farmacologia , Diterpenos/farmacologia , Equador , Humanos , Fenóis/farmacologia , Extratos Vegetais/metabolismo , Extratos Vegetais/farmacologia
10.
PLoS One ; 17(4): e0265494, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35421104

RESUMO

Mushrooms are known to possess a diversity of bioactive compounds that include lectins, which are proteins or glycoproteins that bind specifically to cell surface carbohydrates, culminating in cell agglutination. The present study describes the screening of lectin activity from ten local mushrooms, namely, Amanita zambiana, Boletus edulis, Cantharellus heinemannianus, Cantharellus miomboensis, Cantharellus symoensii, Lactarius kabansus, Amanita sp., Coprinus sp., Ganoderma lucidum and Trametes strumosa. The lectin content was detected by the haemagglutination activity of mushrooms against sheep and goat erythrocytes. Among the different mushrooms screened Amanita sp., Boletus edulis and Lactarius kabansus showed high lectin activity (39, 617 and 77 HAU/mg mushroom, respectively). Boletus edulis was used for the haemagglutination inhibition assay. A total of twenty sugars and sugar derivatives, namely, α-lactose, D-glucose, D-mannose, D-raffinose, N-acetyl glucosamine, maltose, melibiose, D-ribose, porcine mucin, D-cellobiose, D-arabinose, α-methyl-D-glucoside, methyl-α-D-mannopyranoside, D-trehalose, L-arabinose, L-sorbose, L-lyxose, ß-lactose, DL-xylose, and D-galactose, were used for the haemagglutination inhibition assay. Of the various carbohydrates tested, only porcine mucin was found to be the most potent inhibitor of Boletus lectin. The lectin from Boletus mushroom was partially purified using ammonium sulphate precipitation. The highest lectin activity was observed in the 30%-60% fraction. This study revealed for the first time the occurrence of lectins in the local Zimbabwean mushrooms studied as well as isolation of a novel mucin-specific lectin. The information obtained can be used for further investigation of cell surface sugars, purification and characterisation of glycoproteins and their contribution towards the medicinal properties of local mushrooms.


Assuntos
Agaricales , Agaricales/metabolismo , Animais , Basidiomycota , Florestas , Lactose , Lectinas/metabolismo , Mucinas , Ovinos , Suínos , Trametes/metabolismo , Zimbábue
11.
Food Chem ; 387: 132938, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35429937

RESUMO

Tyrosinase plays determinant role in enzymatic browning of vegetables and fresh-cut fruits. Development of new tyrosinase inhibitors is of great concern in food and agriculture. To discover new inhibitors, novel phenolic derivatives were synthesized and their inhibitory effects were investigated on activity of mushroom tyrosinase. All compounds showed potent inhibitory activities in their low concentrations and compound 4-(4-hydroxyphenyl)butan-2-one (1b) was found to be the most potent inhibitor (73.75% inhibition, IC50 value 5.6 µmol L-1). This ligand inhibited enzyme activity in a mixed pattern and kinetic parameters were also determined. In vitro assays revealed that this compound has not cytotoxicity/hemolytic effects and can be considered as safe for further investigations. Analysis of fluorescence spectra showed that all ligands quenched enzyme intrinsic fluorescence. The quenching mode and important binding parameters were also calculated. Enzyme-ligands interactions were also theoretically analyzed by molecular docking and results showed that the ligands interact with structurally/functionally critical residues.


Assuntos
Agaricales , Monofenol Mono-Oxigenase , Agaricales/metabolismo , Inibidores Enzimáticos/química , Cinética , Ligantes , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade
12.
Int J Biol Macromol ; 206: 255-263, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35240205

RESUMO

Chitin-glucan complex (CGC) is a novel insoluble dietary fiber with multiple physiological activities. In this work, CGC was extracted from the fruiting body of Coprinus comatus and its physicochemical properties and prebiotic effects were investigated. The results indicated that CGC consisted of glucosamine and glucose in a molar ratio of 67: 33 with degree of acetylation of 61.91% and crystallinity index of 25.40%. The maximum degradation temperature was determined to be 307.52 °C, and a woven fibrous structure was observed by scanning electron microscopy. CGC exhibited higher oil-holding capacity, water-holding capacity and nitrite ion adsorption capacity than commercial chitin, and showed potential prebiotic effects. Compared with control and commercial chitin, CGC significantly (P < 0.05) increased the concentration of propionic and butyric acids. These results suggested that CGC from C. comatus was promising to be an alternative source of CGC products and used as a bioactive ingredient in functional foods.


Assuntos
Agaricales , Quitina , Adsorção , Agaricales/metabolismo , Quitina/química , Coprinus , Glucanos/química , Prebióticos
13.
Org Biomol Chem ; 20(13): 2636-2642, 2022 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-35293930

RESUMO

2-Azahypoxanthine (AHX) was first isolated from the culture broth of the fungus Lepista sordida as a fairy ring-inducing compound. It has since been found that a large number of plants and mushrooms produce AHX endogenously and that AHX has beneficial effects on plant growth. The AHX molecule has an unusual, nitrogen-rich 1,2,3-triazine moiety of unknown biosynthetic origin. Here, we establish the biosynthetic pathway for AHX formation in L. sordida. Our results reveal that the key nitrogen sources that are responsible for the 1,2,3-triazine formation are reactive nitrogen species (RNS), which are derived from nitric oxide (NO) produced by NO synthase (NOS). Furthermore, RNS are also involved in the biochemical conversion of 5-aminoimidazole-4-carboxamide-1-ß-D-ribofuranosyl 5'-monophosphate (AICAR) to AHX-ribotide (AHXR), suggesting that a novel biosynthetic route that produces AHX exists in the fungus. These findings demonstrate a physiological role for NOS in AHX biosynthesis as well as in biosynthesis of other natural products containing a nitrogen-nitrogen bond.


Assuntos
Agaricales , Triazinas , Agaricales/metabolismo , Hipoxantinas , Marasmius , Nitrogênio , Triazinas/metabolismo
14.
Appl Microbiol Biotechnol ; 106(7): 2367-2380, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35348851

RESUMO

Fungal immunomodulatory protein (FIP) is a novel functional protein family with specific immunomodulatory activity identified from several macro-fungi. A variety of biological activities of FIPs have been reported, such as anti-allergy, anti-tumor, mitogenic activity, and immunomodulation. Among all known FIPs, the firstly discovered FIP was isolated from Ganoderma lucidum, and most FIP members were from Ganoderma genus. Compared with other FIPs, Ganoderma FIPs possess some advantageous bioactivities, like stronger anti-tumor activity. Therein, gene sequences, protein structural features, biofunctions, and recombinant expression of Ganoderma FIPs were summarized and addressed, focusing on elucidating their anti-tumor activity and molecular mechanisms. Combined with current advances, development potential and application of Ganoderma FIPs were also prospected. KEY POINTS: • More than a dozen of reported FIPs are identified from Ganoderma species. • Ganoderma immunomodulatory proteins have superior anti-tumor activity with promising prospects and application. • Current review comprehensively addresses characterization, biofunctions, and anti-tumor mechanisms of Ganoderma FIPs.


Assuntos
Agaricales , Ganoderma , Agaricales/metabolismo , Proteínas Fúngicas/metabolismo , Ganoderma/metabolismo , Fatores Imunológicos/genética , Fatores Imunológicos/farmacologia , Imunomodulação , Proteínas Recombinantes/genética
15.
Open Biol ; 12(3): 210302, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35232254

RESUMO

The formation of three oxidative DNA 5-methylcytosine (5mC) modifications (oxi-mCs)-5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC)-by the TET/JBP family of dioxygenases prompted intensive studies of their functional roles in mammalian cells. However, the functional interplay of these less abundant modified nucleotides in other eukaryotic lineages remains poorly understood. We carried out a systematic study of the content and distribution of oxi-mCs in the DNA and RNA of the basidiomycetes Laccaria bicolor and Coprinopsis cinerea, which are established models to study DNA methylation and developmental and symbiotic processes. Quantitative liquid chromatography-tandem mass spectrometry revealed persistent but uneven occurrences of 5hmC, 5fC and 5caC in the DNA and RNA of the two organisms, which could be upregulated by vitamin C. 5caC in RNA (5carC) was predominantly found in non-ribosomal RNA, which potentially includes non-coding, messenger and small RNA species. Genome-wide mapping of 5hmC and 5fC using the single CG analysis techniques hmTOP-seq and foTOP-seq pointed at involvement of oxi-mCs in the regulation of gene expression and silencing of transposable elements. The implicated diverse roles of 5mC and oxi-mCs in the two fungi highlight the epigenetic importance of the latter modifications, which are often neglected in standard whole-genome bisulfite analyses.


Assuntos
Agaricales , Basidiomycota , 5-Metilcitosina , Agaricales/metabolismo , Animais , Basidiomycota/genética , Basidiomycota/metabolismo , Citosina/metabolismo , Metilação de DNA , Elementos de DNA Transponíveis , Laccaria , Mamíferos , RNA/metabolismo
16.
Peptides ; 152: 170783, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35278583

RESUMO

Pigmentation issues are common conditions associated with excessive or insufficient production of melanin. Recently peptides are investigated to discover novel melanogenesis regulators as low molecular weight compounds to regulate skin pigmentation. In this study, an internal library of peptides obtained through in silico enzymatic digestion of phycocyanin from microalgae S. platensis was tested to apprehend their anti-melanogenic effects. Seven peptides were investigated for their inhibitory potential against mushroom and B16-F10 murine tyrosinase enzymes. According to the results, P5 (SPSWY) and P7 (AADQRGKDKCARDIGY) were effective in lowering the activity of mushroom and B16-F10 tyrosinases. P5 was the most potent (IC50 value, 12.1 µM) in mushroom which was followed by P2 (MAACLR, 86.9 µM). Although the peptides were particularly powerful in inhibiting monophenolase activity, only moderate inhibition was observed for diphenolase activity in mushroom tyrosinase assay. Apart from tyrosinase inhibition, P2 and P3 (RCLNGRL) were efficient DPPH radical scavengers at low concentrations (IC50 < 200 µM). In the mammalian assay system, P5 and P7 were noticeably effective to decrease tyrosinase enzyme activity with IC50 values of 48.9 and 34.2 µM, respectively. However, although P4 (RYVTYAVF) was a potent mushroom tyrosinase inhibitor, it increased melanin synthesis up to 3-fold in B16-F10 cells. The results indicate that C-terminal tyrosine residue is important for tyrosinase inhibition. This study shows, for the first time, that microalgae proteins can be regarded as sources for melanogenesis regulation.


Assuntos
Agaricales , Melanoma Experimental , Microalgas , Agaricales/metabolismo , Animais , Linhagem Celular Tumoral , Mamíferos , Melaninas , Camundongos , Microalgas/metabolismo , Monofenol Mono-Oxigenase/metabolismo , Peptídeos/farmacologia , Ficocianina/farmacologia , Spirulina
17.
Gene ; 824: 146450, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35337848

RESUMO

Sarcomyxa edulis is a widely harvested mushroom of Northeastern Asia. Its development can be divided into six stages: growth of mycelium until occupying half the bag (B1), mycelium under low-temperature stimulation after occupying the entire bag (B2), appearance of mycelium in primordia (B3), primordia (B4), mycelium at the harvest stage (B5), and mature fruiting body (B6). Differentially expressed gene (DEG) analysis and weighted gene coexpression network analysis (WGCNA) are important bioinformatic methods for screening key genes. To explore the growth and development mechanisms of the mushroom S. edulis and clarify its genetic background, DEG and WGCNA analyses were combined to screen key genes at different developmental stages. From A1 to A6, respectively, 459, 97, 885, 169, 277, and 712 key genes were identified. Then the Gene Ontology (GO) terms and KEGG pathways of key genes were analyzed, and GO and KEGG analyses were performed on all genes across different periods using GSEA. In summary, the genes in A1 were mainly involved in amino sugar and nucleotide sugar metabolism, structural molecule activity, and oxidative phosphorylation. At the A2 stage, genes were mainly involved in peptidase activity, peroxidase activity, oxidoreductase activity, antioxidant activity, biosynthesis of secondary metabolites, and glycolysis and gluconeogenesis. A3 genes were involved in gene expression, RNA metabolism, spliceosome, RNA transport, and ribosome biogenesis. A4 genes were mainly involved in the biosynthesis of secondary metabolites, proteasome complex, cellular protein complex assembly, actin filament-based processes, oxidative phosphorylation, and carbon metabolism. The A5 stage genes were involved in the carbohydrate metabolic process, polysaccharide metabolic process, and the biosynthesis of secondary metabolites, leucine, isoleucine, and ABC transporters. Finally, A6 genes were mainly involved in the cell cycle, meiosis of yeast, MAPK signaling pathway, cellular response to DNA damage stimulus, DNA metabolic process, DNA replication, and DNA repair. The combination of multiple analyses provides us with an in-depth understanding of the network that regulates mushroom development.


Assuntos
Agaricales , Perfilação da Expressão Gênica , Agaricales/genética , Agaricales/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Perfilação da Expressão Gênica/métodos , Micélio , Transcriptoma
18.
Elife ; 112022 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-35156613

RESUMO

Multicellularity has been one of the most important innovations in the history of life. The role of gene regulatory changes in driving transitions to multicellularity is being increasingly recognized; however, factors influencing gene expression patterns are poorly known in many clades. Here, we compared the developmental transcriptomes of complex multicellular fruiting bodies of eight Agaricomycetes and Cryptococcus neoformans, a closely related human pathogen with a simple morphology. In-depth analysis in Pleurotus ostreatus revealed that allele-specific expression, natural antisense transcripts, and developmental gene expression, but not RNA editing or a 'developmental hourglass,' act in concert to shape its transcriptome during fruiting body development. We found that transcriptional patterns of genes strongly depend on their evolutionary ages. Young genes showed more developmental and allele-specific expression variation, possibly because of weaker evolutionary constraint, suggestive of nonadaptive expression variance in fruiting bodies. These results prompted us to define a set of conserved genes specifically regulated only during complex morphogenesis by excluding young genes and accounting for deeply conserved ones shared with species showing simple sexual development. Analysis of the resulting gene set revealed evolutionary and functional associations with complex multicellularity, which allowed us to speculate they are involved in complex multicellular morphogenesis of mushroom fruiting bodies.


Assuntos
Agaricales , Ascomicetos , Basidiomycota , Agaricales/genética , Agaricales/metabolismo , Ascomicetos/metabolismo , Carpóforos/genética , Carpóforos/metabolismo , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica
19.
Angew Chem Int Ed Engl ; 61(24): e202116142, 2022 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-35218274

RESUMO

(Pre-)anthraquinones are widely distributed natural compounds and occur in plants, fungi, microorganisms, and animals, with atrochrysone (1) as the key biosynthetic precursor. Chemical analyses established mushrooms of the genus Cortinarius-the webcaps-as producers of atrochrysone-derived octaketide pigments. However, more recent genomic data did not provide any evidence for known atrochrysone carboxylic acid (4) synthases nor any other polyketide synthase (PKS) producing oligocyclic metabolites. Here, we describe an unprecedented class of non-reducing (NR-)PKS. In vitro assays with recombinant enzyme in combination with in vivo product formation in the heterologous host Aspergillus niger established CoPKS1 and CoPKS4 of C. odorifer as members of a new class of atrochrysone carboxylic acid synthases. CoPKS4 catalyzed both hepta- and octaketide synthesis and yielded 6-hydroxymusizin (6), along with 4. These first mushroom PKSs for oligocyclic products illustrate how the biosynthesis of bioactive natural metabolites evolved independently in various groups of life.


Assuntos
Agaricales , Policetídeos , Agaricales/metabolismo , Antraquinonas/química , Policetídeo Sintases/metabolismo , Policetídeos/metabolismo
20.
BMC Plant Biol ; 22(1): 15, 2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-34983403

RESUMO

BACKGROUND: Cremastra appendiculata is a rare terrestrial orchid with a high market value as an ornamental and medicinal plant. However, the species depends entirely on fungi for seed germination under natural conditions. In a previous study, we have successfully isolated and identified the mycorrhizal fungus Coprinellus disseminatus which was able to induce the germination of C. appendiculata seeds. We then speculated that C. disseminatus may do so by breaking the testa imposed dormancy of the seeds. In this study, biochemical and transcriptomic analyses were used to characterize the germination of C. appendiculata seeds, collected at different stages of germination, as affected by C. disseminatus. RESULTS: The lignocellulose in the seeds coat of C. appendiculata was degraded by the mycorrhizal fungus resulting in facilitated absorption of water. The rate of decline in lignin content was 67 and 73% at 6 and 12 days after sowing, respectively. The water content increased from 13 to 90% during symbiosis. A total of 15,382 genes showing significantly different levels of expression (log2 FPKM≥2.0, Qvalue≤0.05) were successfully identified among all libraries, where the highest number of DEGs was shared between 6 days versus 0 day after symbiotic germination. Gene annotation results suggested that 15 key genes related water-status, such as DHN gene family and Xero 1 were down-regulated. The genes zeaxanthin epoxidase ZEP, 9-cis-epoxycarotenoid dioxygenase NCED3 and ß-carotene hydroxylase involved in the biosynthesis of abscisic acid (ABA) were significantly down-regulated in 6 days as compared to 0 day after symbiotic germination. CONCLUSIONS: This work demonstrates that mycorrhizal fungus C. disseminatus can stimulate C. appendiculata seeds germination through a mechanism of breaking the testa imposed dormancy and inducing water absorption of the embryo.


Assuntos
Agaricales/fisiologia , Micorrizas/fisiologia , Orchidaceae/fisiologia , Simbiose , Agaricales/genética , Agaricales/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Perfilação da Expressão Gênica , Genes de Plantas , Germinação , Lignina/metabolismo , Anotação de Sequência Molecular , Orchidaceae/crescimento & desenvolvimento , Orchidaceae/microbiologia , RNA-Seq , Sementes/crescimento & desenvolvimento , Sementes/microbiologia , Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...