Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.802
Filtrar
1.
J Agric Food Chem ; 68(3): 899-906, 2020 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-31891505

RESUMO

Convenient, portable, and low-cost multiplex nucleic acid testing (NAT) systems are the trends in the fields of food safety, environmental microorganisms, molecular diagnosis, etc. In this study, we developed a novel system for visual monitoring of multiple nucleic acids combining a mini-disk capillary array (diameter = 17 mm, embedded with 6-10 capillaries), visual loop-mediated isothermal amplification (LAMP), and quick DNA extraction called mDC-LAMP. The performance and applicability of mDC-LAMP in testing multiple nucleic acids were evaluated and verified employing genetically modified contents analysis as an example. All of the results confirmed that mDC-LAMP has the advantages of high specificity without any cross contamination, high sensitivity with a limit of detection of 25 copies/reaction, high throughput with flexible channel sensors, easy fabrication, and low costs. We believe that mDC-LAMP is a competitive choice for on-spot monitoring of multiple nucleic acids in terms of the easy fabrication/operation, low costs, and suitable performance presented in the nucleic acids test.


Assuntos
Técnicas de Amplificação de Ácido Nucleico/métodos , Plantas Geneticamente Modificadas/genética , DNA de Plantas/genética , Alimentos Geneticamente Modificados , Limite de Detecção , Técnicas de Amplificação de Ácido Nucleico/economia , Reação em Cadeia da Polimerase , Zea mays/genética
2.
Food Chem ; 305: 125426, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31522124

RESUMO

Genetically modified (GM) Atlantic salmon, AquAdvantage (AquAd), was the first GM animal approved officially for human consumption. Many countries monitor the use of this product under their GM regulations, but a pragmatic system for AquAd-specific detection is needed. Here, we developed a real-time polymerase chain reaction method with high sensitivity for detection of AquAd in foods. This method showed high specificity for the AquAd transgene and the detection limit was 12.5-25 targeted DNA copies per test reaction. An inter-laboratory study using the method developed demonstrated reproducibility at >0.1% (w/w) AquAd content.


Assuntos
Alimentos Geneticamente Modificados , Reação em Cadeia da Polimerase em Tempo Real/métodos , Salmo salar/genética , Alimentos Marinhos/análise , Animais , Animais Geneticamente Modificados , Reprodutibilidade dos Testes
3.
J Agric Food Chem ; 67(49): 13506-13508, 2019 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-31725270

RESUMO

Since 2011, the European Food Safety Authority (EFSA) has implemented combined difference and equivalence testing of agronomic, phenotypic, and composition data in the risk assessment of genetically modified crops. A short perspective is provided on misunderstandings that have shown up in published criticisms of the approach to equivalence testing, different viewpoints regarding the questions to be answered, and new developments in statistical modeling.


Assuntos
Produtos Agrícolas/química , Análise de Alimentos/métodos , Plantas Geneticamente Modificadas/química , Qualidade de Produtos para o Consumidor , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Inocuidade dos Alimentos , Alimentos Geneticamente Modificados , Humanos , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Medição de Risco
4.
Ying Yong Sheng Tai Xue Bao ; 30(8): 2845-2853, 2019 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-31418211

RESUMO

The safety of feed derived from genetically modified (GM) crops is one of the focuses of attention. To evaluate the ecotoxicological effects of transgenic mCry1Ac maize (BT799) on fish, zebrafish (Danio rerio) were fed extruded feeds containing either 20% GM maize (GMF) or its parental control maize (PF), GM maize meal (GMM) or its parental control maize meal (PMM), and a control commercial feed (CF), respectively. The growth performance, histopathology, reproduction, antioxidant enzyme activity and mRNA expression levels of sensitive protein in the liver were investigated over the course of a 98-day feeding trial. The results showed that transgenic mCry1Ac maize had no significant effect on growth, histopathology of the liver, brain and intestinal tract, fecundity, hatching rate of fertilized eggs, superoxide dismutase (SOD), catalase (CAT) activity, mRNA expression levels of SOD and CAT, or heat shock protein 70 (HSP70) and vitellogenin (VTG) in the liver. However, zebrafish fed the commercial feed exhibited significantly greater weight, longer length, and higher specific growth rate than those fed feeds (GMF and PF) and maize meals (GMM and PMM). The hatching rate of zebrafish in the feed groups was significantly lower than that of the maize meal groups and the commercial feed group. The mRNA transcriptional levels of VTG were significantly higher in the liver for the feed groups (3.85±0.76) than that for the maize meal groups (1.60±0.56). These results suggest that transgenic mCry1Ac maize has no ecotoxicological effects on zebrafish. However, the differences in nutrient composition and palatability between the extruded experimental feeds and the commercial feed would lead to significant diffe-rences in some parameters.


Assuntos
Alimentos Geneticamente Modificados , Zea mays/genética , Ração Animal , Animais , Plantas Geneticamente Modificadas , Testes de Toxicidade , Peixe-Zebra/fisiologia
6.
Transgenic Res ; 28(Suppl 2): 111-117, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31321693

RESUMO

Foundational activities at the international level underlie current risk and safety assessment approaches for genetically engineered/modified organisms (GEOs/GMOs). Early risk assessment considerations beginning with the OECD 'Blue Book' established risk/safety assessment as the characterization of the organism and its environmental release; establishment and persistence in the environment; and human and ecological effects, analyzed in principle through existing methods. Important in this context was recognition that GEOs/GMOs as a class did not represent new risks relative to products of traditional plant breeding and that any incremental risk would need to be established on a stepwise case-by-case comparative basis with existing crops and derived-foods as the baseline. Accordingly, concepts of familiarity and substantial equivalence were advanced by OECD and WHO as ways to establish a risk analysis baseline for determining whether and to what extent risk/safety assessment was needed. Regulatory implementations of this paradigm have skewed to increasingly complex portfolios of studies rather than adhering to analysis which is formulated to fit the risk/safety questions relevant to a given case. Plants produced through genome editing technology will benefit from risk analysis that implements sound problem formulation to guide the need for and nature of risk/safety assessments.


Assuntos
Produtos Agrícolas/genética , Inocuidade dos Alimentos , Alimentos Geneticamente Modificados , Plantas Geneticamente Modificadas/genética , Ecologia , Edição de Genes , Humanos , Medição de Risco/tendências
7.
Transgenic Res ; 28(Suppl 2): 135-145, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31321696

RESUMO

Phenotypic characterisation provides important information about novel crops that helps their developers to make technical and commercial decisions. Phenotypic characterisation comprises two activities. Product characterisation checks that the novel crop has the qualities of a viable product-the intended traits have been introduced and work as expected, and no unintended changes have been made that will adversely affect the performance of the final product. Risk assessment evaluates whether the intended and unintended changes are likely to harm human health or the environment. Product characterisation follows the principles of problem formulation, namely that the characteristics required in the final product are defined and criteria to decide whether the novel crop will have these properties are set. The hypothesis that the novel crop meets the criteria are tested during product development. If the hypothesis is corroborated, development continues, and if the hypothesis is falsified, the product is redesigned or its development is halted. Risk assessment should follow the same principles. Criteria that indicate the crop poses unacceptable risk should be set, and the hypothesis that the crop does not possess those properties should be tested. However, risk assessment, particularly when considering unintended changes introduced by new plant breeding methods such as gene editing, often ignores these principles. Instead, phenotypic characterisation seeks to catalogue all unintended changes by profiling methods and then proceeds to work out whether any of the changes are important. This paper argues that profiling is an inefficient and ineffective method of phenotypic characterisation for risk assessment. It discusses reasons why profiling is favoured and corrects some misconceptions about problem formulation.


Assuntos
Cruzamento , Produtos Agrícolas/genética , Plantas Geneticamente Modificadas/genética , Qualidade de Produtos para o Consumidor , Produtos Agrícolas/crescimento & desenvolvimento , Alimentos Geneticamente Modificados , Humanos , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Medição de Risco
8.
Transgenic Res ; 28(Suppl 2): 147-150, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31321697

RESUMO

Argentina is a world leader in regards to regulation and adoption of genetically modified (GM) crops. As a consequence, the regulatory aspects of gene editing applied to agriculture were considered proactively by the Argentinian regulators, who implemented simple but solid pioneering regulatory criteria for gene edited crops. At present, the Argentine regulatory system is fully able to establish if a gene-edited crop should be classified (and handled) either as a GM crop or a conventional new variety. To this end, the concept of "novel combination of genetic material" derived from the Cartagena Protocol on Biosafety is of decisive importance. After some pilot cases that have been managed under this criteria, now applicants appreciate the ease, speed and predictability of the regulation. Moreover, it has been considered by other countries in the course of developing their own regulations, thus acting also as a harmonization factor for the safe and effective insertion of these technologies in the global market.


Assuntos
Agricultura/tendências , Biotecnologia/tendências , Produtos Agrícolas/genética , Plantas Geneticamente Modificadas/genética , Argentina , Alimentos Geneticamente Modificados , Edição de Genes/métodos , Genoma de Planta/genética , Humanos , Plantas Geneticamente Modificadas/crescimento & desenvolvimento
9.
Transgenic Res ; 28(Suppl 2): 151-159, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31321698

RESUMO

Australia's gene technology regulatory scheme (GT Scheme) regulates activities with genetically modified organisms (GMOs, organisms modified by gene technology), including environmental releases. The scope of regulation, i.e. what organisms are and are not regulated, is set by the Gene Technology Act 2000 (GT Act) and GT Regulations 2001 (GT Regulations). The GT Act gives broad, overarching definitions of 'gene technology' and 'GMO' but also provides for exclusions and inclusions in the GT Regulations. Whether organisms developed with genome editing techniques are, or should be, regulated under countries' national GMO laws is the subject of debate globally. These issues are also under active consideration in Australia. A technical review of the GT Regulations was initiated in 2016 to clarify the regulatory status of genome editing. Proposed draft amendments are structured around whether the process involves introduction of a nucleic acid template. If agreed, amendments would exclude from regulation organisms produced using site directed nuclease (SDN) 1 techniques while organisms produced using oligonucleotide mutagenesis, SDN-2 or SDN-3 would continue to be regulated as GMOs. The review of the GT Regulations is still ongoing and no legislative changes have been made to the GT Regulations. A broader policy review of the GT Scheme was undertaken in 2017-2018 and as a result further work will be undertaken on the scope and definitions of the GT Act in light of ongoing developments.


Assuntos
Alimentos Geneticamente Modificados , Edição de Genes/tendências , Engenharia Genética/tendências , Organismos Geneticamente Modificados/genética , União Europeia , Humanos
10.
Transgenic Res ; 28(Suppl 2): 165-168, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31321700

RESUMO

The development of gene editing techniques, capable of producing plants and animals with new and improved traits, is revolutionizing the world of plant and animal breeding and rapidly advancing to commercial reality. However, from a regulatory standpoint the Government of Canada views gene editing as another tool that will join current methods used to develop desirable traits in plants and animals. This is because Canada focusses on the potential risk resulting from the novelty of the trait, or plant or animal product entering the Canadian environment or market place, rather than the process or method by which it was created. The Canadian Food Inspection Agency is responsible for the regulation of the environmental release of plants with novel traits, and novel livestock feeds, while Health Canada is responsible for the regulation of novel foods. Environment and Climate Change Canada, in partnership with Health Canada, regulates modified animals for entry into the environment. In all cases, these novel products may be the result of conventional breeding, mutagenesis, recombinant DNA techniques or other methods of plant or animal breeding such as gene editing. This novelty approach allows the Canadian regulatory system to efficiently adjust to any new developments in the science of plant and animal breeding and allows for risk-appropriate regulatory decisions. This approach encourages innovation while maintaining science-based regulatory expertise. Canadian regulators work cooperatively with proponents to determine if their gene editing-derived product meets the definition of a novel product, and whether it would be subject to a pre-market assessment. Therefore, Canada's existing regulatory system is well positioned to accommodate any new innovations or technologies in plant or animal breeding, including gene editing.


Assuntos
Produtos Agrícolas/genética , Edição de Genes/tendências , Engenharia Genética/legislação & jurisprudência , Genoma de Planta/genética , Animais , Canadá , Produtos Agrícolas/crescimento & desenvolvimento , Alimentos Geneticamente Modificados , Edição de Genes/legislação & jurisprudência , Gado/genética , Gado/crescimento & desenvolvimento , Melhoramento Vegetal/legislação & jurisprudência , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento
11.
Transgenic Res ; 28(Suppl 2): 169-174, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31321701

RESUMO

The European Union (EU) legislation on genetically modified organisms (GMOs) aims to ensure a high level of protection for human, animal and environmental health and a well-functioning EU internal market. The framework regulates the release of GMOs into the environment and their use as, or in, food and feed. It has three main pillars: pre-market authorisation based on a prior risk assessment, traceability and labelling. Within this legal framework, the EU has authorised the placing on the market of 118 GMOs so far. These have been obtained through long-standing techniques of genetic modification, namely transgenesis. Following the adoption of the GMO legislation, new techniques of genetic modification, including new mutagenesis techniques, have been developed, which have raised questions regarding the applicability of the GMO legislation and attracted a lot of attention from stakeholders and the general public. This article provides an overview of EU GMO legislation and implementation of the EU Court of Justice ruling on organisms obtained by mutagenesis techniques, issued in July 2018. It also updates on the recent initiatives by the European Commission and EU Member States on new developments in biotechnology. The manuscript is based on the author's contribution at the OECD Conference on Genome Editing, Applications in Agriculture, Implications for Health, Environment and Regulation held in Paris on 28-29 June 2018. It is complemented with updated information.


Assuntos
Biotecnologia , Edição de Genes/métodos , Organismos Geneticamente Modificados/genética , Plantas Geneticamente Modificadas/genética , União Europeia , Alimentos Geneticamente Modificados , Humanos , Organismos Geneticamente Modificados/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Medição de Risco
12.
GM Crops Food ; 10(3): 159-169, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31272330

RESUMO

Significant attention has been drawn to the adventitious and technically unavoidable presence of genetically modified (GM) organisms in the food and feed imported into the European Union (EU), while the potential presence of GM seeds in material for cultivation is less studied. Here we report a study from an EU member state, Latvia, during years 2017-2018 regarding monitoring for the presence of GM seeds in certified seed and animal feed material. Eighty-two and 28 samples of seeds intended for cultivation were analyzed in 2017 and 2018, respectively. One soybean sample contained MON40-3-2 soybean seeds (0.09 ± 0.01%) and one maize sample contained MON810 maize seeds (0.08 ± 0.01%). In addition, 102 samples of feed imported from outside of the EU or produced locally were also analyzed for the presence of genetically modified organisms (GMOs) and viability of grains. One oilseed rape cake sample contained GT73 (1.04 ± 0.01%) and one soybean cake sample contained MON40-3-2 (<0.045%). One sample of declared MON40-3-2 GM soybean cake was confirmed to be positive, with MON40-3-2 content of 94.78 ± 10.01%. One soybean sample submitted by feed producer and originating from Argentina contained 54.9 ± 1.1% of MON40-3-2 and one rapeseed sample originating from Ukraine contained 5.30 ± 3.95% of GT73. Although only two seed samples contained low levels of GMOs authorized in the EU for food and feed uses, this study reinforced the need to maintain regular monitoring programs that assist farmers in their efforts to comply with the current EU GMO legislation.


Assuntos
Ração Animal/análise , Contaminação de Alimentos/análise , Plantas Geneticamente Modificadas/genética , Animais , União Europeia , Alimentos Geneticamente Modificados/classificação , Germinação , Letônia , Sementes/genética , Soja/genética , Zea mays/genética
13.
J Agric Food Chem ; 67(28): 7986-7994, 2019 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-31282158

RESUMO

Compositional analyses were performed on samples of rice grain, straw, and derived bran obtained from golden rice event GR2E and near-isogenic control PSBRc82 rice grown at four locations in the Philippines during 2015 and 2016. Grain samples were analyzed for key nutritional components, including proximates, fiber, polysaccharides, fatty acids, amino acids, minerals, vitamins, and antinutrients. Samples of straw and bran were analyzed for proximates and minerals. The only biologically meaningful difference between GR2E and control rice was in levels of ß-carotene and other provitamin A carotenoids in the grain. Except for ß-carotene and related carotenoids, the compositional parameters of GR2E rice were within the range of natural variability of those components in conventional rice varieties with a history of safe consumption. Mean provitamin A concentrations in milled rice of GR2E can contribute up to 89-113% and 57-99% of the estimated average requirement for vitamin A for preschool children in Bangladesh and the Philippines, respectively.


Assuntos
Oryza/genética , Plantas Geneticamente Modificadas/química , Sementes/química , Aminoácidos/análise , Aminoácidos/metabolismo , Bangladesh , Ácidos Graxos/análise , Ácidos Graxos/metabolismo , Alimentos Geneticamente Modificados , Engenharia Genética , Valor Nutritivo , Oryza/química , Oryza/metabolismo , Filipinas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Provitaminas/análise , Provitaminas/metabolismo , Sementes/genética , Sementes/metabolismo , Vitamina A/análise , Vitamina A/metabolismo , beta Caroteno/análise , beta Caroteno/metabolismo
14.
J Agric Food Chem ; 67(26): 7466-7474, 2019 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-31184886

RESUMO

The ZMM28 protein encoded by the zmm28 gene is endogenous to maize. DP202216 maize was genetically modified to increase and extend expression of the zmm28 gene relative to native zmm28 gene expression, resulting in plants with enhanced grain yield potential. Evaluation of the history of safe use (HOSU) is one component of the safety assessment framework for a newly expressed protein in a GM crop. The deduced amino acid sequence of the introduced ZMM28 protein in DP202216 maize is identical to the ZMM28 protein in nonmodified conventional maize. The ZMM28 protein has also been found in selected varieties of sweet corn kernels, and closely related proteins are found in other commonly consumed food crops. Concentrations of the ZMM28 protein in event DP202216 maize, conventional maize, and sweet corn are reported. This information supports, in part, the evaluation of HOSU, which can be leveraged in the safety assessment of the ZMM28 protein. Additional studies will be considered in the food and feed safety assessment of the DP202216 maize event.


Assuntos
Proteínas de Plantas/química , Plantas Geneticamente Modificadas/química , Zea mays/química , Sequência de Aminoácidos , Qualidade de Produtos para o Consumidor , Inocuidade dos Alimentos , Alimentos Geneticamente Modificados , Humanos , Dados de Sequência Molecular , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Alinhamento de Sequência , Zea mays/genética , Zea mays/metabolismo
16.
Nat Plants ; 5(6): 563-567, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31160704

RESUMO

The potential for using genetic modification (GM) to enhance the nutritional composition of crops (for either direct human consumption or as animal feed) has been recognized since the dawn of the GM era, with such 'output' traits being considered as distinct, if not potentially superior, to 'input' traits such as herbicide tolerance and insect resistance. However, while input traits have successfully been used and now form the basis of GM agriculture, output trait GM crops are still lagging behind after 20 years. This is despite the demonstrable benefits that some nutritionally enhanced crops would bring and the proven value of GM technologies. This Review considers the present state of nutritional enhancement through GM, highlighting two high-profile examples of nutritional enhancement-Golden Rice and omega-3 fish oil crops-systematically evaluating the progress, problems and pitfalls associated with the development of these traits. This includes not just the underlying metabolic engineering, but also the requirements to demonstrate efficacy and field performance of the crops and consideration of regulatory, intellectual property and consumer acceptance issues.


Assuntos
Produtos Agrícolas/genética , Alimentos Geneticamente Modificados , Valor Nutritivo , Plantas Geneticamente Modificadas , Animais , Ácidos Graxos Ômega-3/genética , Peixes/genética , Humanos , Nutrigenômica , Oryza/genética
17.
Food Chem Toxicol ; 131: 110547, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31170423

RESUMO

Safety concerns arising from the consumption of foods derived from genetically modified (GM) crops remains a controversial subject. We report here a faecal microbiota compositional analysis in Wistar rats from the GMO90 + study, which fed glyphosate-tolerant NK603 (+/- Roundup application) and Bt toxin MON810 GM maize for 6 months in comparison to their closest non-GM isogenic lines. We first integrated the faecal microbiota compositional data with results from plasma metabolomics to understand which bacterial species can influence host metabolism. Coriobacteriaceae and Acetatifactor significantly predicted plasma metabolic profile in males, while Bifidobacterium and Ruminococcus were able to predict female plasma metabolites. We then investigated the differences in fecal microbiota composition between group of rats fed MON810 or NK603 GM maize in comparison to their isogenic lines. Bacterial community richness was not altered by the test diets. There were no statistically significant differences in taxa abundance in the rat faecal microbiota that we could attribute to the consumption of either MON810 or NK603. We show that the consumption of the widely cultivated GM maize varieties NK603 and MON810 even up to 33% of the total diet had no effect on the status of the faecal microbiota compared to non-GM near isogenic lines.


Assuntos
Fezes/microbiologia , Alimentos Geneticamente Modificados , Microbioma Gastrointestinal/fisiologia , Metaboloma/fisiologia , Plantas Geneticamente Modificadas , Zea mays , Animais , Dieta , Feminino , Masculino , RNA Bacteriano/análise , RNA Ribossômico 16S/análise , Ratos Wistar
20.
Nat Hum Behav ; 3(3): 251-256, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30953007

RESUMO

There is widespread agreement among scientists that genetically modified foods are safe to consume1,2 and have the potential to provide substantial benefits to humankind3. However, many people still harbour concerns about them or oppose their use4,5. In a nationally representative sample of US adults, we find that as extremity of opposition to and concern about genetically modified foods increases, objective knowledge about science and genetics decreases, but perceived understanding of genetically modified foods increases. Extreme opponents know the least, but think they know the most. Moreover, the relationship between self-assessed and objective knowledge shifts from positive to negative at high levels of opposition. Similar results were obtained in a parallel study with representative samples from the United States, France and Germany, and in a study testing attitudes about a medical application of genetic engineering technology (gene therapy). This pattern did not emerge, however, for attitudes and beliefs about climate change.


Assuntos
Alimentos Geneticamente Modificados , Conhecimentos, Atitudes e Prática em Saúde , Opinião Pública , Autoavaliação , Adulto , Feminino , França , Alemanha , Humanos , Conhecimento , Masculino , Pessoa de Meia-Idade , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA