Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.670
Filtrar
1.
J Cell Mol Med ; 25(12): 5586-5601, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33982835

RESUMO

Alternative polarization of macrophages regulates multiple biological processes. While M1-polarized macrophages generally mediate rapid immune responses, M2-polarized macrophages induce chronic and mild immune responses. In either case, polyunsaturated fatty acid (PUFA)-derived lipid mediators act as both products and regulators of macrophages. Prostaglandin E3 (PGE3 ) is an eicosanoid derived from eicosapentaenoic acid, which is converted by cyclooxygenase, followed by prostaglandin E synthase successively. We found that PGE3 played an anti-inflammatory role by inhibiting LPS and interferon-γ-induced M1 polarization and promoting interleukin-4-mediated M2 polarization (M2a). Further, we found that although PGE3 had no direct effect on the growth of prostate cancer cells in vitro, PGE3 could inhibit prostate cancer in vivo in a nude mouse model of neoplasia. Notably, we found that PGE3 significantly inhibited prostate cancer cell growth in a cancer cell-macrophage co-culture system. Experimental results showed that PGE3 inhibited the polarization of tumour-associated M2 macrophages (TAM), consequently producing indirect anti-tumour activity. Mechanistically, we identified that PGE3 regulated the expression and activation of protein kinase A, which is critical for macrophage polarization. In summary, this study indicates that PGE3 can selectively promote M2a polarization, while inhibiting M1 and TAM polarization, thus exerting an anti-inflammatory effect and anti-tumour effect in prostate cancer.


Assuntos
Alprostadil/análogos & derivados , Anti-Inflamatórios/farmacologia , Diferenciação Celular , Inflamação/tratamento farmacológico , Ativação de Macrófagos/imunologia , Neoplasias da Próstata/tratamento farmacológico , Alprostadil/farmacologia , Animais , Polaridade Celular , Humanos , Inflamação/imunologia , Inflamação/patologia , Ativação de Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/patologia , Transdução de Sinais
2.
Int J Mol Sci ; 22(9)2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33925005

RESUMO

To elucidate the additive effects of an EP2 agonist, omidenepag (OMD) or butaprost (Buta) on the Rho-associated coiled-coil-containing protein kinase (ROCK) inhibitor, ripasudil (Rip) on adipose tissue, two- or three-dimension (2D or 3D) cultures of 3T3-L1 cells were analyzed by lipid staining, the mRNA expression of adipogenesis-related genes, extracellular matrix (ECM) molecules including collagen (Col) -1, -4 and -6, and fibronectin (Fn), and the sizes and physical properties of 3D organoids, as measured by a micro-squeezer. The results indicate that adipogenesis induced (1) an enlargement of the 3D organoids; (2) a substantial enhancement in lipid staining as well as the expression of the Pparγ, Ap2 and Leptin genes; (3) a significant softening of the 3D organoids, the effects of which were all enhanced by Rip except for Pparγ expression; and (4) a significant downregulation in Col1 and Fn, and a significant upregulation in Col4, Col6, the effects of which were unchanged by Rip. When adding the EP2 agonist to Rip, (1) the sizes of the 3D organoids were reduced substantially; (2) lipid staining was increased (OMD), or decreased (Buta); (3) the stiffness of the 3D organoids was substantially increased in Buta; (4-1) the expression of Pparγ was suppressed (2D, OMD) or increased (2D, Buta), and the expressions of Ap2 were downregulated (2D, 3D) and Leptin was increased (2D) or decreased (3D), (4-2) all the expressions of four ECM molecules were upregulated in 2D (2D), and in 3D, the expression of Col1, Col4 was upregulated. The collective findings reported herein indicate that the addition of an EP2 agonist, OMD or Buta significantly but differently modulate the Rip-induced effects on adipogenesis and the physical properties of 2D and 3D cultured 3T3-L1 cells.


Assuntos
Adipogenia/efeitos dos fármacos , Alprostadil/análogos & derivados , Glicina/análogos & derivados , Isoquinolinas/farmacologia , Pirazóis/farmacologia , Piridinas/farmacologia , Sulfonamidas/farmacologia , Quinases Associadas a rho/antagonistas & inibidores , Células 3T3-L1 , Alprostadil/farmacologia , Animais , Avaliação Pré-Clínica de Medicamentos , Interações Medicamentosas , Glicina/farmacologia , Camundongos , Organoides , Receptores de Prostaglandina E Subtipo EP2/agonistas
3.
Eur Rev Med Pharmacol Sci ; 25(3): 1592-1599, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33629328

RESUMO

OBJECTIVE: The aim of this study was to explore the role of alprostadil (Alp) in cecal ligation and puncture (CLP)-induced septic injury in rats and its possible mechanism of action. MATERIALS AND METHODS: Wistar rats were randomly assigned into three groups, including: Sham group (no CLP was performed), CLP group (CLP was conducted) and Alp group (Alp was injected after CLP). Serum liver function markers, pathological changes in liver tissues, alterations in the level of oxidative stress, activity of the Toll-like receptor 4 (TLR4)/nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway, and release of inflammatory factor tumor necrosis factor alpha (TNF-α) in the liver tissue homogenate were detected in each group. RESULTS: Compared with Sham group, the rats in CLP group had substantially elevated content of serum liver function markers, increased apoptotic liver cells, upregulated levels of oxidative stress, enhanced activity of the TLR4/NF-κB pathway, and increased release of TNF-α (p<0.05). Meanwhile, there were evident pathological changes under microscopic examination in CLP group compared with Sham group (p<0.05). In comparison with CLP group, Alp group exhibited significantly decreased concentrations of liver function markers, microscopic findings, such as decreased inflammatory cell infiltration in the interstitum, notably lowered proportion of apoptotic cells, decreased level of oxidative stress, weakened activity of the TLR4/NF-κB pathway and restrained release of TNF-α (p<0.05). Furthermore, normal morphology of liver cells was observed in Alp group compared with CLP group (p<0.05). CONCLUSIONS: Alp alleviates liver injury in septic rats by inhibiting the TLR4/NF-κB pathway.


Assuntos
Alprostadil/farmacologia , Fígado/efeitos dos fármacos , NF-kappa B/metabolismo , Sepse/metabolismo , Receptor 4 Toll-Like/metabolismo , Animais , Ketamina , Fígado/lesões , Fígado/metabolismo , Masculino , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar , Sepse/induzido quimicamente , Xilazina
4.
Nat Chem Biol ; 17(1): 39-46, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32989297

RESUMO

Protein kinases control nearly every facet of cellular function. These key signaling nodes integrate diverse pathway inputs to regulate complex physiological processes, and aberrant kinase signaling is linked to numerous pathologies. While fluorescent protein-based biosensors have revolutionized the study of kinase signaling by allowing direct, spatiotemporally precise kinase activity measurements in living cells, powerful new molecular tools capable of robustly tracking kinase activity dynamics across diverse experimental contexts are needed to fully dissect the role of kinase signaling in physiology and disease. Here, we report the development of an ultrasensitive, second-generation excitation-ratiometric protein kinase A (PKA) activity reporter (ExRai-AKAR2), obtained via high-throughput linker library screening, that enables sensitive and rapid monitoring of live-cell PKA activity across multiple fluorescence detection modalities, including plate reading, cell sorting and one- or two-photon imaging. Notably, in vivo visual cortex imaging in awake mice reveals highly dynamic neuronal PKA activity rapidly recruited by forced locomotion.


Assuntos
Técnicas Biossensoriais , Proteínas Quinases Dependentes de AMP Cíclico/genética , Miócitos Cardíacos/enzimologia , Neurônios/enzimologia , Imagem Óptica/métodos , Alprostadil/farmacologia , Animais , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Di-Hidroxifenilalanina/farmacologia , Dinoprostona/farmacologia , Corantes Fluorescentes/química , Expressão Gênica , Biblioteca Gênica , Genes Reporter , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Células HEK293 , Células HeLa , Ensaios de Triagem em Larga Escala , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Hipocampo/enzimologia , Humanos , Camundongos , Microscopia de Fluorescência por Excitação Multifotônica , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/ultraestrutura , Neurônios/efeitos dos fármacos , Neurônios/ultraestrutura , Cultura Primária de Células , Transdução de Sinais
5.
Mol Med Rep ; 23(2)2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33300050

RESUMO

Post­cardiac arrest myocardial dysfunction (PAMD) is a leading cause of death in patients undergoing resuscitation patients following cardiac arrest (CA). Although prostaglandin E1 (PGE1) is a clinical drug used to mitigate ischemia injury, its effect on PAMD remains unknown. In the present study, the protective effects of PGE1 on PAMD were evaluated in a rat model of CA and in a hypoxia­reoxygenation (H/R) in vitro model. Rats were randomly assigned to CA, CA+PGE1 or sham groups. Asphyxia for 8 min followed by cardiopulmonary resuscitation were performed in the CA and CA+PGE1 groups. PGE1 was intravenously administered at the onset of return of spontaneous circulation (ROSC). PGE1 treatment significantly increased the ejection fraction and cardiac output within 4 h following ROSC and improved the survival rate, compared with the CA group. Moreover, PGE1 inactivated GSK3ß, prevented mitochondrial permeability transition pore (mPTP) opening, while reducing cytochrome c and cleaved caspase­3 expression, as well as cardiomyocyte apoptosis in the rat model. To examine the underlying mechanism, H/R H9c2 cells were treated with PGE1 at the start of reoxygenation. The changes in GSK3ß activity, mPTP opening, cytochrome c and cleaved caspase­3 expression, and apoptosis of H9c2 cells were consistent with those noted in vivo. The results indicated that PGE1 attenuated PAMD by inhibiting mitochondria­mediated cardiomyocyte apoptosis.


Assuntos
Alprostadil/farmacologia , Apoptose/efeitos dos fármacos , Parada Cardíaca/metabolismo , Mitocôndrias Cardíacas/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Miócitos Cardíacos/metabolismo , Animais , Parada Cardíaca/tratamento farmacológico , Parada Cardíaca/patologia , Masculino , Mitocôndrias Cardíacas/patologia , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/patologia , Ratos , Ratos Wistar
6.
Prostaglandins Other Lipid Mediat ; 151: 106481, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33002595

RESUMO

Duloxetine, a serotonin-norepinephrine reuptake inhibitor, is currently recommended as a useful medicine to chronic pain including low back pain. However, as the analogy of classical selective serotonin reuptake inhibitors, there is a concern to deteriorate osteoporosis with remaining to clarify the exact mechanism of duloxetine in bone metabolism. We have previously reported that prostaglandin E1 (PGE1) induces the synthesis of both osteoprotegerin (OPG) and interleukin-6 (IL-6), essential regulators of bone metabolism, in osteoblast-like MC3T3-E1 cells. Based upon them, we herein investigated the mechanism whereby the effect of duloxetine on the synthesis of OPG and IL-6 induced by PGE1 in these cells. Duloxetine enhanced the release from MC3T3-E1 cells of both OPG and IL-6 stimulated by PGE1. However, reboxetine, a selective and specific inhibitor of norepinephrine reuptake, failed to affect the PGE1-induced release of OPG or IL-6. Oppositely, fluvoxamine and sertraline, agents belonging to the class of selective serotonin reuptake inhibitor, upregulated the PGE1-stimulated release of both OPG and IL-6. Duloxetine amplified the expression of OPG mRNA and IL-6 mRNA stimulated by PGE1. Duloxetine strengthened the PGE1-induced p38 MAP kinase phosphorylation, which was amplified by fluvoxamine as well. SB203880, an inhibitor of p38 MAP kinase, suppressed the amplifying effects by duloxetine or fluvoxamine on the PGE1-stimulated release of OPG and IL-6. These results strongly suggest that duloxetine could strengthen osteoblast activation by PGE1 through the upregulation of p38 MAP kinase, leading to increasing the synthesis of OPG and IL-6.


Assuntos
Alprostadil/farmacologia , Cloridrato de Duloxetina/farmacologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Células 3T3 , Animais , Interações Medicamentosas , Camundongos , Osteoblastos/citologia , Fosforilação/efeitos dos fármacos , Resveratrol/farmacologia , Ativação Transcricional/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
7.
Drug Des Devel Ther ; 14: 4407-4422, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33122886

RESUMO

Objective: Coronary microembolization (CME) results in progressive contractile dysfunction associated with cardiomyocyte apoptosis. Alprostadil injection improves microcirculation, which is effective in treating various cardiovascular disorders. However, the therapeutic effects of alprostadil in CME-induced myocardia injury remain unknown. Therefore, we evaluated the effects of alprostadil injection on cardiac protection in a rat model of CME and explored the underlying mechanisms. Methods: A rat model of CME was established by injecting polyethylene microspheres into the left ventricle. After injection of microspheres, rats in the alprostadil group received alprostadil via tail vein within 2 minutes. Cardiac function, histological alterations in myocardium, serum c-troponin I (cTnI) levels, myocardium adenosine triphosphate (ATP) concentrations, the activity of superoxide dismutase (SOD) and malondialdehyde (MDA) content in myocardium, and myocardial apoptosis-related proteins were detected 12 hours after CME modeling. Results: Compared with the Sham group, ATP concentrations, SOD activity in the myocardium, and cardiac function were significantly decreased in a rat model of CME. In addition, serum cTnI levels, MDA content, expression levels of pro-apoptotic proteins, and the number of TUNEL-positive nuclei were remarkably higher in CME group than those in the Sham group. However, alprostadil treatment notably reduced serum cTnI levels and expression levels of pro-apoptotic proteins, while noticeably improved cardiac function, and accelerated SOD activity in the myocardium following CME. Additionally, it was unveiled that the protective effects of alprostadil injection inhibit CME-induced myocardial apoptosis in the myocardium potentially through regulation of the GSK-3ß/Nrf2/HO-1 signaling pathway. Conclusion: Alprostadil injection seems to significantly suppress oxidative stress, alleviate myocardial apoptosis in the myocardium, and improve cardiac systolic and diastolic functions following CME by regulating the GSK-3ß/Nrf2/HO-1 signaling pathway.


Assuntos
Alprostadil/farmacologia , Apoptose/efeitos dos fármacos , Infarto do Miocárdio/tratamento farmacológico , Miócitos Cardíacos/efeitos dos fármacos , Alprostadil/administração & dosagem , Animais , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Glicogênio Sintase Quinase 3 beta/metabolismo , Heme Oxigenase (Desciclizante)/antagonistas & inibidores , Heme Oxigenase (Desciclizante)/metabolismo , Masculino , Estrutura Molecular , Infarto do Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Fator 2 Relacionado a NF-E2/antagonistas & inibidores , Fator 2 Relacionado a NF-E2/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade
8.
Invest Ophthalmol Vis Sci ; 61(8): 44, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32725213

RESUMO

Purpose: Cyclic adenosine monophosphate (cAMP) and peroxisome proliferator-activated receptor alpha (PPARα) levels mediate extracellular matrix (ECM) changes by altering the levels of hypoxia-inducible factor 1-alpha (HIF-1α) in various tissues. We aimed to determine, in the sclera of guinea pigs, whether a prostanoid receptor (EP2)-linked cAMP modulation affects PPARα and HIF-1α signaling during myopia. Methods: Three-week-old guinea pigs (n = 20 in each group), were monocularly injected with either an EP2 agonist (butaprost 1 µmol/L/10 µmol/L), an antagonist (AH6809 10 µmol/L/30 µmol/L) or a vehicle solution for two weeks during normal ocular growth. Separate sets of animals received these injections and underwent form deprivation (FD) simultaneously. Refraction and axial length (AL) were measured at two weeks, followed by scleral tissue isolation for quantitative PCR (qPCR) analysis (n = 10) and cAMP detection (n = 10) using a radioimmunoassay. Results: Butaprost induced myopia development during normal ocular growth, with proportional increases in AL and cAMP levels. FD did not augment the magnitude of myopia or cAMP elevations in these agonist-injected eyes. AH6809 suppressed cAMP increases and myopia progression during FD, but had no effect in a normal visual environment. Of the diverse set of 27 genes related to cAMP, PPARα and HIF-1α signaling and ECM remodeling, butaprost differentially regulated 15 of them during myopia development. AH6809 injections during FD negated such differential gene expressions. Conclusion: EP2 agonism increased cAMP and HIF-1α signaling subsequent to declines in PPARα and RXR mRNA levels, which in turn decreased scleral fibrosis and promoted myopia. EP2 antagonism instead inhibited each of these responses. Our data suggest that EP2 suppression may sustain scleral ECM structure and inhibit myopia development.


Assuntos
Alprostadil/análogos & derivados , Matriz Extracelular , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Miopia Degenerativa , PPAR alfa/metabolismo , Receptores de Prostaglandina E Subtipo EP2 , Xantonas/farmacologia , Alprostadil/farmacologia , Animais , AMP Cíclico/metabolismo , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Cobaias , Miopia Degenerativa/etiologia , Miopia Degenerativa/metabolismo , Miopia Degenerativa/prevenção & controle , Antagonistas de Prostaglandina/farmacologia , Prostaglandinas E Sintéticas/farmacologia , Receptores de Prostaglandina E Subtipo EP2/agonistas , Receptores de Prostaglandina E Subtipo EP2/antagonistas & inibidores , Receptores de Prostaglandina E Subtipo EP2/metabolismo , Transdução de Sinais
9.
J Mol Neurosci ; 70(12): 2041-2048, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32483670

RESUMO

Endothelial dysfunction greatly contributes to microcirculation disorder. The role of prostaglandin E1 (PGE1) in cerebral microcirculation was explored in vitro. LPS (0.5 or 1 µg/ml) was added to induce injury in human brain microvascular endothelial cells (HCMEC/D3). CCK-8 was applied to check viabilities of HCMEC/D3 before and after LPS treatment. Western blot witnessed the changes in protein expressions of inflammatory cytokines, IL-6 and TNF-α. Caspase-3/7 activity was analyzed and so were the protein expressions of pro-apoptotic gene BAX and anti-apoptotic gene Bcl-2. mRNA expressions of eNOS and GTPCH1 were evaluated by RT-qPCR. After overexpressing eNOS or GTPCH1 in LPS-induced HCMEC/D3 cells, viabilities, inflammatory cytokines, caspase-3/7 activity, and apoptosis-related genes were detected. The modulation of PGE1 in eNOS and GTPCH1 production, viability, inflammation, and apoptosis was investigated. The inhibitor of eNOS or GTPCH1 was introduced to examine impacts of eNOS or GTPCH1 could have on the PGE1 function. LPS decreased cell viabilities, eNOS and GTPCH1 expression, and promoted inflammation and apoptosis in HCMEC/D3 cells. Overexpressed eNOS or GTPCH1 promoted cell viabilities and suppressed inflammation and apoptosis. PGE1 enhanced viability and decreased inflammation and apoptosis in cells treated by LPS. PGE1 activated eNOS and GTPCH1 and inhibition of eNOS or GTPCH1 led to the attenuation of the protective functions of PGE1 in LPS-induced cells. PGE1 protected HCMEC/D3 cells from injuries induced by LPS by activation of eNOS and GTPCH1, suggesting that PGE1 might be used to help maintain cerebral microcirculation in future.


Assuntos
Alprostadil/farmacologia , Circulação Cerebrovascular , Células Endoteliais/metabolismo , GTP Cicloidrolase/metabolismo , Microcirculação , Óxido Nítrico Sintase Tipo III/metabolismo , Apoptose , Células Cultivadas , Células Endoteliais/efeitos dos fármacos , Endotélio Vascular/citologia , GTP Cicloidrolase/genética , Humanos , Lipopolissacarídeos/toxicidade , Óxido Nítrico Sintase Tipo III/genética , Sincalida/farmacologia
10.
Am J Physiol Regul Integr Comp Physiol ; 319(2): R233-R242, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32579854

RESUMO

Continuous infusion of prostaglandin E1 (PGE1) is used to maintain ductus arteriosus patency in infants with critical congenital heart disease, but it can also cause central apnea suggesting an effect on respiratory neural control. In this study, we investigated whether 1) PGE1 inhibits the various phases of the acute hypoxic ventilatory response (HVR; an index of respiratory control dysfunction) and increases apnea incidence in neonatal rats; and 2) whether these changes would be reversible with caffeine pretreatment. Whole body plethysmography was used to assess the HVR and apnea incidence in neonatal rats 2 h following a single bolus intraperitoneal injection of PGE1 with and without prior caffeine treatment. Untreated rats exhibited a biphasic HVR characterized by an initial increase in minute ventilation followed by a ventilatory decline of the late phase (~5th minute) of the HVR. PGE1 had a dose-dependent effect on the HVR. Contrary to our hypothesis, the lowest dose (1 µg/kg) of PGE1 prevented the ventilatory decline of the late phase of the HVR. However, PGE1 tended to increase postsigh apnea incidence and the coefficient of variability (CV) of breathing frequency, suggesting increased respiratory instability. PGE1 also decreased brainstem microglia mRNA and increased neuronal nitric oxide synthase (nNOS) and platelet-derived growth factor-ß (PDGF-ß) gene expression. Caffeine pretreatment prevented these effects of PGE1, and the adenosine A2A receptor inhibitor MSX-3 had similar preventative effects. Prostaglandin appears to have deleterious effects on brainstem respiratory control regions, possibly involving a microglial-dependent mechanism. The compensatory effects of caffeine or MSX-3 treatment raises the question of whether prostaglandin may also operate on an adenosine-dependent pathway.


Assuntos
Alprostadil/farmacologia , Tronco Encefálico/efeitos dos fármacos , Cafeína/farmacologia , Ventilação Pulmonar/efeitos dos fármacos , Respiração/efeitos dos fármacos , Animais , Tronco Encefálico/metabolismo , Microglia/efeitos dos fármacos , Microglia/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Pletismografia Total , Proteínas Proto-Oncogênicas c-sis/genética , Proteínas Proto-Oncogênicas c-sis/metabolismo , Antagonistas de Receptores Purinérgicos P1/farmacologia , Ratos , Ratos Sprague-Dawley
11.
Molecules ; 25(9)2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32392782

RESUMO

Transplantation is currently a routine method for treating end-stage organ failure. In recent years, there has been some progress in the development of an optimal composition of organ preservation solutions, improving the vital functions of the organ and allowing to extend its storage period until implantation into the recipient. Optimizations are mostly based on commercial solutions, routinely used to store grafts intended for transplantation. The paper reviews hormones with a potential nephroprotective effect, which were used to modify the composition of renal perfusion and preservation solutions. Their effectiveness as ingredients of preservation solutions was analysed based on a literature review. Hormones and trophic factors are innovative preservation solution supplements. They have a pleiotropic effect and affect normal renal function. The expression of receptors for melatonin, prolactin, thyrotropin, corticotropin, prostaglandin E1 and trophic factors was confirmed in the kidneys, which suggests that they are a promising therapeutic target for renal IR (ischemia-reperfusion) injury. They can have anti-inflammatory, antioxidant and anti-apoptotic effects, limiting IR injury.


Assuntos
Hormônios/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Transplante de Rim/métodos , Rim/efeitos dos fármacos , Preservação de Órgãos/métodos , Traumatismo por Reperfusão/prevenção & controle , Hormônio Adrenocorticotrópico/farmacologia , Hormônio Adrenocorticotrópico/uso terapêutico , Alprostadil/farmacologia , Alprostadil/uso terapêutico , Animais , Hormônios/uso terapêutico , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/uso terapêutico , Rim/patologia , Melatonina/farmacologia , Melatonina/uso terapêutico , Soluções para Preservação de Órgãos/química , Prolactina/farmacologia , Prolactina/uso terapêutico , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/terapia , Tireotropina/farmacologia , Tireotropina/uso terapêutico
12.
Cancer Res ; 80(13): 2818-2832, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32371475

RESUMO

Aberrant activation of the Hedgehog (HH) signaling pathway underlines the initiation and progression of a multitude of cancers. The effectiveness of the leading drugs vismodegib (GDC-0449) and sonidegib (LDE225), both Smoothened (SMO) antagonists, is compromised by acquisition of mutations that alter pathway components, notably secondary mutations in SMO and amplification of GLI2, a transcriptional mediator at the end of the pathway. Pharmacologic blockade of GLI2 activity could ultimately overcome these diversified refractory mechanisms, which would also be effective in a broader spectrum of primary tumors than current SMO antagonists. To this end, we conducted a high-content screening directly analyzing the ciliary translocation of GLI2, a key event for GLI2 activation in HH signal transduction. Several prostaglandin compounds were shown to inhibit accumulation of GLI2 within the primary cilium (PC). In particular, prostaglandin E1 (PGE1), an FDA-approved drug, is a potent GLI2 antagonist that overcame resistance mechanisms of both SMO mutagenesis and GLI2 amplification. Consistent with a role in HH pathway regulation, EP4 receptor localized to the PC. Mechanistically, PGE1 inhibited HH signaling through the EP4 receptor, enhancing cAMP-PKA activity, which promoted phosphorylation and degradation of GLI2 via the ubiquitination pathway. PGE1 also effectively inhibited the growth of drug refractory human medulloblastoma xenografts. Together, these results identify PGE1 and other prostaglandins as potential templates for complementary therapeutic development to circumvent resistance to current generation SMO antagonists in use in the clinic. SIGNIFICANCE: These findings show that PGE1 exhibits pan-inhibition against multiple drug refractory activities for Hedgehog-targeted therapies and elicits significant antitumor effects in xenograft models of drug refractory human medulloblastoma mimicking GLI2 amplification.


Assuntos
Alprostadil/farmacologia , Neoplasias Cerebelares/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Amplificação de Genes , Proteínas Hedgehog/antagonistas & inibidores , Meduloblastoma/tratamento farmacológico , Proteínas Nucleares/genética , Proteína Gli2 com Dedos de Zinco/genética , Animais , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Proliferação de Células , Neoplasias Cerebelares/metabolismo , Neoplasias Cerebelares/patologia , Regulação Neoplásica da Expressão Gênica , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Humanos , Meduloblastoma/metabolismo , Meduloblastoma/patologia , Camundongos , Camundongos Endogâmicos NOD , Inibidores da Agregação Plaquetária/farmacologia , Receptores de Prostaglandina E Subtipo EP4/genética , Receptores de Prostaglandina E Subtipo EP4/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Am J Physiol Lung Cell Mol Physiol ; 318(5): L1074-L1083, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32186399

RESUMO

Activation of the inflammasome-caspase-1 axis in lung endothelial cells is emerging as a novel arm of the innate immune response to pneumonia and sepsis caused by Pseudomonas aeruginosa. Increased levels of circulating autacoids are hallmarks of pneumonia and sepsis and induce physiological responses via cAMP signaling in targeted cells. However, it is unknown whether cAMP affects other functions, such as P. aeruginosa-induced caspase-1 activation. Herein, we describe the effects of cAMP signaling on caspase-1 activation using a single cell flow cytometry-based assay. P. aeruginosa infection of cultured lung endothelial cells caused caspase-1 activation in a distinct population of cells. Unexpectedly, pharmacological cAMP elevation increased the total number of lung endothelial cells with activated caspase-1. Interestingly, addition of cAMP agonists augmented P. aeruginosa infection of lung endothelial cells as a partial explanation underlying cAMP priming of caspase-1 activation. The cAMP effect(s) appeared to function as a priming signal because addition of cAMP agonists was required either before or early during the onset of infection. However, absolute cAMP levels measured by ELISA were not predictive of cAMP-priming effects. Importantly, inhibition of de novo cAMP synthesis decreased the number of lung endothelial cells with activated caspase-1 during infection. Collectively, our data suggest that lung endothelial cells rely on cAMP signaling to prime caspase-1 activation during P. aeruginosa infection.


Assuntos
Caspase 1/genética , AMP Cíclico/metabolismo , Células Endoteliais/metabolismo , Pseudomonas aeruginosa/metabolismo , Transdução de Sinais , 1-Metil-3-Isobutilxantina/farmacologia , 8-Bromo Monofosfato de Adenosina Cíclica/farmacologia , Adenina/análogos & derivados , Adenina/farmacologia , Alprostadil/análogos & derivados , Alprostadil/farmacologia , Animais , Caspase 1/metabolismo , Proliferação de Células/efeitos dos fármacos , Colforsina/farmacologia , AMP Cíclico/agonistas , AMP Cíclico/antagonistas & inibidores , GMP Cíclico/análogos & derivados , GMP Cíclico/farmacologia , Dinoprostona/farmacologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/microbiologia , Células Endoteliais/patologia , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Inflamassomos/efeitos dos fármacos , Inflamassomos/genética , Inflamassomos/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Pulmão/metabolismo , Pulmão/microbiologia , Pulmão/patologia , Cultura Primária de Células , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/crescimento & desenvolvimento , Ratos , Rolipram/farmacologia , Análise de Célula Única
14.
Neonatology ; 117(1): 15-23, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31786577

RESUMO

BACKGROUND: The mechanisms underlying neonatal platelets hyporesponsiveness are not fully understood. While previous studies have demonstrated developmental impairment of agonist-induced platelet activation, differences in inhibitory signaling pathways have been scarcely investigated. OBJECTIVE: To compare neonatal and adult platelets with regard to inhibition of platelet reactivity by prostaglandin E1 (PGE1). METHODS: Platelet-rich plasma from umbilical cord (CB) or adult blood was incubated with PGE1 (0-1 µM). We assessed aggregation in response to adenosine diphosphate (ADP), collagen, and thrombin receptor activating peptide as well as cyclic adenosine 3'5'-monophosphate (cAMP) levels (ELISA). Gαs, Gαi2, and total- and phospho-protein kinase A (PKA) were evaluated in adult and CB ultrapure and washed platelets, respectively, by immunoblotting. RESULTS: Neonatal (vs. adult) platelets display hypersensitivity to inhibition by PGE1 of platelet aggregation induced by ADP and collagen (PGE1 IC50: 14 and 117 nM for ADP and collagen, respectively, vs. 149 and 491 nM in adults). They also show increased basal and PGE1-induced cAMP levels. Mechanistically, PGE1 acts by binding to the prostanoid receptor IP (prostacyclin receptor), which couples to the Gαs protein-adenylate cyclase axis and increases intracellular levels of cAMP. cAMP activates PKA, which phosphorylates different target inhibitor proteins. Neonatal platelets showed higher basal and PGE1-induced cAMP levels, higher Gαs protein expression, and a trend to increased PKA-dependent protein phosphorylation compared to adult platelets. CONCLUSION: Neonatal platelets have a functionally increased PGE1-cAMP-PKA axis. This finding supports a downregulation of inhibitory when going from neonate to adult contributing to neonatal platelet hyporesponsiveness.


Assuntos
Fatores Etários , Alprostadil/farmacologia , Agregação Plaquetária/efeitos dos fármacos , Difosfato de Adenosina/fisiologia , Adenilil Ciclases/sangue , Adulto , Plaquetas/efeitos dos fármacos , Plaquetas/enzimologia , AMP Cíclico/sangue , Proteínas Quinases Dependentes de AMP Cíclico/fisiologia , Humanos , Recém-Nascido
15.
Acta Pharmacol Sin ; 41(4): 561-571, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31685975

RESUMO

Proximal renal tubular damage is a critical process underlying diabetic kidney disease (DKD). Our previous study shows that prostaglandin E1 (PGE1) reduces the apoptosis of renal tubular cells in DKD rats. But its underlying mechanisms remain unclear. In this study we investigated the protective effects of PGE1 in DKD rats and high glucose (HG, 30 mM)-treated HK-2 proximal tubular cells. Four weeks after uninephrectomized streptozotocin-induced diabetic rats were established, the DKD rats were administered PGE1 (10 µg· kg-1· d-1, iv.) for 10 consecutive days. We showed that PGE1 administration did not change blood glucose levels, but alleviated diabetic kidney injury in the DKD rats, evidenced by markedly reduced proteinuria and renal tubular apoptosis. In the in vitro experiments, PGE1 (0.1-100 µM) significantly enhanced HG-reduced HK-2 cell viability. In HG-treated HK-2 cells, PGE1 (10 µM) significantly suppressed the c-Jun N-terminal kinase (JNK) and the mitochondrial apoptosis-related protein expressions such as Bim, Bax, caspase-3 and cleaved caspase-3; similar changes were also observed in the kidney of PGE1-treated DKD rats. By using two pharmacological tools-JNK activator anisomycin (AM) and JNK inhibitor SP600125, we revealed that PGE1 blocked HG-triggered activation of JNK/Bim pathway in HK-2 cells; JNK was an upstream regulator of Bim. In conclusion, our results demonstrate that the nephroprotective effects of PGE1 against apoptosis of proximal renal tubule in DKD rats via suppressing JNK-related Bim signaling pathway.


Assuntos
Alprostadil/farmacologia , Apoptose/efeitos dos fármacos , Nefropatias Diabéticas/tratamento farmacológico , Glucose/antagonistas & inibidores , Túbulos Renais Proximais/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Alprostadil/administração & dosagem , Animais , Proteína 11 Semelhante a Bcl-2/antagonistas & inibidores , Proteína 11 Semelhante a Bcl-2/metabolismo , Células Cultivadas , Nefropatias Diabéticas/induzido quimicamente , Nefropatias Diabéticas/patologia , Glucose/farmacologia , Humanos , Injeções Intravenosas , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Túbulos Renais Proximais/metabolismo , Túbulos Renais Proximais/patologia , Masculino , Substâncias Protetoras/administração & dosagem , Ratos , Ratos Wistar , Estreptozocina
16.
Eur Rev Med Pharmacol Sci ; 23(21): 9633-9641, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31773714

RESUMO

OBJECTIVE: To observe the influence of alprostadil on myocardial fibrosis in rats with diabetes mellitus (DM) through the transforming growth factor beta-1 (TGF-ß1)/Smad signaling pathway. MATERIALS AND METHODS: Wistar rats were employed to induce models of DM (DM group), and alprostadil treatment group (ALPR group) and control group (NC group) were set up. After successful modeling, blood and myocardial tissues were collected from rats. Next, blood glucose level, liver function, and myocardial function were detected. In addition, hematoxylin-eosin (HE) assay was performed to determine pathological changes. The enzyme-linked immunosorbent assay (ELISA) was carried out to measure serum interleukin-6 (IL-6) and cardiac function indexes such as ejection fraction (EF), Reverse Transcription-Polymerase Chain Reaction (RT-PCR) and Western blotting, which were applied to measure the gene and protein expression levels of important molecules in the proliferation and differentiation of myocardial fibroblasts [including checkpoint kinase 1 (Chek1) and alpha-smooth muscle actin (α-SMA)] and the relevant pathway TGF-ß1/Smad2. RESULTS: The blood glucose level was increased in DM group (p<0.01), suggesting that modeling is successful. The tumor necrosis factor-alpha (TNF-α), IL⁃6, and IL-1 levels were higher in DM group than in NC group. DM group had significantly elevated serum content of alkaline phosphatase (ALP), alanine aminotransferase (ALT), and creatine kinase (CK), as well as left ventricular end-diastolic dimension (LVEDd) and left ventricular end-systolic dimension (LVESd), but it clearly decreased fractional shortening (FS) and EF in comparison with NC group. Besides, myocardial cells were orderly arranged in NC group, while myocardial fibrosis was observed in DM group. The results of RT-PCR showed that the levels of Collagen, Chek1, α-SMA, TGF-ß1, and Smad2 in myocardial fibroblasts were notably lowered in ALPR group, but evidently increased in DM group (p<0.05). According to Western blotting, there were evident decreases in the levels of TGF-ß1 and Smad2 in myocardial fibroblasts in ALPR group (p<0.05). The above results suggest that alprostadil represses the expression of the TGF-ß1/Smad2 signaling pathway and its relevant molecules, thus further suppressing the fibrosis of myocardial cells. CONCLUSIONS: Alprostadil treats myocardial fibrosis in DM rats by inhibiting the TGF-ß1/Smad2 signaling pathway.


Assuntos
Alprostadil/farmacologia , Diabetes Mellitus Experimental/tratamento farmacológico , Fibrose/tratamento farmacológico , Hipoglicemiantes/farmacologia , Infarto do Miocárdio/tratamento farmacológico , Alprostadil/administração & dosagem , Animais , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/metabolismo , Modelos Animais de Doenças , Fibrose/metabolismo , Fibrose/patologia , Hipoglicemiantes/administração & dosagem , Injeções Intraperitoneais , Masculino , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Proteína Smad2/antagonistas & inibidores , Proteína Smad2/metabolismo , Estreptozocina , Fator de Crescimento Transformador beta1/antagonistas & inibidores , Fator de Crescimento Transformador beta1/metabolismo
17.
Biosci Rep ; 39(12)2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31782491

RESUMO

BACKGROUND: Prostaglandin-E1 (PGE1) is a potent vasodilator with anti-inflammatory and antiplatelet effects. However, the mechanism by which PGE1 contributes to the amelioration of cardiac injury remains unclear. METHODS: The present study was designed to investigate how PGE1 protects against hypoxia/reoxygenation (H/R)-induced injuries by regulating microRNA-21-5p (miR-21-5p) and fas ligand (FASLG). Rat H9C2 cells and isolated primary cardiomyocytes were cultured under hypoxic conditions for 6 h (6H, hypoxia for 6 h), and reoxygenated for periods of 6 (6R, reoxygenation for 6 h), 12, and 24 h, respectively. Cells from the 6H/6R group were treated with various doses of PGE1; after which, their levels of viability and apoptosis were detected. RESULTS: The 6H/6R treatment regimen induced the maximum level of H9C2 cell apoptosis, which was accompanied by the highest levels of Bcl-2-associated X protein (Bax) and cleaved-caspase-3 expression and the lowest level of B-cell lymphoma 2 (Bcl-2) expression. Treatment with PGE1 significantly diminished the cell cytotoxicity and apoptosis induced by the 6H/6R regimen, and also decreased expression of IL-2, IL-6, P-p65, TNF-α, and cleaved-caspase-3. In addition, we proved that PGE1 up-regulated miR-21-5p expression in rat cardiomyocytes exposed to conditions that produce H/R injury. FASLG was a direct target of miR-21-5p, and PGE1 reduced the ability of H/R-injured rat cardiomyocytes to undergo apoptosis by affecting the miR-21-5p/FASLG axis. In addition, we proved that PGE1 could protect primary cardiomyocytes against H/R-induced injuries. CONCLUSIONS: These results indicate that PGE1 exerts cardioprotective effects in H9C2 cells during H/R by regulating the miR-21-5p/FASLG axis.


Assuntos
Alprostadil/farmacologia , Proteína Ligante Fas/genética , MicroRNAs/genética , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Hipóxia Celular/efeitos dos fármacos , Hipóxia Celular/genética , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Substâncias Protetoras/farmacologia , Ratos , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/patologia , Transdução de Sinais/efeitos dos fármacos
18.
Med Sci Monit ; 25: 7694-7701, 2019 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-31606729

RESUMO

BACKGROUND Alprostadil can inhibit inflammation and reduce inflammation-related injury in many inflammatory diseases. However, the anti-inflammatory effect of alprostadil in decreasing acute pancreatitis (AP) injury remains unknow. This study aimed to investigate the possible protective effects and mechanism of alprostadil against AP in rats. MATERIAL AND METHODS Forty healthy Sprague­Dawley rats were randomly divided into a control group, an AP group, an AP-alprostadil group, an AP-AG490 group, and an AP-(alprostadil+AG490) group. An animal model of acute pancreatitis was established. The pathological changes of the pancreases in each group were observed. We assessed levels of malondialdehyde (MDA), superoxide dismutase (SOD), and myeloperoxidase (MPO), as well as serum IL-1ß, IL-6, IL-10, and TNF-alpha. TUNEL assay was used to detect apoptosis of pancreatic cells. The proteins p-Jak2 and p-Stat3 were investigated by Western blot. RESULTS Compared with the control group, pancreatic pathological score, pancreatic apoptosis, MDA, MPO, serum IL-1ß, IL-6, and TNF-alpha levels were significantly higher in the AP group, and SOD levels were significantly decreased. Compared with the AP group, after treatment with alprostadil, AG490, and alprostadil+AG490, respectively, the pancreatic pathological score, apoptosis, MDA, MPO, serum IL-1ß, IL-6, and TNF-alpha were significantly decreased in AP rats, while SOD levels were significantly increased. The protein levels of p-JAK2 and p-STAT3 were significantly upregulated in the AP group compared with the control group, and the protein levels of p-JAK2 and p-STAT3 after treatment with alprostadil, AG490, and alprostadil+AG490 were significantly decreased, and the effect of alprostadil+AG490 was the strongest. CONCLUSIONS Alprostadil can reduce pancreatic tissue damage, delay pancreatic cell apoptosis, and reduce inflammation and anti-oxidative stress by inhibiting the JAK2/STAT3 signal pathway, thus protecting the pancreas.


Assuntos
Alprostadil/uso terapêutico , Janus Quinase 2/metabolismo , Pancreatite/tratamento farmacológico , Pancreatite/metabolismo , Substâncias Protetoras/uso terapêutico , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Células Acinares/efeitos dos fármacos , Células Acinares/metabolismo , Células Acinares/patologia , Doença Aguda , Alprostadil/farmacologia , Amilases/sangue , Animais , Apoptose/efeitos dos fármacos , Arginina , Citocinas/sangue , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos/sangue , Masculino , Estresse Oxidativo/efeitos dos fármacos , Pâncreas/patologia , Pancreatite/sangue , Substâncias Protetoras/farmacologia , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos
19.
Adv Clin Exp Med ; 28(10): 1409-1418, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31638745

RESUMO

BACKGROUND: Papaverine is used to induce maximal hyperemia for index of coronary microcirculatory resistance (IMR) measurement in animal experiments, although it can lead to polymorphic ventricular tachycardia and ventricular fibrillation. OBJECTIVES: This study investigated the effect of an intracoronary (IC) bolus of high adenosine triphosphate (ATP) and nicorandil doses for IMR measurement and explored the possibility of inducing maximal hyperemia with an IC alprostadil bolus. MATERIAL AND METHODS: Index of coronary microcirculatory resistance was measured in a hyperemic state induced by 7 experimental conditions in 21 pigs (IC bolus of papaverine (18 mg), ATP (40 µg, 80 µg, 160 µg, and 240 µg), and nicorandil (2 mg and 4 mg)). The 7 conditions were induced sequentially, and the average IMR was calculated. Because of the long-term hyperemic condition in the pilot experiments, the IMR was measured 1, 3, 5, 8, and 10 min after an IC bolus of alprostadil (10 µg) in another 7 pigs. RESULTS: The IMR induced by 240 µg of ATP or 4 mg of nicorandil was not significantly different from that induced by 18 mg of papaverine (both p > 0.05). A strong linear correlation was observed between IMRs with papaverine (18 mg) and nicorandil (4 mg) (R2 = 0.936, p < 0.001) and with papaverine (18 mg) and ATP (240 µg) (R2 = 0.838, p < 0.05). The IC bolus of nicorandil (4 mg) produced the smallest changes, whereas papaverine caused the most significant changes in mean blood pressure and heart rate (p < 0.05). Tachypnea and transient ST depression were more common with increasing ATP dosages (especially 240 µg). Alprostadil (5 min) yielded a significant hyperemic response but reduced baseline blood pressure by almost 40% for a long time. CONCLUSIONS: Intracoronary bolus administration of 4 mg of nicorandil was better than 18 mg of papaverine or 240 µg of ATP for induction of maximal hyperemia and IMR measurement in a pig model, whereas alprostadil was not suitable for IMR measurement.


Assuntos
Trifosfato de Adenosina/administração & dosagem , Alprostadil/administração & dosagem , Circulação Coronária/efeitos dos fármacos , Microcirculação/efeitos dos fármacos , Nicorandil/administração & dosagem , Papaverina/administração & dosagem , Vasodilatadores/administração & dosagem , Trifosfato de Adenosina/farmacologia , Alprostadil/farmacologia , Animais , Papaverina/farmacologia , Suínos , Vasodilatadores/farmacologia
20.
Int J Mol Sci ; 20(18)2019 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-31533251

RESUMO

Dendritic cells (DCs) and leukemia-derived DC (DCleu) are potent stimulators of various immunoreactive cells and they play a pivotal role in the (re-) activation of the immune system. As a potential treatment tool for patients with acute myeloid leukemia, we developed and analyzed two new PGE1-containing protocols (Pici-PGE1, Kit M) to generate DC/DCleu ex vivo from leukemic peripheral blood mononuclear cells (PBMCs) or directly from leukemic whole blood (WB) to simulate physiological conditions. Pici-PGE1 generated significantly higher amounts of DCs from leukemic and healthy PBMCs when compared to control and comparable amounts as the already established protocol Pici-PGE2. The proportions of sufficient DC-generation were even higher after DC/DCleu-generation with Pici-PGE1. With Kits, it was possible to generate DCs and DCleu directly from leukemic and healthy WB without induction of blast proliferation. The average amounts of generated DCs and DCleu-subgroups were comparable with all Kits. The PGE1 containing Kit M generated significantly higher amounts of mature DCs when compared to the PGE2-containing Kit K and increased the anti-leukemic-activity. In summary PGE1-containing protocols were suitable for generating DC/DCleu from PBMCs as well as from WB, which reliably (re-) activated immunoreactive cells, improved the overall ex vivo anti-leukemic activity, and influenced cytokine-release-profiles.


Assuntos
Alprostadil/farmacologia , Células Dendríticas/citologia , Células Dendríticas/efeitos dos fármacos , Adulto , Idoso , Biomarcadores , Diferenciação Celular/efeitos dos fármacos , Citocinas/metabolismo , Feminino , Citometria de Fluxo , Humanos , Imunomodulação/efeitos dos fármacos , Imunofenotipagem , Leucemia Mieloide Aguda/metabolismo , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Masculino , Pessoa de Meia-Idade , Picibanil/farmacologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...