Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.590
Filtrar
1.
Yonsei Med J ; 61(9): 762-773, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32882760

RESUMO

PURPOSE: Pharmacological inhibition of mutant isocitrate dehydrogenase (IDH) reduces R-2-hydroxyglutarate (2-HG) levels and restores cellular differentiation in vivo and in vitro. The IDH2 inhibitor enasidenib (AG-221) has been approved by the FDA as a first-in-class inhibitor for the treatment of relapsed or refractory (R/R) IDH2-mutant acute myeloid leukemia (AML). In this study, the effects of a combination of all-trans retinoic acid (ATRA) and AG-221 on AML cell differentiation was explored, along with the mechanisms employed by IDH2-mutant cells in AML. MATERIALS AND METHODS: We treated the human AML cell line, IDH2-mutant-TF-1, and primary human AML cells carrying IDH2 mutation with 30 µM AG-221 and 100 nM ATRA, alone or in combination. RESULTS: Combined treatment with AG-221 and ATRA inhibited 2-HG production and resulted in synergistic effects on differentiation among IDH2-mutant AML cells and primary AML cells expressing IDH2 mutation. Combined treatment with AG-221 and ATRA altered autophagic activity. AG-221 and ATRA treatment-induced differentiation of IDH2-mutant AML cells was associated with autophagy induction, without suppressing autophagy flux at maturation and degradation stages. A RAF-1/MEK/ERK pathway was founded to be associated with AG-221 and ATRA-induced differentiation in IDH2-mutant AML cells. IDH-associated changes in histone methylation markers decreased after AG-221 and ATRA combination treatment. CONCLUSION: Our preliminary evidence indicates that the addition of ATRA to treatments with IDH2 inhibitor may lead to further improvements or increases in response rates in IDH2-mutant AML patients who do not appear to benefit from treatments with IDH2 inhibitor alone.


Assuntos
Aminopiridinas/farmacologia , Antineoplásicos/farmacologia , Diferenciação Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Isocitrato Desidrogenase/genética , Leucemia Mieloide Aguda/tratamento farmacológico , Tretinoína/farmacologia , Triazinas/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Isocitrato Desidrogenase/antagonistas & inibidores , Isocitrato Desidrogenase/metabolismo , Leucemia Mieloide Aguda/genética , Mutação
2.
Sci Rep ; 10(1): 13866, 2020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32807895

RESUMO

The Coronavirus disease 2019 (COVID-19) is an infectious disease caused by the severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2). The virus has rapidly spread in humans, causing the ongoing Coronavirus pandemic. Recent studies have shown that, similarly to SARS-CoV, SARS-CoV-2 utilises the Spike glycoprotein on the envelope to recognise and bind the human receptor ACE2. This event initiates the fusion of viral and host cell membranes and then the viral entry into the host cell. Despite several ongoing clinical studies, there are currently no approved vaccines or drugs that specifically target SARS-CoV-2. Until an effective vaccine is available, repurposing FDA approved drugs could significantly shorten the time and reduce the cost compared to de novo drug discovery. In this study we attempted to overcome the limitation of in silico virtual screening by applying a robust in silico drug repurposing strategy. We combined and integrated docking simulations, with molecular dynamics (MD), Supervised MD (SuMD) and Steered MD (SMD) simulations to identify a Spike protein - ACE2 interaction inhibitor. Our data showed that Simeprevir and Lumacaftor bind the receptor-binding domain of the Spike protein with high affinity and prevent ACE2 interaction.


Assuntos
Betacoronavirus/efeitos dos fármacos , Biologia Computacional/métodos , Infecções por Coronavirus/metabolismo , Descoberta de Drogas/métodos , Reposicionamento de Medicamentos/métodos , Pneumonia Viral/metabolismo , Aminopiridinas/farmacologia , Benzodioxóis/farmacologia , Betacoronavirus/química , Sítios de Ligação , Infecções por Coronavirus/virologia , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Pandemias , Peptidil Dipeptidase A/metabolismo , Pneumonia Viral/virologia , Ligação Proteica/efeitos dos fármacos , Conformação Proteica , Domínios Proteicos/efeitos dos fármacos , Mapas de Interação de Proteínas/efeitos dos fármacos , Simeprevir/farmacologia , Glicoproteína da Espícula de Coronavírus/antagonistas & inibidores , Glicoproteína da Espícula de Coronavírus/metabolismo
3.
Cancer Sci ; 111(6): 2132-2145, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32304130

RESUMO

In the cell cycle, the G1 /S transition is controlled by the cyclin-dependent kinase (CDK) 4/6-cyclin D complex. Constitutive activation of CDK4/6 dysregulates G1 /S transition, leading to oncogenic transformation. We found that 3 CDK4/6 inhibitors, abemaciclib, ribociclib, and palbociclib, exerted a cytocidal effect as well as a cytostatic effect at the G1 phase in cancer cell lines, including A549 human non-small cell lung cancer cells. Among these inhibitors, abemaciclib exhibited the most potent cytotoxic effect. The cell-death phenotype induced by abemaciclib, which entailed formation of multiple cytoplasmic vacuoles, was not consistent with apoptosis or necroptosis. Abemaciclib blocked autophagic flux, resulting in accumulation of autophagosomes, however vacuole formation and cell death induced by abemaciclib were independent of autophagy. In addition, methuosis, a cell-death phenotype characterized by vacuole formation induced by excessive macropinocytosis, was excluded because the vacuoles did not incorporate fluorescent dextran. Of note, both formation of vacuoles and induction of cell death in response to abemaciclib were inhibited by vacuolar-type ATPase (V-ATPase) inhibitors such as bafilomycin A1 and concanamycin A. Live-cell imaging revealed that the abemaciclib-induced vacuoles were derived from lysosomes that expanded following acidification. Transmission electron microscopy revealed that these vacuoles contained undigested debris and remnants of organelles. Cycloheximide chase assay revealed that lysosomal turnover was blocked by abemaciclib. Furthermore, mTORC1 inhibition along with partial lysosomal membrane permeabilization occurred after abemaciclib treatment. Together, these results indicate that, in cancer cells, abemaciclib induces a unique form of cell death accompanied by swollen and dysfunctional lysosomes.


Assuntos
Aminopiridinas/farmacologia , Benzimidazóis/farmacologia , Morte Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Humanos , Lisossomos/efeitos dos fármacos , Vacúolos/efeitos dos fármacos
4.
Proc Natl Acad Sci U S A ; 117(11): 6103-6113, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32123069

RESUMO

Clinical observation of the association between cancer aggressiveness and embryonic development stage implies the importance of developmental signals in cancer initiation and therapeutic resistance. However, the dynamic gene expression during organogenesis and the master oncofetal drivers are still unclear, which impeded the efficient elimination of poor prognostic tumors, including human hepatocellular carcinoma (HCC). In this study, human embryonic stem cells were induced to differentiate into adult hepatocytes along hepatic lineages to mimic liver development in vitro. Combining transcriptomic data from liver cancer patients with the hepatocyte differentiation model, the active genes derived from different hepatic developmental stages and the tumor tissues were selected. Bioinformatic analysis followed by experimental assays was used to validate the tumor subtype-specific oncofetal signatures and potential therapeutic values. Hierarchical clustering analysis revealed the existence of two subtypes of liver cancer with different oncofetal properties. The gene signatures and their clinical significance were further validated in an independent clinical cohort and The Cancer Genome Atlas database. Upstream activator analysis and functional screening further identified E2F1 and SMAD3 as master transcriptional regulators. Small-molecule inhibitors specifically targeting the oncofetal drivers extensively down-regulated subtype-specific developmental signaling and inhibited tumorigenicity. Liver cancer cells and primary HCC tumors with different oncofetal properties also showed selective vulnerability to their specific inhibitors. Further precise targeting of the tumor initiating steps and driving events according to subtype-specific biomarkers might eliminate tumor progression and provide novel therapeutic strategy.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma Hepatocelular/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação Neoplásica da Expressão Gênica , Hepatócitos/patologia , Neoplasias Hepáticas/genética , Aminopiridinas/farmacologia , Aminopiridinas/uso terapêutico , Animais , Biomarcadores Tumorais/antagonistas & inibidores , Carcinoma Hepatocelular/mortalidade , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/cirurgia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Linhagem Celular , Transformação Celular Neoplásica/efeitos dos fármacos , Transformação Celular Neoplásica/genética , Estudos de Coortes , Intervalo Livre de Doença , Fator de Transcrição E2F1/antagonistas & inibidores , Fator de Transcrição E2F1/metabolismo , Feminino , Perfilação da Expressão Gênica , Hepatectomia , Células-Tronco Embrionárias Humanas , Humanos , Hidroxiquinolinas/farmacologia , Hidroxiquinolinas/uso terapêutico , Isoquinolinas/farmacologia , Isoquinolinas/uso terapêutico , Estimativa de Kaplan-Meier , Fígado/crescimento & desenvolvimento , Fígado/patologia , Fígado/cirurgia , Neoplasias Hepáticas/mortalidade , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/cirurgia , Masculino , Camundongos , Pessoa de Meia-Idade , Prognóstico , Piridinas/farmacologia , Piridinas/uso terapêutico , Pirróis/farmacologia , Pirróis/uso terapêutico , Transdução de Sinais/genética , Proteína Smad3/antagonistas & inibidores , Proteína Smad3/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Artigo em Inglês | MEDLINE | ID: mdl-32159371

RESUMO

Over 2,000 mutations have been reported in the cystic fibrosis transmembrane conductance regulator (cftr) gene, many of which cause disease but are rare and have no effective treatment. Thus, there is an unmet need for new, mutation-agnostic therapies for cystic fibrosis (CF). Phosphodiesterase (PDE) inhibitors are one such class of therapeutics that have been shown to elevate intracellular cAMP levels and stimulate CFTR-dependent anion secretion in human airway epithelia; however, the number of people with CF that could be helped by PDE inhibitors remains to be determined. Here we used Fisher rat thyroid (FRT) cells stably transduced with rare human CFTR mutants and studied their responsiveness to the dual phosphodiesterase 3/4 inhibitor RPL554 (Verona Pharma). Through its inhibitory effect on PDE4D, we find that RPL554 can elevate intracellular cAMP leading to a potentiation of forskolin-stimulated current mediated by R334W, T338I, G551D, and S549R mutants of CFTR when used alone or in combination with CFTR modulators. We also were able to reproduce these effects of RPL554 on G551D-CFTR when it was expressed in primary human bronchial epithelial cells, indicating that RPL554 would have stimulatory effects on rare CFTR mutants in human airways and validating FRT cells as a model for PDE inhibitor studies. Furthermore, we provide biochemical evidence that VX-809 causes surprisingly robust correction of several class III and IV CFTR mutants. Together, our findings further support the therapeutic potential of RPL554 for patients with CF with class III/IV mutations and emphasize the potential of PDEs as potential drug targets that could benefit patients with CF.


Assuntos
AMP Cíclico/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Isoquinolinas/farmacologia , Inibidores da Fosfodiesterase 3/farmacologia , Inibidores da Fosfodiesterase 4/farmacologia , Pirimidinonas/farmacologia , Células Epiteliais da Tireoide/efeitos dos fármacos , Aminopiridinas/farmacologia , Animais , Benzodioxóis/farmacologia , Brônquios/citologia , Brônquios/efeitos dos fármacos , Brônquios/metabolismo , Linhagem Celular , Colforsina/farmacologia , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/agonistas , Regulador de Condutância Transmembrana em Fibrose Cística/classificação , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Humanos , Mutação , Cultura Primária de Células , Ratos , Ratos Endogâmicos F344 , Células Epiteliais da Tireoide/citologia , Células Epiteliais da Tireoide/metabolismo , Transgenes
6.
Vet Microbiol ; 242: 108586, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32122590

RESUMO

Brucella as a stealthy intracellular pathogen avoids activation of innate immune response. Here we investigated the contribution of an adenosine receptor, Adora2b, during Brucella infection in professional phagocyte RAW 264.7 cells and in a murine model. Adora2b-deficient cells showed attenuated Brucella internalization and intracellular survival with enhanced release of IL-6, TNF-α, IL-12 and MCP-1. In addition, blockade of Adora2b using MRS 1754 treatment in mice resulted in increased total weight of the spleens but suppressed bacterial burden in these organs accompanied by elevated levels of IL-6, IFN-γ, TNF-α, IL-12 and MCP-1, while reduced IL-10. Overall, we proposed that the Adora2b participates in the successful phagocytic pathway and intracellular survival of Brucella in RAW 264.7 cells, and could be a potential therapeutic target for the treatment of acute brucellosis in animals.


Assuntos
Antagonistas do Receptor A2 de Adenosina/farmacologia , Brucelose/tratamento farmacológico , Imunidade Inata , Macrófagos/microbiologia , Receptor A2B de Adenosina/imunologia , Acetamidas/farmacologia , Agonistas do Receptor A2 de Adenosina/farmacologia , Aminopiridinas/farmacologia , Animais , Brucella abortus/efeitos dos fármacos , Brucella abortus/fisiologia , Brucelose/microbiologia , Citocinas/imunologia , Feminino , Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Fagocitose , Purinas/farmacologia , Células RAW 264.7 , Receptor A2B de Adenosina/genética , Transdução de Sinais
7.
Mol Med Rep ; 21(2): 936-944, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31974619

RESUMO

T­cell acute lymphoblastic leukemia (T­ALL) is a hematopoietic malignancy, which is associated with a poor prognosis. It is difficult to achieve complete remission or long­term survival with conventional chemotherapy, partly due to decreased apoptosis. However, necroptosis can serve as an alternative pathway to induce cell death. The present study investigated whether the selective histone deacetylase (HDAC) inhibitor chidamide exerted a therapeutic effect on T­ALL and explored the underlying mechanism. The results revealed that HDAC expression was increased in Jurkat and HUT­78 cells treated compared with the control cell line (H9), and was accompanied by elevated cellular Fas­associated death domain­like interleukin­1ß converting enzyme inhibitory protein long form (c­FLIPL) levels. Chidamide treatment (2 µmol/l) also induced mitochondrial dysfunction, necroptosis and apoptosis in T­ALL cells in vitro. Furthermore, necroptosis was increased when apoptosis was blocked in T­ALL cells. Additionally, chidamide (2 µmol/l) downregulated c­FLIPL, HDAC1 and HDAC3 expression, and increased receptor­interacting protein kinase 3 expression and the phosphorylation of mixed lineage kinase domain­like pseudokinase in Jurkat and HUT­78 cells. The results obtained in the present study revealed that chidamide may induce necroptosis via regulation of c­FLIPL expression when apoptosis is inhibited in Jurkat and HUT­78 cells.


Assuntos
Aminopiridinas/farmacologia , Benzamidas/farmacologia , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/metabolismo , Necroptose/efeitos dos fármacos , Acetilação , Adolescente , Adulto , Apoptose/efeitos dos fármacos , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/genética , Caspases/metabolismo , Ciclo Celular/efeitos dos fármacos , Criança , Pré-Escolar , Regulação para Baixo/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Feminino , Histonas/metabolismo , Humanos , Lactente , Células Jurkat , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Prognóstico , Proteínas Quinases/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Transdução de Sinais/efeitos dos fármacos , Adulto Jovem
8.
Biomed Chromatogr ; 34(3): e4783, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31899811

RESUMO

Ribociclib is a highly specific CDK4/6 inhibitor. Determination of the metabolism of ribociclib is required during the drug development stage. In this study, metabolic profiles of ribociclib were investigated using rat and human liver microsomes. Metabolites were structurally identified by liquid chromatography electrospray ionization high-resolution mass spectrometry operated in positive-ion mode. The metabolites were characterized by accurate masses, MS2 spectra and retention times. With rat and human liver microsomes, a total of 10 metabolites were detected and further identified. No human-specific metabolites were detected. The metabolic pathways of ribociclib were oxygenation, demethylation and dealkylation. Most importantly, two glutathione (GSH) adducts were identified in human liver microsomes fortified with GSH. The formation of the GSH adducts was hypothesized to be through the oxidation of electron-rich 1,4-benzenediamine to a 1,4-diiminoquinone intermediate, which is highly reactive and can be trapped by GSH to form stable metabolites. The current study provides an overview of the metabolic profiles of ribociclib in vitro, which will be of great help in understanding the efficacy and toxicity of this drug.


Assuntos
Aminopiridinas , Cromatografia Líquida/métodos , Metaboloma/efeitos dos fármacos , Microssomos Hepáticos , Purinas , Espectrometria de Massas por Ionização por Electrospray/métodos , Aminopiridinas/análise , Aminopiridinas/metabolismo , Aminopiridinas/farmacologia , Animais , Humanos , Microssomos Hepáticos/química , Microssomos Hepáticos/metabolismo , Purinas/análise , Purinas/metabolismo , Purinas/farmacologia , Ratos
9.
Nat Commun ; 11(1): 306, 2020 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-31949158

RESUMO

With the rise of e-cigarette use, teen nicotine exposure is becoming more widespread. Findings from clinical and preclinical studies show that the adolescent brain is particularly sensitive to nicotine. Animal studies have demonstrated that adolescent nicotine exposure increases reinforcement for cocaine and other drugs. However, the mechanisms that underlie these behaviors are poorly understood. Here, we report reactive microglia are critical regulators of nicotine-induced increases in adolescent cocaine self-administration. Nicotine has dichotomous, age-dependent effects on microglial morphology and immune transcript profiles. A multistep signaling mechanism involving D2 receptors and CX3CL1 mediates nicotine-induced increases in cocaine self-administration and microglial activation. Moreover, nicotine depletes presynaptic markers in a manner that is microglia-, D2- and CX3CL1-dependent. Taken together, we demonstrate that adolescent microglia are uniquely susceptible to perturbations by nicotine, necessary for nicotine-induced increases in cocaine-seeking, and that D2 receptors and CX3CL1 play a mechanistic role in these phenomena.


Assuntos
Cocaína/farmacologia , Comportamento de Procura de Droga/efeitos dos fármacos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Nicotina/farmacologia , Aminopiridinas/farmacologia , Animais , Quimiocina CX3CL1/metabolismo , Modelos Animais de Doenças , Sistemas Eletrônicos de Liberação de Nicotina , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Minociclina/farmacologia , Fenótipo , Pirróis/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores de Dopamina D2/efeitos dos fármacos , Reforço Psicológico , Recompensa , Autoadministração , Sinaptofisina
10.
Exp Parasitol ; 208: 107793, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31711973

RESUMO

Praziquantel (PZQ) is the sole drug used to treat schistosomiasis, and the probability of developing resistance is growing the longer it is relied upon, justifying the search for alternatives. Phosphodiesterases (PDEs), particularly the PDE4 family, have attracted considerable attention as drug targets, including in Schistosoma mansoni, and especially SmPDE4A. This study investigates the potential antischistosomal activity of human PDE4 and potent SmPDE4A inhibitor roflumilast, either alone or combined with PZQ. In vitro, roflumilast resulted in a significant, concentration-dependent reduction in egg production but not of worm viability. In vitro exposure to roflumilast in combination with a low concentration of PZQ was less effective than PZQ alone, pointing to antagonism. S. mansoni-infected mice treated with roflumilast showed significant reductions in worm burden (27%) as well as hepatic and intestinal egg burdens (~28%) two weeks post treatment. Scanning EM of worms isolated from roflumilast-treated and untreated mice did not reveal noticeable changes to their tegument. S. mansoni-infected mice treated with a fixed dosage of roflumilast and a variable dosage of PZQ resulted in a higher reduction in worm burden, reduced hepatic egg counts, absence of immature eggs and a marked increase in dead eggs, compared to PZQ alone. However, the combination resulted in increased animal mortality, probably attributable to pharmacodynamic interactions between the two drugs. Although this study marks the first report of in vivo antischistosomal potential by a PDE inhibitor, an important proof of concept, we conclude that the antischistosomal effects of roflumilast are insufficient to warrant further development.


Assuntos
Aminopiridinas/farmacologia , Anti-Helmínticos/farmacologia , Benzamidas/farmacologia , Inibidores da Fosfodiesterase 4/farmacologia , Schistosoma mansoni/efeitos dos fármacos , Animais , Nucleotídeo Cíclico Fosfodiesterase do Tipo 1/antagonistas & inibidores , Nucleotídeo Cíclico Fosfodiesterase do Tipo 1/efeitos dos fármacos , Ciclopropanos/farmacologia , Relação Dose-Resposta a Droga , Feminino , Concentração Inibidora 50 , Masculino , Camundongos , Microscopia Eletrônica de Varredura , Oviposição/efeitos dos fármacos , Praziquantel/farmacologia , Schistosoma mansoni/enzimologia , Schistosoma mansoni/fisiologia , Schistosoma mansoni/ultraestrutura
11.
Am J Physiol Lung Cell Mol Physiol ; 318(1): L59-L64, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31664853

RESUMO

Cigarette smoke (CS), a highly complex mixture containing more than 4,000 compounds, causes aberrant cell responses leading to tissue damage around the airways and alveoli, which underlies various lung diseases. Phosphodiesterases (PDEs) are a family of enzymes that hydrolyze cyclic nucleotides. PDE inhibition induces bronchodilation, reduces the activation and recruitment of inflammatory cells, and the release of various cytokines. Currently, the selective PDE4 inhibitor roflumilast is an approved add-on treatment for patients with severe chronic obstructive pulmonary disease with chronic bronchitis and a history of frequent exacerbations. Additional selective PDE inhibitors are being tested in preclinical and clinical studies. However, the effect of chronic CS exposure on the expression of PDEs is unknown. Using mRNA isolated from nasal and bronchial brushes and lung tissues of never smokers and current smokers, we compared the gene expression of 25 PDE coding genes. Additionally, the expression and distribution of PDE3A and PDE4D in human lung tissues was examined. This study reveals that chronic CS exposure modulates the expression of various PDE members. Thus, CS exposure may change the levels of intracellular cyclic nucleotides and thereby impact the efficiency of PDE-targeted therapies.


Assuntos
Pulmão/efeitos dos fármacos , Diester Fosfórico Hidrolases/metabolismo , Fumaça/efeitos adversos , Produtos do Tabaco/efeitos adversos , Adulto , Aminopiridinas/farmacologia , Benzamidas/farmacologia , Ciclopropanos/farmacologia , Feminino , Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Pessoa de Meia-Idade , Inibidores da Fosfodiesterase 4/farmacologia , Doença Pulmonar Obstrutiva Crônica/metabolismo , RNA Mensageiro/metabolismo , Fumar/efeitos adversos
12.
Hypertension ; 75(1): 109-118, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31786976

RESUMO

c-Kit+ progenitor smooth muscle cells (P-SMCs) can develop into SMCs that contribute to injury-induced neointimal thickening. Here, we investigated whether adenosine reduces P-SMC migration and proliferation and whether this contributes to adenosine's inhibitory actions on neointima formation. In human P-SMCs, 2-chloroadenosine (stable adenosine analogue) and BAY60-6583 (A2B agonist) inhibited P-SMC proliferation and migration. Likewise, increasing endogenous adenosine by blocking adenosine metabolism with erythro-9-(2-hydroxy-3-nonyl) adenine (inhibits adenosine deaminase) and 5-iodotubercidin (inhibits adenosine kinase) attenuated P-SMC proliferation and migration. Neither N6-cyclopentyladenosine (A1 agonist), CGS21680 (A2A agonist), nor N6-(3-iodobenzyl)-adenosine-5'-N-methyluronamide (A3 agonist) affected P-SMC proliferation or migration. 2-Chloroadenosine increased cyclic AMP, reduced Akt phosphorylation (activates cyclin D expression), and reduced levels of cyclin D1 (promotes cell-cycle progression). Moreover, 2-chloroadenosine inhibited expression of Skp2 (promotes proteolysis of p27Kip1) and upregulated levels of p27Kip1 (negative cell-cycle regulator). A2B receptor knockdown prevented the effects of 2-chloroadenosine on cyclic AMP production and P-SMC proliferation and migration. Likewise, inhibition of adenylyl cyclase and protein kinase A rescued P-SMCs from the inhibitory effects of 2-chloroadenosine. The inhibitory effects of adenosine were similar in male and female P-SMCs. In vivo, peri-arterial (rat carotid artery) 2-chloroadenosine (20 µmol/L for 7 days) reduced neointimal hyperplasia by 64.5% (P<0.05; intima/media ratio: control, 1.4±0.02; treated, 0.53±0.012) and reduced neointimal c-Kit+ cells. Adenosine inhibits P-SMC migration and proliferation via the A2B receptor/cyclic AMP/protein kinase A axis, which reduces cyclin D1 expression and activity via inhibiting Akt phosphorylation and Skp2 expression and upregulating p27kip1 levels. Adenosine attenuates neointima formation in part by inhibiting infiltration and proliferation of c-Kit+ P-SMCs.


Assuntos
2-Cloroadenosina/farmacologia , Proliferação de Células/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Receptor A2B de Adenosina/metabolismo , Adenina/farmacologia , Adenosina/análogos & derivados , Adenosina/farmacologia , Agonistas do Receptor A2 de Adenosina/farmacologia , Aminopiridinas/farmacologia , Movimento Celular/efeitos dos fármacos , AMP Cíclico/metabolismo , Humanos , Músculo Liso Vascular/citologia , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo , Fenetilaminas/farmacologia , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo
13.
Gut ; 69(1): 122-132, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31076405

RESUMO

OBJECTIVE: We investigated how pancreatic cancer developed resistance to focal adhesion kinase (FAK) inhibition over time. DESIGN: Pancreatic ductal adenocarcinoma (PDAC) tumours from KPC mice (p48-CRE; LSL-KRasG12D/wt; p53flox/wt) treated with FAK inhibitor were analysed for the activation of a compensatory survival pathway in resistant tumours. We identified pathways involved in the regulation of signal transducer and activator of transcription 3 (STAT3) signalling on FAK inhibition by gene set enrichment analysis and verified these outcomes by RNA interference studies. We also tested combinatorial approaches targeting FAK and STAT3 in syngeneic transplantable mouse models of PDAC and KPC mice. RESULTS: In KPC mice, the expression levels of phosphorylated STAT3 (pSTAT3) were increased in PDAC cells as they progressed on FAK inhibitor therapy. This progression corresponded to decreased collagen density, lowered numbers of SMA+ fibroblasts and downregulation of the transforming growth factor beta (TGF-ß)/SMAD signalling pathway in FAK inhibitor-treated PDAC tumours. Furthermore, TGF-ß production by fibroblasts in vitro drives repression of STAT3 signalling and enhanced responsiveness to FAK inhibitor therapy. Knockdown of SMAD3 in pancreatic cancer cells abolished the inhibitory effects of TGF-ß on pSTAT3. We further found that tumour-intrinsic STAT3 regulates the durability of the antiproliferative activity of FAK inhibitor, and combinatorial targeting of FAK and Janus kinase/STAT3 act synergistically to suppress pancreatic cancer progression in mouse models. CONCLUSION: Stromal depletion by FAK inhibitor therapy leads to eventual treatment resistance through the activation of STAT3 signalling. These data suggest that, similar to tumour-targeted therapies, resistance mechanisms to therapies targeting stromal desmoplasia may be critical to treatment durability.


Assuntos
Aminopiridinas/uso terapêutico , Antineoplásicos/uso terapêutico , Carcinoma Ductal Pancreático/tratamento farmacológico , Proteína-Tirosina Quinases de Adesão Focal/antagonistas & inibidores , Neoplasias Pancreáticas/tratamento farmacológico , Aminopiridinas/farmacologia , Animais , Antineoplásicos/farmacologia , Carcinoma Ductal Pancreático/enzimologia , Carcinoma Ductal Pancreático/patologia , Colágeno/metabolismo , Regulação para Baixo/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/fisiologia , Feminino , Fibroblastos/efeitos dos fármacos , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Humanos , Camundongos Endogâmicos , Neoplasias Pancreáticas/enzimologia , Neoplasias Pancreáticas/patologia , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteína Smad3/metabolismo , Células Estromais/efeitos dos fármacos , Células Estromais/patologia , Fator de Crescimento Transformador beta/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
14.
J Biol Chem ; 295(7): 1985-1991, 2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-31882543

RESUMO

The cystic fibrosis transmembrane conductance regulator (CFTR) is an ion channel protein that is defective in individuals with cystic fibrosis (CF). To advance the rational design of CF therapies, it is important to elucidate how mutational defects in CFTR lead to its impairment and how pharmacological compounds interact with and alter CFTR. Here, using a helical-hairpin construct derived from CFTR's transmembrane (TM) helices 3 and 4 (TM3/4) and their intervening loop, we investigated the structural effects of a patient-derived CF-phenotypic mutation, E217G, located in the loop region of CFTR's membrane-spanning domain. Employing a single-molecule FRET assay to probe the folding status of reconstituted hairpins in lipid bilayers, we found that the E217G hairpin exhibits an altered adaptive packing behavior stemming from an additional GXXXG helix-helix interaction motif created in the mutant hairpin. This observation suggested that the misfolding and functional defects caused by the E217G mutation arise from an impaired conformational adaptability of TM helical segments in CFTR. The addition of the small-molecule corrector Lumacaftor exerts a helix stabilization effect not only on the E217G mutant hairpin, but also on WT TM3/4 and other mutations in the hairpin. This finding suggests a general mode of action for Lumacaftor through which this corrector efficiently improves maturation of various CFTR mutants.


Assuntos
Aminofenóis/química , Aminopiridinas/farmacologia , Benzodioxóis/farmacologia , Regulador de Condutância Transmembrana em Fibrose Cística/química , Fibrose Cística/genética , Sequência de Aminoácidos/genética , Aminofenóis/farmacologia , Aminopiridinas/química , Benzodioxóis/química , Linhagem Celular , Fibrose Cística/tratamento farmacológico , Fibrose Cística/patologia , Regulador de Condutância Transmembrana em Fibrose Cística/antagonistas & inibidores , Regulador de Condutância Transmembrana em Fibrose Cística/ultraestrutura , Humanos , Conformação Molecular/efeitos dos fármacos , Mutação/genética , Dobramento de Proteína/efeitos dos fármacos , Relação Estrutura-Atividade
15.
Cancer Sci ; 111(2): 749-759, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31849147

RESUMO

The revised WHO classification newly defined the entities "High-grade B-cell lymphoma with MYC and BCL2, and/or BCL6 rearrangements (HGBL-DH/TH)" and "HGBL, NOS." Standard immunochemotherapy for diffuse large B-cell lymphoma (DLBCL), R-CHOP, is insufficient for HGBL patients, and there are currently no optimized therapeutic regimens for HGBL. We previously reported that CCND3, which encodes cyclin D3, harbored high mutation rates in Burkitt lymphoma (BL), HGBL and a subset of DLBCL. Furthermore, the knockdown of cyclin D3 expression was toxic to germinal center (GC)-derived B-cell lymphomas. Thus, the fundamental function of cyclin D3 is important for the pathogenesis of GC-derived B-cell lymphoma. We herein used two structurally different CDK4/6 inhibitors, palbociclib and abemaciclib, and examined their suppressive effects on cell proliferation and their ability to induce apoptosis in various aggressive B-cell lymphoma cell lines. The results obtained demonstrated that abemaciclib more strongly suppressed cell proliferation and induced apoptosis in GC-derived B-cell lymphoma cell lines than the control, but only slightly inhibited those features in activated B-cell (ABC)-like DLBCL cell lines. Palbociclib exerted partial or incomplete effects compared with the control and the effect was intermediate between abemaciclib and the control. Moreover, the effects of abemaciclib appeared to depend on cyclin D3 expression levels based on the results of the expression analysis of primary aggressive B-cell lymphoma samples. Therefore, abemaciclib has potential as a therapeutic agent for aggressive GC-derived B-cell lymphomas.


Assuntos
Aminopiridinas/farmacologia , Benzimidazóis/farmacologia , Ciclina D3/genética , Linfoma de Células B/genética , Inibidores de Proteínas Quinases/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular , Ensaios de Seleção de Medicamentos Antitumorais , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Linfoma de Células B/tratamento farmacológico , Mutação , Piperazinas/farmacologia , Piridinas/farmacologia
16.
Brain ; 143(1): 266-288, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31848580

RESUMO

Huntington's disease is associated with a reactive microglial response and consequent inflammation. To address the role of these cells in disease pathogenesis, we depleted microglia from R6/2 mice, a rapidly progressing model of Huntington's disease marked by behavioural impairment, mutant huntingtin (mHTT) accumulation, and early death, through colony-stimulating factor 1 receptor inhibition (CSF1Ri) with pexidartinib (PLX3397) for the duration of disease. Although we observed an interferon gene signature in addition to downregulated neuritogenic and synaptic gene pathways with disease, overt inflammation was not evident by microglial morphology or cytokine transcript levels in R6/2 mice. Nonetheless, CSF1Ri-induced microglial elimination reduced or prevented disease-related grip strength and object recognition deficits, mHTT accumulation, astrogliosis, and striatal volume loss, the latter of which was not associated with reductions in cell number but with the extracellular accumulation of chondroitin sulphate proteoglycans (CSPGs)-a primary component of glial scars. A concurrent loss of proteoglycan-containing perineuronal nets was also evident in R6/2 mice, and microglial elimination not only prevented this but also strikingly increased perineuronal nets in the brains of naïve littermates, suggesting a new role for microglia as homeostatic regulators of perineuronal net formation and integrity.


Assuntos
Aminopiridinas/farmacologia , Matriz Extracelular/efeitos dos fármacos , Proteína Huntingtina/efeitos dos fármacos , Doença de Huntington/metabolismo , Microglia/efeitos dos fármacos , Neostriado/efeitos dos fármacos , Pirróis/farmacologia , Reconhecimento Psicológico/efeitos dos fármacos , Animais , Astrócitos/efeitos dos fármacos , Proteoglicanas de Sulfatos de Condroitina/efeitos dos fármacos , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Citocinas/efeitos dos fármacos , Citocinas/genética , Modelos Animais de Doenças , Regulação para Baixo , Matriz Extracelular/metabolismo , Força da Mão , Humanos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Doença de Huntington/genética , Doença de Huntington/patologia , Doença de Huntington/fisiopatologia , Inflamação , Camundongos , Camundongos Transgênicos , Neostriado/patologia , Neuritos/efeitos dos fármacos , RNA Mensageiro/metabolismo , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/antagonistas & inibidores , Sinapses/efeitos dos fármacos , Transcriptoma
17.
ACS Chem Biol ; 14(12): 2538-2545, 2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31794190

RESUMO

FAT10 is a ubiquitin-like protein suggested to target proteins for proteasomal degradation. It is highly upregulated upon pro-inflammatory cytokines, namely, TNFα, IFNγ, and IL6, and was found to be highly expressed in various epithelial cancers. Evidence suggests that FAT10 is involved in cancer development and may have a pro-tumorigenic role. However, its biological role is still unclear, as well as its biochemical and cellular regulation. To identify pathways underlying FAT10 expression in the context of pro-inflammatory stimulation, which characterizes the cancerous environment, we implemented a phenotypic transcriptional reporter screen with a library of annotated compounds. We identified AZ960, a potent JAK2 inhibitor, which significantly downregulates FAT10 under pro-inflammatory cytokines induction, in an NFκB-independent manner. We validated JAK2 as a major regulator of FAT10 expression via knockdown, and we suggest that the transcriptional effects are mediated through pSTAT1/3/5. Overall, we have elucidated a pathway regulating FAT10 transcription and discovered a tool compound to chemically downregulate FAT10 expression, and to further study its biology.


Assuntos
Janus Quinase 2/metabolismo , Ubiquitinas/metabolismo , Células A549 , Aminopiridinas/farmacologia , Células HEK293 , Humanos , Janus Quinase 2/antagonistas & inibidores , Fenótipo , Inibidores de Proteínas Quinases/farmacologia , Pirazóis/farmacologia
18.
PLoS One ; 14(12): e0226564, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31860681

RESUMO

Here we describe a collaboration between industry, the National Health Service (NHS) and academia that sought to demonstrate how early understanding of both pharmacology and genomics can improve strategies for the development of precision medicines. Diseased tissue ethically acquired from patients suffering from chronic obstructive pulmonary disease (COPD), was used to investigate inter-patient variability in drug efficacy using ex vivo organocultures of fresh lung tissue as the test system. The reduction in inflammatory cytokines in the presence of various test drugs was used as the measure of drug efficacy and the individual patient responses were then matched against genotype and microRNA profiles in an attempt to identify unique predictors of drug responsiveness. Our findings suggest that genetic variation in CYP2E1 and SMAD3 genes may partly explain the observed variation in drug response.


Assuntos
Genômica/métodos , Pulmão/crescimento & desenvolvimento , Técnicas de Cultura de Órgãos/métodos , Variantes Farmacogenômicos , Doença Pulmonar Obstrutiva Crônica/genética , Aminopiridinas/farmacologia , Aminopiridinas/uso terapêutico , Benzamidas/farmacologia , Benzamidas/uso terapêutico , Ciclopropanos/farmacologia , Ciclopropanos/uso terapêutico , Fluticasona/farmacologia , Fluticasona/uso terapêutico , Fumarato de Formoterol/farmacologia , Fumarato de Formoterol/uso terapêutico , Humanos , Pulmão/química , Pulmão/efeitos dos fármacos , MicroRNAs/genética , Modelos Biológicos , Medicina de Precisão , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Medicina Estatal , Sequenciamento Completo do Exoma
19.
Curr Drug Res Rev ; 11(2): 135-141, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31875784

RESUMO

BACKGROUND: Cyclin-Dependent Kinases-6 (CDK-6) is a serine/threonine protein kinase with regular activity in the cell cycle. Some inhibitors, such as abemaciclib, hymenialdisine, and indirubin, cause cell arrest by decreasing its activity. OBJECTIVES: The purpose of this study was to evaluate the Molecular Dynamic (MD) effects of abemaciclib, hymenialdisine, and indirubin on the structure of CDK-6. METHODS: The PDB file of CDK-6 was obtained from the Protein Data Bank (http://www.rcsb.org). After the simulation of CDK-6 in the Gromacs software, 200 stages of molecular docking were run on CDK-6 in the presence of the inhibitors using AutoDock 4.2. The simulation of CDK-6 in the presence of inhibitors was performed after docking. RESULTS: Abemaciclib showed the greatest tendency to bind CDK-6 via binding 16 residues in the binding site with hydrogen bonds and hydrophobic bonding. CDK-6 docked to hymenialdisine and indirubin increased the Total Energy (TE) and decreased the radius of gyration (Rg). CDK-6 docked to hymenialdisine significantly decreased the coil secondary structure. CONCLUSION: CDK-6 is inhibited via high binding affinity to abemaciclib, hymenialdisine, and indirubin inhibitors and induces variation in the secondary structure and Rg in the CDK-6 docked to the three inhibitors. It seems that developing a drug with a binding tendency to CDK6 that is similar to those of abemaciclib, indirubin, and hymenialdisine can change the secondary structure of CDK6, possibly more potently, and can be used to develop anticancer drugs. However, additional studies are needed to confirm this argument.


Assuntos
Aminopiridinas/farmacologia , Antineoplásicos/farmacologia , Azepinas/farmacologia , Benzimidazóis/farmacologia , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Pirróis/farmacologia , Sítios de Ligação/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Simulação por Computador , Humanos , Ligação de Hidrogênio , Indóis/farmacologia , Modelos Moleculares , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular
20.
Cell Mol Biol (Noisy-le-grand) ; 65(7): 26-33, 2019 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31880514

RESUMO

Aerobic glycolysis, known as the "Warburg effect", is one of several hallmarks of cancer cells. The conversion of phosphoenolpyruvate (PEP) to pyruvate can be down regulated by the re-expression of the embryonic isoform 2 of pyruvate kinase (PKM2). This mechanism allows the accumulation of glycolytic intermediates for the biosynthesis of macromolecules, such as proteins, lipids and nucleic acids. PKM2 is favored by the well-known PI3K/Akt/mTOR proliferative pathway. This pathway is induced by high glucose levels, and the mTOR kinase is the central activator of the Warburg effect. In this study, we investigated the role of glucose restriction (GR) and mTOR inhibition  in reversing the Warburg effect in MDA-MB 231 and MCF-7 breast cancer cell lines. PKM2 expression was measured by western blot. Lactate production by cells was determined by a colorimetric assay. The concentration of glucose in the supernatant of cells was measured using the Trinder method. ATP level  was evaluated by using a Colorimetric/Fluorometric ATP Assay Kit. Our results showed that MDA-MB 231 cells increased glucose consumption when the glucose concentration was 0 g/L (P <0.01). In MCF-7 cells, glucose deprivation reduced lactate secretion by 80% (P =0.0001) but tripled glucose consumption (P = 0.0041). ATP concentration increased approximately when MCF-7 cells were deprived of glucose (P = 0.02). GSK1059615 does not significantly modulate lactate secretion and glucose uptake in both cell lines. Glucose restriction contribute to the reduction of the Warburg effect through mTOR inhibition and regulation of PKM2 kinases.


Assuntos
Neoplasias da Mama/metabolismo , Proteínas de Transporte/metabolismo , Glucose/metabolismo , Proteínas de Membrana/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Hormônios Tireóideos/metabolismo , Trifosfato de Adenosina/metabolismo , Aminopiridinas/farmacologia , Western Blotting , Linhagem Celular Tumoral , Colorimetria , Regulação para Baixo/efeitos dos fármacos , Citometria de Fluxo , Humanos , Ácido Láctico/metabolismo , Células MCF-7 , Piperidinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA