Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.101
Filtrar
1.
Bioresour Technol ; 302: 122777, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31991390

RESUMO

Microbial fuel cells (MFCs) based sensors had been studied in measuring biochemical oxygen demand (BOD) or the equivalent chemical oxygen demand (COD) recently. Limited attention has been paid to the effect of the microbial communities in wastewater on the responses of these sensors. This study systematically evaluated, for the first time, the effect of wastewater samples from a variety of sources on the electrical response of a micro-fabricated double-chamber MFC device. It was found that the response of the MFC is positively correlated with the bacterial composition, in particular electroactive bacteria. The presence of aerobic bacteria in the sample reduces the current generation. These findings indicated that the bacterial content of the water sample could be a significant interference source and must be considered in the use of µMFC-based sensors. Filtering samples may be effective in improving the reliability of these microsensors.


Assuntos
Fontes de Energia Bioelétrica , Técnicas Biossensoriais , Microbiota , Análise da Demanda Biológica de Oxigênio , Eletricidade , Reprodutibilidade dos Testes , Águas Residuárias
2.
J Environ Manage ; 259: 110089, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-31929033

RESUMO

Microwaves (MW) have great potential for sludge solubilization, and carbon materials can act as good microwave absorbers and heat transfer media because of their high dielectric loss tangent and thermal conductivity. In this study, carbon nanotube-coated MW vessels were developed by preparing a silane-CNT mixture and spray coating. In addition, sludge solubilization by microwave irradiation was performed to evaluate the effects of the CNT-coating at different initial total suspended solid (TSS) concentrations, target temperatures, and MW irradiation times in the uncoated and CNT-coated MW vessels. The sludge solubilization efficiency increased with increasing MW irradiation time and temperature and followed a first-order reaction in both vessels. However, the energy requirement to maintain the temperature was reduced in the CNT-coated MW vessel compared to the uncoated vessel. In addition, the Arrhenius equation revealed the catalytic site in the CNT-coated MW vessel to have a temperature of around 130 °C at an average sludge temperature of 100 °C. The maximum chemical oxygen demand (COD) solubilization and soluble COD (sCOD) increase per MW energy used were 1.64 and 1.67 times higher in the CNT-coated MW vessel than in the uncoated vessel, respectively. The increase in soluble total nitrogen and phosphorus in the CNT-coated MW vessel was attributed to cell wall destruction and intracellular protoplast dissolution, because of the acceleration of the MW thermal effect and high conductivity of CNTs, as well as the MW-induced cell wall and membrane disruption by hot spots on the CNT surface. This suggests that CNTs can be applied to increase the energy efficiency in MW-based pretreatment methods.


Assuntos
Nanotubos de Carbono , Esgotos , Análise da Demanda Biológica de Oxigênio , Micro-Ondas , Temperatura Ambiente
3.
J Environ Manage ; 259: 110034, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-31932266

RESUMO

Vinasse is sulfate-rich wastewater due to sulfuric acid dosage in some ethanol production steps. The vinasse sulfate concentration is subject to seasonal variations. A two-stage anaerobic membrane bioreactor (2S-AnMBR) was operated to evaluate the influence of COD/SO42- ratio on vinasse treatment performance by using a real vinasse sample under natural seasonal COD/SO42- variation. This ratio directly affects the sulfidogenesis efficiency, which is responsible for different forms of inhibition in the anaerobic treatment of sulfate-rich wastewater. The bioreactor presented a stable performance at the highest COD/SO42- ratios (50-94), with high removal of chemical oxygen demand (COD) (97.5 ± 0.4%) and volatile fatty acids (VFA) (98.0 ± 0.6%), but low removal of sulfate (69.9 ± 9.5%), indicating lower sulfate reducing bacteria (SRB) activity. In the lowest COD/SO42- ratios (9-20), a deterioration in the removal of organic matter (87.0 ± 1.3%) and VFA (69.8 ± 15.5%) was observed, accompanied by sulfate removal increase (92.9 ± 2.6%). A significant correlation between COD fractions removed via methanogenesis and sulfidogenesis and the COD/SO42- ratio was found, indicating that the increase of this ratio is beneficial to the methanogenic archaea activity. The occurrence of sulfidogenesis, favored by the lower COD/SO42- ratios, induced the microbial soluble products (SMP) and extracellular polymeric substances (EPS) release and protein/carbohydrate ratio increase in the mixed liquor, contributing to the filtration resistance increase.


Assuntos
Metano , Eliminação de Resíduos Líquidos , Anaerobiose , Análise da Demanda Biológica de Oxigênio , Reatores Biológicos , Sulfatos , Águas Residuárias
4.
Environ Technol ; 41(3): 389-399, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29995596

RESUMO

The effect of different co-metabolic substrates (glucose, acetic acid and ethanol) on aerobic granular sludge treating cellulose ethanol wastewater was investigated using sequencing batch reactors. The efficiencies of the three substrates in removing chemical oxygen demand were respectively 18.87%, 28.88% and 27.99%, all of which were remarkably higher than without co-metabolic substrates, indicating that co-metabolic substrates can promote the degradation of the refractory substances. With acetic acid as the co-metabolic substrate, the removal amount of ammonium nitrogen and nitrate nitrogen was greater than glucose and ethanol used. The nitrogen removals by the three co-metabolic substrates were 53.18%, 72.15%, 69.36%, respectively, which were 1.4, 1.8, and 1.6 times the removal without co-metabolic substrates. Fluorescence in situ hybridization results showed that the proportion of ammonium-oxidizing bacteria in the granular sludge was greater than that of nitrite-oxidizing bacteria after adding co-metabolic substrates, and the order was acetic acid > ethanol > glucose.


Assuntos
Esgotos , Águas Residuárias , Aerobiose , Análise da Demanda Biológica de Oxigênio , Reatores Biológicos , Desnitrificação , Etanol , Hibridização in Situ Fluorescente , Nitrogênio , Eliminação de Resíduos Líquidos
5.
Bioresour Technol ; 297: 122420, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31784248

RESUMO

The feasibility of mixed dye wastewater treatment was evaluated with a novel integrated bioprocess that consisted of a hybrid anaerobic reactor (HAR) with a built-in bioelectrochemical system, an aerobic biofilm reactor (ABFR) and a denitrification reactor (DR). The position of the DR significantly affected chemical oxygen demand (COD) and colority in effluent, and placing the DR after the ABFR improved effluent quality probably due to minimization of the undesired autoxidation of aromatic amine in dye wastewater. The optimal integrated process of HAR + ABFR + DR efficiently treated mixed dye wastewater, and concentrations of COD and TN were decreased down to 75 ± 18 mg/L and 12.91 ± 0.31 mg/L, respectively, along with colority 48 ± 4 times. Total phosphorus reduced to below 0.5 mg/L with coagulation using poly aluminum chloride, and the effluent quality fully met the discharge standard. This comprehensive study suggests the feasibility of the BES based process for practical application to mixed dye wastewater treatment.


Assuntos
Eliminação de Resíduos Líquidos , Águas Residuárias , Análise da Demanda Biológica de Oxigênio , Reatores Biológicos , Nitrogênio , Fósforo
6.
Bioresour Technol ; 297: 122423, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31821954

RESUMO

This work studied the influence of low-thermal pretreatment (60-120 °C) on anaerobic digestion of saline waste activated sludge. The findings showed higher temperature and longer pretreatment time considerably improve organics hydrolysis (soluble chemical oxygen demand increased by 4.2-11.9 times) and volatile solid reduction (maximum 24.6%). Carbohydrate and proteins solubilization accelerated by 5.6-43.8 times and 8.9-35.9 times, respectively by temperature rose from 60 to 120 °C. Low temperature (60 °C) promotes faster release of ammonia and phosphate. Thermal treatment had positive effect on biogas production because methane yield was enhanced by 13.7, 27.0, 29.0 and 29.6% when pretreated at 60, 80, 100 and 120 °C, respectively. Significant positive relationships observed between pretreatment temperature/duration and sludge properties. Energy and economic assessment displayed anaerobic digestion of 80 °C pretreated sludge is more economically feasible. Thus, low-thermal pretreatment technology could be useful for improvement of methane yield in anaerobic digestion.


Assuntos
Metano , Esgotos , Anaerobiose , Análise da Demanda Biológica de Oxigênio , Hidrólise , Eliminação de Resíduos Líquidos
7.
Water Res ; 169: 115258, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31710915

RESUMO

Novel wastewater treatment plants (WWTPs) are designed to be more energy efficient than conventional plants. One approach to becoming more energy efficient is the pre-concentration of organic carbon through chemically enhanced primary treatment (CEPT) or high-rate activated sludge (HRAS). This study compares these approaches in terms of energy demand, operational costs, organic micropollutants (OMP), and virus removal efficiency. A CEPT pilot-scale plant was operated at a hydraulic retention time (HRT) of 30 min, and a lab-scale HRAS reactor was operated at an HRT of 2 h and a solid retention time (SRT) of 1 d in continuous mode. A minimum dose of 150 mg/L ferric chloride (FeCl3) was required to achieve a threshold chemical oxygen demand (COD)-to-ammonium ratio below 2 g COD to 1 g of NH4+ -N (fulfilling the requirement for a partial nitritation-anammox reactor), reaching high phosphate (PO43-)-removal efficiency (>99%). A slightly lower COD recovery was attained in the HRAS reactor, due to the partial oxidation of the influent COD (15%). The lower PO43- removal efficiency achieved in the HRAS configuration (13%) was enhanced to a comparable value of that achieved in CEPT by the addition of 30 mg/L FeCl3 at the clarifier. The CEPT configuration was less energy-intensive (0.07 vs 0.13 kWh/m3 of wastewater) but had significantly higher operational costs than the HRAS-based configuration (6.0 vs 3.8 c€/m3 of wastewater). For OMPs with kbiol > 10 L/gVSS·d, considerably higher removal efficiencies were achieved in HRAS (80-90%) than in CEPT (4-55%). For the remaining OMPs, the biotransformation efficiencies were generally higher in HRAS than in CEPT but were below 55% in both configurations. Finally, CEPT was less efficient than HRAS for virus removal. HRAS followed by FeCl3 post-treatment appeared to be a more effective alternative than CEPT for COD pre-concentration in novel WWTPs.


Assuntos
Esgotos , Águas Residuárias , Análise da Demanda Biológica de Oxigênio , Reatores Biológicos , Carbono , Eliminação de Resíduos Líquidos
8.
Waste Manag Res ; 38(1): 69-77, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31423928

RESUMO

This research is focused on the feasibility of biofuel from water hyacinth mixed with cassava starch sediment by biological and physical conversion processes and the comparison of the gross electricity production in these processes. The biological conversion process produced biomethane by anaerobic digestion. The optimal conditions of biomethane production were a ratio of water hyacinth and cassava starch sediment at 25:75, initial pH of 7.5, thermophilic temperature (55 ± 2°C) and C/N ratio of 30. The maximum biomethane yield measured was 436.82 mL CH4 g chemical oxygen demand (COD)-1 and the maximum COD removal was 87.40%. The physical conversion process was bio-briquette. It was found that the ratios of water hyacinth and cassava starch sediment at 10:90, 20:80, 30:70, 40:60 and 50:50 were the best ratio of fuel properties and close to the Thai Community Product Standard, with heating values of 15.66, 15.43, 15.10, 14.88 and 14.58 MJ kg-1, respectively. Moreover, results showed that the gross electricity production of the biological conversion process (biomethane) was 3.90 kWh and the gross electricity production of the physical conversion process (bio-briquette) from the ratios of water hyacinth and cassava starch sediment at 10:90, 20:80, 30:70, 40:60 and 50:50 were 1.52, 1.50, 1.47, 1.45 and 1.42 kWh, respectively.


Assuntos
Biocombustíveis , Metano , Análise da Demanda Biológica de Oxigênio , Temperatura Ambiente
9.
Water Res ; 169: 115276, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31731242

RESUMO

Wastewater treatment plants (WWTPs) are critical for maintaining sustainable development in modern societies, wherein microbial populations residing in activated sludge (AS) are responsible for the removal of pollutants from wastewater. The biodegradability [biological oxygen demand/chemical oxygen demand (B/C ratio)] of influent, as a measure of the degree of available energy and toxicity to microorganisms in AS, has been hypothesized to drive AS microbial community assembly. However, the validity of this hypothesis has not been tested in full-scale WWTPs. In this study, we assessed the pollutant removal loads, the microbial community diversity, the relative importance of deterministic and stochastic assembly processes, and bio-interactions within the communities by analyzing 195 AS samples comprising nearly 5 000 000 16S rRNA sequences. Our results indicate that the effects of B/C ratio on pollutant removal loads can be perfectly reflected through biological properties, implying that B/C ratio determined WWTPs performance through affecting microbial community. Very low and/or very high B/C ratios result in low microbial diversity, strong stochastic processes, and large, complex networks, leading to low pollutant removal load of treatment. A B/C ratio of around 0.5 was optimal for system stability and efficiency. Based on the results of this study, the authors propose using the B/C ratio as an indispensable index to assess system performance and to provide an indicator of an impending process upset before function deteriorates significantly. This study provides a specific measure that can be used to evaluate strategies for process optimization and operation of WWTPs.


Assuntos
Microbiota , Águas Residuárias , Análise da Demanda Biológica de Oxigênio , RNA Ribossômico 16S , Esgotos , Eliminação de Resíduos Líquidos
10.
Water Environ Res ; 92(1): 42-50, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31165557

RESUMO

Sludge disintegration is an effective pretreatment to enhance the biodegradability of sludge. At present, the thermal-alkaline is one of the most commonly used methods, but it has a massive consumption of energy and chemical reagents. EDTA-enhanced thermal-alkaline treatment was used to strengthen the dewatered sludge disintegration at mid-low temperature in this study. Results showed that the dissolving-out quantity of soluble chemical oxygen demand and the volatile solid (VS) in residual sludge in the EDTA-added group were 14.7% higher and 7% lower than those in control system without EDTA, respectively, indicating that EDTA addition improved the performance of sludge disintegration. The addition of EDTA loosened the floc structure and enhanced the hydrolyzability of dissolved organic matters (DOM) with a narrower distribution of the relative molecular weight. The membrane damage of microbial cells in EDTA-added group reached 73.3% after 120 min, which was much higher than that in the control group (31.9%). EDTA contains a large number of hydrogen bond acceptors and could form hydrogen bonds with alcohols and phenols in solubilization products and DOM. It was speculated that the mechanism of EDTA-enhanced sludge disintegration was related to the formation of hydrogen bonds between EDTA and organic matter inside and outside the cell. PRACTITIONER POINTS: The addition of EDTA facilitated the thermal-alkali cracking of dewatered sludge. EDTA increased the particle size of sludge and enhanced the hydrolysis of DOM. The strengthening effect mainly occurred at the beginning of TB-EPS dissolving slowly. Hydrogen bond played important roles in the enhanced disintegration of sludge by EDTA.


Assuntos
Esgotos , Análise da Demanda Biológica de Oxigênio , Ácido Edético , Hidrólise
11.
Water Environ Res ; 92(2): 202-210, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31332873

RESUMO

In this study, an anaerobically digested effluent from kitchen waste with high concentrations of chemical oxygen demand (COD) and ammonia nitrogen was treated using combined processes of anaerobic digestion (AD), complete nitritation (CN), and anaerobic ammonium oxidation (ANAMMOX). The COD and nitrogen removal efficiency of each treatment unit were investigated. The feasibility of using the final treatment effluent to dilute the original wastewater was also discussed. Findings showed that as a pretreatment step, AD resulted in the decline in biodegradability and increase in NH 4 + - N concentration. CN was successfully and stably achieved for 106 days with an average nitritation rate of 95% by maintaining the dissolved oxygen at 2-3 mg/L and hydraulic retention time of 24 hr under 30 ± 1°C. High NH 4 + - N and NO 2 - - N . removal efficiencies of over 88% and 96% were attained in the following ANAMMOX reactor. The reflux of ANAMMOX-treated effluent for the dilution of raw wastewater or an influent of CN and ANAMMOX ensured the stable operation of the combined system. PRACTITIONER POINTS: Anaerobic digestion effluent of kitchen waste had low COD/ NH 4 + - N ratio and poor biodegradability. Stable and efficient nitritation was realized by controlling DO, HRT and TEMP. High NH 4 + - N and NO 2 - -N removal efficiency were obtained by ANAMMOX process. Average nitrogen removal rate of 0.94 kg N/m3 /day were obtained by ANAMMOX. Reflux dilution with the effluent guaranteed the system's successful operation.


Assuntos
Reatores Biológicos , Águas Residuárias , Anaerobiose , Análise da Demanda Biológica de Oxigênio , Nitrogênio , Oxirredução , Eliminação de Resíduos Líquidos
12.
Water Environ Res ; 92(1): 60-72, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31306532

RESUMO

Microbial fuel cells (MFCs) have long held the promise of being a cost-effective technology for the energy-neutral treatment of wastewater. However, successful pilot-scale demonstrations for this technology are still limited to very few. Here, we present a large-scale MFC system, composed of 12 MFCs with a total volume of 110 L, successfully treating swine wastewater at a small educational farm. The system was operated for over 200 days in continuous mode with hydraulic residence time of 4 hr. Very stable electrochemical and waste treatment performance was observed with up to 65% of chemical oxygen demand (COD) removed and a maximum treatment rate of 5.0 kg COD/m3 .day. Robust microbial enrichment was performed and adapted to metabolize and transform a diversity of compounds present. The Net Energy Recovery (NER = 0.11 kWhr/kg COD) is not only competitive with conventional cogeneration processes, but is in fact sufficient to sustain the operational energy requirements of the system. PRACTITIONER POINTS: This study demonstrates the design and operation of a large-scale microbial fuel cells (MFC) system for continuous treatment of swine wastewater. The system achieved a high chemical oxygen demand removal rate within a short hydraulic residence time. This study moves one-step closer to applying MFC technology for real wastewater treatment.


Assuntos
Fontes de Energia Bioelétrica , Animais , Análise da Demanda Biológica de Oxigênio , Eletricidade , Suínos , Eliminação de Resíduos Líquidos , Águas Residuárias
13.
Chemosphere ; 240: 124890, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31726588

RESUMO

The presence of diesel in the water could reduce the growth of plant and thus phytoremediation efficacy. The toxicity of diesel to plant is commonly explained; because of hydrocarbons in diesel accumulate in various parts of plants, where they disrupt the plant cell especially, the epidemis, leaves, stem and roots of the plant. This study investigated the effect of bacterial augmentation in floating treatment wetlands (FTWs) on remediation of diesel oil contaminated water. A helophytic plant, Phragmites australis (P. australis), was vegetated on a floating mat to establish FTWs for the remediation of diesel (1%, w/v) contaminated water. The FTWs was inoculated with three bacterial strains (Acinetobacter sp. BRRH61, Bacillus megaterium RGR14 and Acinetobacter iwoffii AKR1), possessing hydrocarbon degradation and plant growth-enhancing capabilities. It was observed that the FTWs efficiently removed hydrocarbons from water, and bacterial inoculation further enhanced its hydrocarbons degradation efficacy. Diesel contaminated water samples collected after fifteen days of time interval for three months and were analyzed for pollution parameters. The maximum reduction in hydrocarbons (95.8%), chemical oxygen demand (98.6%), biochemical oxygen demand (97.7%), total organic carbon (95.2%), phenol (98.9%) and toxicity was examined when both plant and bacteria were employed in combination. Likewise, an increase in plant growth was seen in the presence of bacteria. The inoculated bacteria showed persistence in the water, root and shoot of P. australis. The study concluded that the augmentation of hydrocarbons degrading bacteria in FTWs is a better option for treatment of diesel polluted water.


Assuntos
Inoculantes Agrícolas/crescimento & desenvolvimento , Gasolina/análise , Hidrocarbonetos/análise , Poaceae/microbiologia , Poluentes Químicos da Água/análise , Áreas Alagadas , Acinetobacter/crescimento & desenvolvimento , Bacillus megaterium/crescimento & desenvolvimento , Biodegradação Ambiental , Análise da Demanda Biológica de Oxigênio
14.
Chemosphere ; 240: 124945, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31726594

RESUMO

In this study, the effect of high concentration of Mn2+ on the aerobic granular sludge (AGS) systems for aniline wastewater treatment was systematically investigated in terms of AGS formation and pollutant removal efficiency. Two parallel sequencing batch reactors were operated to treat the aniline-rich wastewater with and without 20 mg L-1 of Mn2+. In the presence of Mn2+, the time to granulation was prolonged from 23 d to 30 d due to the toxicity of the high concentration of Mn2+. However, the mature granules with Mn2+ produced more protein and polysaccharides, and had a larger size (870 µm) than that without Mn2+ (740 µm). The extracellular polymeric substances of the granules in the two reactors had similar protein compositions, but some functional groups increased with Mn2+. The reactors showed high overall removal efficiency of chemical oxygen demand, NH4+-N, and total nitrogen with average concentrations below 40, 1.0, and 19 mg L-1, respectively, in the effluents. In one typical operating cycle, however, Mn2+ retarded nitrification and the degradation of aniline, while promoted denitrification. The microbial community analysis revealed that the growth of Terrisporobacter, Pseudomonas, and many other bacteria responsible for aniline degradation was inhibited by Mn2+, and so were the strains involved in nitrification. In contrast, Mn2+ facilitated the growth of denitrifying bacteria.


Assuntos
Compostos de Anilina/toxicidade , Manganês/toxicidade , Eliminação de Resíduos Líquidos , Poluentes Químicos da Água/toxicidade , Aerobiose , Compostos de Anilina/metabolismo , Bactérias/metabolismo , Análise da Demanda Biológica de Oxigênio , Reatores Biológicos/microbiologia , Desnitrificação , Microbiota , Nitrificação , Nitrogênio/análise , Esgotos/química , Águas Residuárias/química
15.
Chemosphere ; 240: 124804, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31541900

RESUMO

Chemical oxygen demand (COD) is one of the most important water quality parameters that quantifies the amount of oxygen needed to oxidize oxidizable pollutants (mainly organics) in water samples. However, erroneous COD results were commonly observed for bromide-rich industrial wastewater samples using standard COD test. Bromide in water sample is known to seriously interfere with COD test. However, there is no satisfactory approach to effectively eliminate bromide interference thus far. In this study, two strategies, namely masking and correction, were investigated for their effectiveness to suppress bromide interference. For the masking strategy, silver ion was assessed for its effectiveness to neutralize bromide in water samples through precipitation and complex formation reactions. Silver ion offered only partial masking effect on bromide, while the residue bromide can still cause significant interference on COD determination. For the correction strategy, an equivalent redox reaction reflecting bromide interference mechanism was proposed, and a theoretical correction factor of 0.1 g COD/g Br- was found based on stoichiometry. The effectiveness of the proposed correction factor for bromide interference under different wastewater pollutant matrix was evaluated using different types of wastewater samples (synthetic wastewater, domestic wastewater and bromide-rich industrial wastewater) with varying amounts of bromide (from 0 to 2000 mg L-1) added to the samples. The findings showed that with bromide concentration up to 600 mg L-1, the correction factor of 0.1 g COD/g Br- was applicable to all the tested wastewater samples, suggesting that this correction strategy could be practically used to eliminate bromide interference in standard COD test.


Assuntos
Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/análise , Análise da Demanda Biológica de Oxigênio , Brometos , Monitoramento Ambiental , Resíduos Industriais , Indústrias , Oxigênio/química , Águas Residuárias/análise , Qualidade da Água
16.
Bioresour Technol ; 299: 122565, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31865150

RESUMO

The potential for microbial protein production in the mixture of yellow wine lees and rice soaking wastewater was examined. Strong symbiotic effect was observed in fermentation with yeast-fungus mixed culture of Candida utilis and Geochichum candidum at a ratio of 1:1 (v/v). The maximum specific biomass yield of 4.91 ± 0.48 g final biomass/g initial biomass with a protein content of 68.5 ± 1.0% was achieved at inoculum-to-substrate ratio of 10% (v/v) and aeration rate of 1.0 volumeair/volumeliquid/min. The essential amino acids contents of the derived protein were comparable to commercial protein sources with high amounts of methionine (2.87%, based on total protein). The reduction in soluble chemical oxygen demand of 79.4 ± 0.4% was mainly due to uptake of carbohydrate, soluble protein, volatile fatty acids, amino acids, etc. The application of mixed yeast-fungus technology provides a new opportunity for microbial protein production from these low-value organic residue streams.


Assuntos
Vinho , Análise da Demanda Biológica de Oxigênio , Biomassa , Fermentação , Saccharomyces cerevisiae
17.
Chemosphere ; 238: 124574, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31445332

RESUMO

Waste landfills represent a global problem, which is more pronounced in developing countries because of the lack of resources to implement procedures that include separation and waste processing. The aim of this research was to analyze leachate and ground waters samples at the site, upstream and downstream from the landfill during different year seasons on a registered non-hazardous waste dump and to conduct physico-chemical and biological assays to determine potential risk for the ecosystem. Potential cytotoxic, prooxidative and mutagenic effects of leachates and water samples were evaluated on human laryngeal cell line (HEp2). Leachates collected at landfill site caused genotoxic effect and had a higher pH, chemical oxygen demand (COD), biochemical oxygen demand (BOD) and elevated concentrations of phosphorus, chloride, nitrogen compounds and sulphate. Genotoxicity of the leachate was increased in samples collected in dry and warm period of the year. These results are in accordance to the physico-chemical analysis which revealed that during summer period, because of intense degradation process at high temperatures increased concentrations of different chemicals can be found in leachate. Groundwater collected downstream and upstream from landfill did not show statistically significant (geno)toxic effect, irrespective of the sampling season. Chemical analysis revealed that all compounds in groundwater were below permitted values. Purification process at landfill is effective and compounds that reach groundwater do not represent a toxicological threat.


Assuntos
Água Subterrânea/química , Mutagênicos/análise , Eliminação de Resíduos/métodos , Instalações de Eliminação de Resíduos , Poluentes Químicos da Água/análise , Análise da Demanda Biológica de Oxigênio , Ecossistema
18.
Chemosphere ; 238: 124689, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31524624

RESUMO

Pharmaceutical effluents released from industries are accountable to deteriorate the aquatic and soil environment through indirect toxic effects. Microbes are adequately been used to biodegrade pharmaceutical industry wastewater and present study was envisaged to determine biodegradation of pharmaceutical effluent by Micrococcus yunnanensis. The strain showed 42.82% COD (Chemical oxygen demand) reduction before optimization. After applying Taguchi's L8 array as an optimization technique, the biodegradation rate was enhanced by 82.95% at optimum conditions (dextrose- 0.15%, peptone 0.1%, inoculum size 4% (wv-1), rpm 200, pH 8 at 25 °C) within 6 h. The confirmation of pharmaceuticals degradation was done by 1H NMR (Nuclear magnetic resonance) studies followed by elucidation of transformation pathways of probable drugs in the effluent through Q-Tof-MS (Quadrupole Time of Flight- Mass Spectrometry). The cytotoxicity evaluation of treated and untreated wastewater was analyzed on Human Embryonic Kidney (HEK 293) cells using Alamar Blue assay, which showed significant variance.


Assuntos
Biodegradação Ambiental , Resíduos Industriais/análise , Micrococcus/metabolismo , Preparações Farmacêuticas/análise , Águas Residuárias/química , Poluentes Químicos da Água/análise , Análise da Demanda Biológica de Oxigênio , Linhagem Celular , Indústria Farmacêutica , Células HEK293 , Humanos
19.
Sci Total Environ ; 700: 134536, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31689651

RESUMO

Heterogeneous electro-Fenton (EF) technology has been wildly applied for the treatment of wastewater containing dyes and other organic pollutants. However, biologically treatment should be further applied after heterogeneous electro-Fenton process in order get better effluent quality. In the present study, a simple electropolymerization method using poly (3,4-ethylenedioxythiophene) (PEDOT) and graphene oxide (GO) was applied for graphite felt (GF) electrode modification as cathode in EF system, and coupling subsequently aerobic granular sludge (AGS) biological treatment for dye wastewater treatment. The modified electrode was characterized by scanning electron microscopy (SEM), Raman spectrum, and cyclic voltammetry (CV). Data implied that much higher H2O2 productivity, current response and coulomb efficiency (CE) were achieved by using GO/PEDOT:NaPSS modified GF. The results could be ascribed to the synergistic effect between PEDOT and GO that accelerated the electron transfer rate. Moreover, the H2O2 production capacity remained over 84.2% after 10-times reuses for GO/PEDOT:NaPSS modified GF, indicating that GO significantly improved the stability and life of electrode. Compared with the single system, the total organic carbon (TOC) and chemical oxygen demand (COD) removal efficiencies of the combined system degradation methylene blue (MB) wastewater were significantly improved. Therefore, this modified GF could be used as a potentially useful cathode in heterogeneous EF technology for actual wastewater treatment and the combined system have a promising engineering application value in MB wastewater degradation field.


Assuntos
Corantes/química , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/química , Análise da Demanda Biológica de Oxigênio , Compostos Bicíclicos Heterocíclicos com Pontes , Eletrodos , Grafite , Peróxido de Hidrogênio , Azul de Metileno , Polímeros , Esgotos , Águas Residuárias/química
20.
Water Res ; 171: 115383, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31869691

RESUMO

Thermal hydrolysis (TH) increases the anaerobic biodegradability of waste activated sludge (WAS), but also refractory organic and nutrient return load to a wastewater treatment plant (WWTP). This could lead to an increase in effluent chemical oxygen demand (COD) of the WWTP. The aim of this study was to investigate the trade-off between increase in biogas production through TH and anaerobic digestion and increase in refractory COD in dewatered sludge liquors at different temperatures of TH in lab-scale. WAS was thermally hydrolyzed in temperature range of 130-170 °C for 30 min to determine its biomethane potential (BMP). After BMP test, sludge was dewatered and sludge liquor was aerated in Zahn-Wellens test to determine its non-biodegradable soluble COD known as refractory soluble COD (sCODref). With increasing temperature in the range of 130-170 °C, BMP of WAS increased by 17-27%, while sCODref increased by 3.9-8.4%. Dewaterability was also enhanced through relative increase in cake solids by 12-30%. A conversion factor was defined through mass balance to relate sCODref to volatile solids of raw WAS. Based on the conversion factor, expected increase in effluent CODs of six WWTPs in Berlin were predicted to be in the range of 2-15 mg/L after implementation of TH at different temperatures. It was concluded that with a slight decrease in temperature, formation of sCODref could be significantly reduced, while still benefiting from a substantial increase in biogas production and dewaterability improvement.


Assuntos
Biocombustíveis , Esgotos , Anaerobiose , Berlim , Análise da Demanda Biológica de Oxigênio , Hidrólise , Temperatura Ambiente , Eliminação de Resíduos Líquidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA