Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 18.776
Filtrar
1.
Urol Clin North Am ; 47(4): 475-485, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33008498

RESUMO

Cancer is a highly complex and heterogeneous disease and immunotherapy has shown promise as a therapeutic approach. The increased resolution afforded by single-cell analysis offers the hope of finding and characterizing previously underappreciated populations of cells that could prove useful in understanding cancer progression and treatment. Urologic and prostate cancers are inherently heterogeneous diseases, and the potential for single-cell analysis to help understand and develop immunotherapeutic approaches to treat these diseases is very exciting. In this review, we view cancer immunotherapy through a single-cell lens and discuss the state-of-the-art technologies that enable advances in this field.


Assuntos
Imunoterapia/métodos , Terapia de Alvo Molecular/métodos , Neoplasias da Próstata/genética , Neoplasias da Próstata/terapia , Microambiente Tumoral/efeitos dos fármacos , Feminino , Previsões , Humanos , Masculino , Terapia de Alvo Molecular/tendências , Prognóstico , Neoplasias da Próstata/patologia , Medição de Risco , Análise de Sequência de DNA , Análise de Sequência de RNA , Análise de Célula Única , Resultado do Tratamento , Microambiente Tumoral/genética , Neoplasias Urológicas/genética , Neoplasias Urológicas/patologia , Neoplasias Urológicas/terapia
2.
Nat Commun ; 11(1): 5077, 2020 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-33033240

RESUMO

Although substantial progress has been made in cancer biology and treatment, clinical outcomes of bladder carcinoma (BC) patients are still not satisfactory. The tumor microenvironment (TME) is a potential target. Here, by single-cell RNA sequencing on 8 BC tumor samples and 3 para tumor samples, we identify 19 different cell types in the BC microenvironment, indicating high intra-tumoral heterogeneity. We find that tumor cells down regulated MHC-II molecules, suggesting that the downregulated immunogenicity of cancer cells may contribute to the formation of an immunosuppressive microenvironment. We also find that monocytes undergo M2 polarization in the tumor region and differentiate. Furthermore, the LAMP3 + DC subgroup may be able to recruit regulatory T cells, potentially taking part in the formation of an immunosuppressive TME. Through correlation analysis using public datasets containing over 3000 BC samples, we identify a role for inflammatory cancer-associated fibroblasts (iCAFs) in tumor progression, which is significantly related to poor prognosis. Additionally, we characterize a regulatory network depending on iCAFs. These results could help elucidate the protumor mechanisms of iCAFs. Our results provide deep insight into cancer immunology and provide an essential resource for drug discovery in the future.


Assuntos
Fibroblastos/patologia , Inflamação/patologia , Análise de Sequência de RNA , Análise de Célula Única , Bexiga Urinária/patologia , Área Sob a Curva , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Linhagem Celular Tumoral , Polaridade Celular , Proliferação de Células , Citocinas/metabolismo , Variações do Número de Cópias de DNA/genética , Células Dendríticas/metabolismo , Redes Reguladoras de Genes , Humanos , Ligantes , Glicoproteínas de Membrana Associadas ao Lisossomo/metabolismo , Monócitos/patologia , Células Mieloides/patologia , Proteínas de Neoplasias/metabolismo , Linfócitos T Reguladores/imunologia , Microambiente Tumoral , Bexiga Urinária/imunologia
3.
JAMA Netw Open ; 3(10): e2024191, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33026453

RESUMO

Importance: In late December 2019, an outbreak of a novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in Wuhan, China. Data on the routes of transmission to Los Angeles, California, the US West Coast epicenter for coronavirus disease 2019 (COVID-19), and subsequent community spread are limited. Objective: To determine the transmission routes of SARS-CoV-2 to Southern California and elucidate local community spread within the Los Angeles metropolitan area. Design, Setting, and Participants: This case series included 192 consecutive patients with reverse transcription-polymerase chain reaction (RT-PCR) test results positive for SARS-CoV-2 who were evaluated at Cedars-Sinai Medical Center in Los Angeles, California, from March 22 to April 15, 2020. Data analysis was performed from April to May 2020. Main Outcomes and Measures: SARS-CoV-2 viral genomes were sequenced. Los Angeles isolates were compared with genomes from global subsampling and from New York, New York; Washington state; and China to determine potential sources of viral dissemination. Demographic data and outcomes were collected. Results: The cohort included 192 patients (median [interquartile range] age, 59.5 [43-75] years; 110 [57.3%] men). The genetic characterization of SARS-CoV-2 isolates in the Los Angeles population pinpointed community transmission of 13 patients within a 3.81 km2 radius. Variation landscapes of this case series also revealed a cluster of 10 patients that contained 5 residents at a skilled nursing facility, 1 resident of a nearby skilled nursing facility, 3 health care workers, and a family member of a resident of one of the skilled nursing facilities. Person-to-person transmission was detected in a cluster of 5 patients who shared the same single-nucleotide variation in their SARS-CoV-2 genomes. High viral genomic diversity was identified: 20 Los Angeles isolates (15.0%) resembled SARS-CoV-2 genomes from Asia, while 109 Los Angeles isolates (82.0%) were similar to isolates originating from Europe. Analysis of other common respiratory viral pathogens did not reveal coinfection in the cohort. Conclusions and Relevance: These findings highlight the precision of detecting person-to-person transmission and accurate contact tracing directly through SARS-CoV-2 genome isolation and sequencing. Development and application of phylogenetic analyses from the Los Angeles population established connections between COVID-19 clusters locally and throughout the US.


Assuntos
Betacoronavirus/genética , Infecções por Coronavirus/transmissão , Genoma Viral/genética , Pneumonia Viral/transmissão , Adulto , Idoso , Ásia , California/epidemiologia , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/virologia , Europa (Continente) , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Los Angeles/epidemiologia , Masculino , Pessoa de Meia-Idade , Cidade de Nova Iorque , Pandemias , Filogenia , Pneumonia Viral/epidemiologia , Pneumonia Viral/virologia , Análise de Sequência de RNA , Proteínas não Estruturais Virais/genética , Washington
4.
Medicine (Baltimore) ; 99(33): e21707, 2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32872047

RESUMO

Osteoarthritis (OA) is a chronic degenerative joint disease with its onset closely related to the growth of synovial fibroblasts (SFs), yet the genes involved in are few reported. In our study, we aimed to identify the OA-associated key gene and pathways via the single-cell RNA sequencing (scRNA-seq) analysis on SFs.scRNA-seq data of SFs from OA sufferers were accessed from GEO database, then the genes involved in were subjected to principal component analysis (PCA) and T-Stochastic Neighbor Embedding (TSNE) Analysis. GO and KEGG enrichment analyses were performed to find the most enriched functions and pathways associated with marker genes and a PPI network was constructed to identify the key gene associated with OA occurrence.Findings revealed that marker genes in three cell types identified by TSNE were mainly activated in pathways firmly related to fibroblasts growth, such as extracellular matrix, immune and cell adhesion molecule binding-associated functions and pathways. Moreover, fibronectin1 (FN1) was validated as the key gene that was tightly related to the growth of SFs, as well as had the potential to play a key role in OA occurrence.Our study explored the key gene and pathways associated with OA occurrence, which were of great value in further investigation of OA diagnosis as well as pathogenesis.


Assuntos
Fibroblastos/metabolismo , Fibronectinas/genética , Osteoartrite/genética , Humanos , Osteoartrite/metabolismo , Mapas de Interação de Proteínas , Análise de Sequência de RNA , Análise de Célula Única , Membrana Sinovial/citologia
5.
Nat Commun ; 11(1): 4367, 2020 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-32868763

RESUMO

Invariant natural killer T (iNKT), mucosal-associated invariant T (MAIT), and γδ T cells are innate T cells that acquire memory phenotype in the thymus and share similar biological characteristics. However, how their effector differentiation is developmentally regulated is still unclear. Here, we identify analogous effector subsets of these three innate T cell types in the thymus that share transcriptional profiles. Using single-cell RNA sequencing, we show that iNKT, MAIT and γδ T cells mature via shared, branched differentiation rather than linear maturation or TCR-mediated instruction. Simultaneous TCR clonotyping analysis reveals that thymic maturation of all three types is accompanied by clonal selection and expansion. Analyses of mice deficient of TBET, GATA3 or RORγt and additional in vivo experiments corroborate the predicted differentiation paths, while human innate T cells from liver samples display similar features. Collectively, our data indicate that innate T cells share effector differentiation processes in the thymus.


Assuntos
Diferenciação Celular , Imunidade Inata , Linfócitos T/metabolismo , Timo/imunologia , Animais , Células Cultivadas , Seleção Clonal Mediada por Antígeno , Humanos , Fígado/citologia , Fígado/imunologia , Ativação Linfocitária , Camundongos , Células T Invariáveis Associadas à Mucosa/metabolismo , Células T Matadoras Naturais/metabolismo , Análise de Sequência de RNA , Análise de Célula Única , Células Th17/metabolismo , Timo/citologia
6.
Nat Commun ; 11(1): 4364, 2020 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-32868781

RESUMO

Pathophysiological roles of cardiac dopamine system remain unknown. Here, we show the role of dopamine D1 receptor (D1R)-expressing cardiomyocytes (CMs) in triggering heart failure-associated ventricular arrhythmia. Comprehensive single-cell resolution analysis identifies the presence of D1R-expressing CMs in both heart failure model mice and in heart failure patients with sustained ventricular tachycardia. Overexpression of D1R in CMs disturbs normal calcium handling while CM-specific deletion of D1R ameliorates heart failure-associated ventricular arrhythmia. Thus, cardiac D1R has the potential to become a therapeutic target for preventing heart failure-associated ventricular arrhythmia.


Assuntos
Arritmias Cardíacas/etiologia , Insuficiência Cardíaca , Miócitos Cardíacos/metabolismo , Receptores de Dopamina D1/metabolismo , Animais , Arritmias Cardíacas/prevenção & controle , Perfilação da Expressão Gênica/métodos , Humanos , Camundongos , Camundongos Transgênicos , Ratos , Receptores de Dopamina D1/genética , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Taquicardia Ventricular/etiologia , Taquicardia Ventricular/prevenção & controle
7.
Nat Commun ; 11(1): 4365, 2020 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-32868761

RESUMO

Current approaches explore bacterial genes that change transcriptionally upon stress exposure as diagnostics to predict antibiotic sensitivity. However, transcriptional changes are often specific to a species or antibiotic, limiting implementation to known settings only. While a generalizable approach, predicting bacterial fitness independent of strain, species or type of stress, would eliminate such limitations, it is unclear whether a stress-response can be universally captured. By generating a multi-stress and species RNA-Seq and experimental evolution dataset, we highlight the strengths and limitations of existing gene-panel based methods. Subsequently, we build a generalizable method around the observation that global transcriptional disorder seems to be a common, low-fitness, stress response. We quantify this disorder using entropy, which is a specific measure of randomness, and find that in low fitness cases increasing entropy and transcriptional disorder results from a loss of regulatory gene-dependencies. Using entropy as a single feature, we show that fitness and quantitative antibiotic sensitivity predictions can be made that generalize well beyond training data. Furthermore, we validate entropy-based predictions in 7 species under antibiotic and non-antibiotic conditions. By demonstrating the feasibility of universal predictions of bacterial fitness, this work establishes the fundamentals for potentially new approaches in infectious disease diagnostics.


Assuntos
Bactérias/genética , Evolução Molecular Direcionada , Farmacorresistência Bacteriana/genética , Estresse Fisiológico , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/metabolismo , Fenômenos Fisiológicos Bacterianos , Doenças Transmissíveis/diagnóstico , Entropia , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Genoma Bacteriano , Análise de Sequência de RNA , Streptococcus pneumoniae/efeitos dos fármacos , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/metabolismo , Transcriptoma
8.
Nat Commun ; 11(1): 4662, 2020 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-32938926

RESUMO

Haplotype reconstruction of distant genetic variants remains an unsolved problem due to the short-read length of common sequencing data. Here, we introduce HapTree-X, a probabilistic framework that utilizes latent long-range information to reconstruct unspecified haplotypes in diploid and polyploid organisms. It introduces the observation that differential allele-specific expression can link genetic variants from the same physical chromosome, thus even enabling using reads that cover only individual variants. We demonstrate HapTree-X's feasibility on in-house sequenced Genome in a Bottle RNA-seq and various whole exome, genome, and 10X Genomics datasets. HapTree-X produces more complete phases (up to 25%), even in clinically important genes, and phases more variants than other methods while maintaining similar or higher accuracy and being up to 10×  faster than other tools. The advantage of HapTree-X's ability to use multiple lines of evidence, as well as to phase polyploid genomes in a single integrative framework, substantially grows as the amount of diverse data increases.


Assuntos
Desequilíbrio Alélico , Haplótipos , Análise de Sequência de RNA , Algoritmos , Bases de Dados Genéticas , Diploide , Humanos , Células K562 , Modelos Genéticos , Modelos Estatísticos , Polimorfismo de Nucleotídeo Único , Poliploidia , RNA-Seq , Análise de Sequência de RNA/métodos , Análise de Sequência de RNA/estatística & dados numéricos
9.
Ann Saudi Med ; 40(5): 373-381, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32954791

RESUMO

BACKGROUND: The pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) has prompted a need for mass testing to identify patients with viral infection. The high demand has created a global bottleneck in testing capacity, which prompted us to modify available resources to extract viral RNA and perform reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) to detect SARS-COV-2. OBJECTIVES: Report on the use of a DNA extraction kit, after modifications, to extract viral RNA that could then be detected using an FDA-approved SARS-COV-2 RT-qPCR assay. MATERIALS AND METHODS: Initially, automated RNA extraction was performed using a modified DNA kit on samples from control subjects, a bacteriophage, and an RNA virus. We then verified the automated extraction using the modified kit to detect in-lab propagated SARSCOV-2 titrations using an FDA approved commercial kit (S, N, and ORF1b genes) and an in-house primer-probe based assay (E, RdRp2 and RdRp4 genes). RESULTS: Automated RNA extraction on serial dilutions SARS-COV-2 achieved successful one-step RT-qPCR detection down to 60 copies using the commercial kit assay and less than 30 copies using the in-house primer-probe assay. Moreover, RT-qPCR detection was successful after automated RNA extraction using this modified protocol on 12 patient samples of SARS-COV-2 collected by nasopharyngeal swabs and stored in viral transport media. CONCLUSIONS: We demonstrated the capacity of a modified DNA extraction kit for automated viral RNA extraction and detection using a platform that is suitable for mass testing. LIMITATIONS: Small patient sample size. CONFLICT OF INTEREST: None.


Assuntos
Betacoronavirus/genética , Infecções por Coronavirus/diagnóstico , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Nasofaringe/virologia , Pneumonia Viral/diagnóstico , RNA Viral/isolamento & purificação , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Animais , Automação , Chlorocebus aethiops , Técnicas de Laboratório Clínico , Vírus da Encefalomiocardite/genética , Humanos , Levivirus/genética , Proteínas do Nucleocapsídeo/genética , Pandemias , RNA Replicase/genética , RNA Viral/análise , Análise de Sequência de RNA , Glicoproteína da Espícula de Coronavírus/genética , Células Vero , Proteínas do Envelope Viral/genética , Proteínas não Estruturais Virais/genética
10.
PLoS Comput Biol ; 16(9): e1008195, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32898151

RESUMO

We present VALERIE (Visualising alternative splicing events from single-cell ribonucleic acid-sequencing experiments), an R package for visualising alternative splicing events at single-cell resolution. To explore any given specified genomic region, corresponding to an alternative splicing event, VALERIE generates an ensemble of informative plots to visualise cell-to-cell heterogeneity of alternative splicing profiles across single cells and performs statistical tests to compare percent spliced-in (PSI) values across the user-defined groups of cells. Among the features available, VALERIE displays PSI values, in lieu of read coverage, which is more suitable for representing alternative splicing profiles for a large number of samples typically generated by single-cell RNA-sequencing experiments. VALERIE is available on the Comprehensive R Archive Network (CRAN): https://cran.r-project.org/web/packages/VALERIE/index.html.


Assuntos
Processamento Alternativo/genética , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Software , Animais , Células Cultivadas , Biologia Computacional , Camundongos
11.
PLoS Comput Biol ; 16(9): e1008205, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32903255

RESUMO

Single-cell RNA sequencing (scRNA-seq) can map cell types, states and transitions during dynamic biological processes such as tissue development and regeneration. Many trajectory inference methods have been developed to order cells by their progression through a dynamic process. However, when time series data is available, most of these methods do not consider the available time information when ordering cells and are instead designed to work only on a single scRNA-seq data snapshot. We present Tempora, a novel cell trajectory inference method that orders cells using time information from time-series scRNA-seq data. In performance comparison tests, Tempora inferred known developmental lineages from three diverse tissue development time series data sets, beating state of the art methods in accuracy and speed. Tempora works at the level of cell clusters (types) and uses biological pathway information to help identify cell type relationships. This approach increases gene expression signal from single cells, processing speed, and interpretability of the inferred trajectory. Our results demonstrate the utility of a combination of time and pathway information to supervise trajectory inference for scRNA-seq based analysis.


Assuntos
Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Software , Algoritmos , Animais , Células Cultivadas , Humanos , Camundongos , Mioblastos/metabolismo , RNA/genética , RNA/metabolismo , Reprodutibilidade dos Testes
12.
PLoS One ; 15(9): e0237618, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32877413

RESUMO

Hepatitis E virus (HEV) genotype 1 (gt1) and gt3 infections have distinct epidemiologic characteristics and genotype-specific molecular mechanisms of pathogenesis are not well characterized. Previously, we showed differences in immune response-related gene expression profiles of HEV gt1 and gt3 infections using qPCR. We hypothesize that HEV gt1 and gt3 infections induce transcriptome modifications contributing to disease pathogenesis. RNAseq analysis was performed using liver biopsy samples of naïve (baseline), HEV gt1, or gt3-infected rhesus macaques, and nine anti-HEV positive rhesus macaques re-inoculated with HEV gt1. All 10 primary HEV gt1/gt3 infected animals exhibited the typical course of acute viral hepatitis and cleared the infection between 27 to 67 days after inoculation. Viremic stages of HEV infection were defined as early, peak, and decline based on HEV RNA titers in daily stool specimens. During early, peak, and decline phases of infection, HEV gt1 induced 415, 417, and 1769 differentially expressed genes, respectively, and 310, 678, and 388 genes were differentially expressed by HEV gt3, respectively (fold change ≥ 2.0, p-value ≤ 0.05). In the HEV gt1 infection, genes related to metabolic pathways were differentially expressed during the three phases of infection. In contrast, oxidative reduction (early phase), immune responses (peak phase), and T cell cytokine production (decline phase) were found to be regulated during HEV gt3 infection. In addition, FoxO and MAPK signaling pathways were differentially regulated in re-infected and protected animals against HEV gt1 reinfection, respectively. Significant differences of hepatic gene regulation exist between HEV gt1 and gt3 infections. These findings reveal a new link between molecular pathogenesis and epidemiological characteristics seen in HEV gt1 and gt3 infections.


Assuntos
Perfilação da Expressão Gênica , Vírus da Hepatite E/genética , Hepatite E/veterinária , Macaca mulatta/virologia , Animais , Biópsia , Ontologia Genética , Genótipo , Fígado/patologia , Análise de Sequência de RNA
13.
PLoS One ; 15(9): e0237463, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32970688

RESUMO

Titanium is essentially absent from biological systems yet reliably integrates into bone. To achieve osseointegration, titanium must activate biological processes without entering cells, defining it as a bio-activating material. Nanostructuring bulk titanium reduces grain size, increases strength, and improves other quantifiable physical properties, including cytocompatibility. The biological processes activated by increasing grain boundary availability were detected with total RNA-sequencing in mouse pre-osteoblasts grown for 72 hours on nanometrically smooth substrates of either coarse grain or nanostructured ultrafine grain titanium. The average grain boundary length under cells on the conventional coarse grain substrates is 273.0 µm, compared to 70,881.5 µm for cells adhered to the nanostructured ultrafine grain substrates; a 260-fold difference. Cells on both substrates exhibit similar expression profiles for genes whose products are critical for mechanosensation and transduction of cues that trigger osteoconduction. Biological process Gene Ontology term enrichment analysis of differentially expressed genes reveals that cell cycle, chromatin modification, telomere maintenance, and RNA metabolism processes are upregulated on ultrafine grain titanium. Processes related to immune response, including apoptosis, are downregulated. Tumor-suppressor genes are upregulated while tumor-promoting genes are downregulated. Upregulation of genes involved in chromatin remodeling and downregulation of genes under the control of the peripheral circadian clock implicate both processes in the transduction of mechanosensory information. Non-coding RNAs may also play a role in the response. Merging transcriptomics with well-established mechanobiology principles generates a unified model to explain the bio-activating properties of titanium. The modulation of processes is accomplished through chromatin remodeling in which the nucleus responds like a rheostat to grain boundary concentration. This convergence of biological and materials science reveals a pathway toward understanding the biotic-abiotic interface and will inform the development of effective bio-activating and bio-inactivating materials.


Assuntos
Materiais Biocompatíveis/química , Regeneração Óssea , Nanoestruturas/química , Osteoblastos/citologia , Titânio/química , Animais , Linhagem Celular , Teste de Materiais , Mecanotransdução Celular , Camundongos , Osseointegração , Osteoblastos/metabolismo , Análise de Sequência de RNA , Propriedades de Superfície , Transcriptoma
14.
PLoS One ; 15(8): e0231125, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32866172

RESUMO

Korean peninsula weather is rapidly becoming subtropical due to global warming. In summer 2018, South Korea experienced the highest temperatures since the meteorological observations recorded in 1907. Heat stress has a negative effect on Holstein cows, the most popular breed of dairy cattle in South Korea, which is susceptible to heat. To examine physiological changes in dairy cows under heat stress conditions, we analyzed the profiles circulating microRNAs isolated from whole blood samples collected under heat stress and non-heat stress conditions using small RNA sequencing. We compared the expression profiles in lactating cows under heat stress and non-heat stress conditions to understand the regulation of biological processes in heat-stressed cows. Moreover, we measured several heat stress indicators, such as rectal temperature, milk yield, and average daily gain. All these assessments showed that pregnant cows were more susceptible to heat stress than non-pregnant cows. In addition, we found the differential expression of 11 miRNAs (bta-miR-19a, bta-miR-19b, bta-miR-30a-5p, and several from the bta-miR-2284 family) in both pregnant and non-pregnant cows under heat stress conditions. In target gene prediction and gene set enrichment analysis, these miRNAs were found to be associated with the cytoskeleton, cell junction, vasculogenesis, cell proliferation, ATP synthesis, oxidative stress, and immune responses involved in heat response. These miRNAs can be used as potential biomarkers for heat stress.


Assuntos
MicroRNA Circulante/genética , Resposta ao Choque Térmico/genética , Lactação/genética , Animais , Cruzamento , Bovinos , Doenças dos Bovinos/genética , Feminino , Perfilação da Expressão Gênica/métodos , Transtornos de Estresse por Calor/sangue , Temperatura Alta , MicroRNAs/genética , Leite/metabolismo , Gravidez , RNA Circular/genética , República da Coreia , Estações do Ano , Análise de Sequência de RNA/métodos
15.
PLoS Comput Biol ; 16(9): e1008269, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32941419

RESUMO

We propose an efficient framework for genetic subtyping of SARS-CoV-2, the novel coronavirus that causes the COVID-19 pandemic. Efficient viral subtyping enables visualization and modeling of the geographic distribution and temporal dynamics of disease spread. Subtyping thereby advances the development of effective containment strategies and, potentially, therapeutic and vaccine strategies. However, identifying viral subtypes in real-time is challenging: SARS-CoV-2 is a novel virus, and the pandemic is rapidly expanding. Viral subtypes may be difficult to detect due to rapid evolution; founder effects are more significant than selection pressure; and the clustering threshold for subtyping is not standardized. We propose to identify mutational signatures of available SARS-CoV-2 sequences using a population-based approach: an entropy measure followed by frequency analysis. These signatures, Informative Subtype Markers (ISMs), define a compact set of nucleotide sites that characterize the most variable (and thus most informative) positions in the viral genomes sequenced from different individuals. Through ISM compression, we find that certain distant nucleotide variants covary, including non-coding and ORF1ab sites covarying with the D614G spike protein mutation which has become increasingly prevalent as the pandemic has spread. ISMs are also useful for downstream analyses, such as spatiotemporal visualization of viral dynamics. By analyzing sequence data available in the GISAID database, we validate the utility of ISM-based subtyping by comparing spatiotemporal analyses using ISMs to epidemiological studies of viral transmission in Asia, Europe, and the United States. In addition, we show the relationship of ISMs to phylogenetic reconstructions of SARS-CoV-2 evolution, and therefore, ISMs can play an important complementary role to phylogenetic tree-based analysis, such as is done in the Nextstrain project. The developed pipeline dynamically generates ISMs for newly added SARS-CoV-2 sequences and updates the visualization of pandemic spatiotemporal dynamics, and is available on Github at https://github.com/EESI/ISM (Jupyter notebook), https://github.com/EESI/ncov_ism (command line tool) and via an interactive website at https://covid19-ism.coe.drexel.edu/.


Assuntos
Betacoronavirus/classificação , Betacoronavirus/genética , Infecções por Coronavirus , Genômica/métodos , Pandemias , Pneumonia Viral , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/transmissão , Infecções por Coronavirus/virologia , Evolução Molecular , Marcadores Genéticos/genética , Genoma Viral/genética , Humanos , Mutação/genética , Filogenia , Pneumonia Viral/epidemiologia , Pneumonia Viral/transmissão , Pneumonia Viral/virologia , RNA Viral/genética , Alinhamento de Sequência , Análise de Sequência de RNA , Análise Espaço-Temporal
16.
Sci Adv ; 6(39)2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32978154

RESUMO

Detection of viruses is critical for controlling disease spread. Recent emerging viral threats, including Zika virus, Ebola virus, and SARS-CoV-2 responsible for coronavirus disease 2019 (COVID-19) highlight the cost and difficulty in responding rapidly. To address these challenges, we develop a platform for low-cost and rapid detection of viral RNA with DNA nanoswitches that mechanically reconfigure in response to specific viruses. Using Zika virus as a model system, we show nonenzymatic detection of viral RNA with selective and multiplexed detection between related viruses and viral strains. For clinical-level sensitivity in biological fluids, we paired the assay with sample preparation using either RNA extraction or isothermal preamplification. Our assay requires minimal laboratory infrastructure and is adaptable to other viruses, as demonstrated by quickly developing DNA nanoswitches to detect SARS-CoV-2 RNA in saliva. Further development and field implementation will improve our ability to detect emergent viral threats and ultimately limit their impact.


Assuntos
Betacoronavirus/genética , Infecções por Coronavirus/diagnóstico , DNA de Cadeia Simples/genética , Eletroforese em Gel de Ágar/métodos , Pneumonia Viral/diagnóstico , RNA Viral/genética , Análise de Sequência de RNA/métodos , Sequência de Bases , Linhagem Celular Tumoral , Infecções por Coronavirus/virologia , Dengue/diagnóstico , Dengue/virologia , Vírus da Dengue/genética , Eletroforese em Gel de Ágar/economia , Humanos , Limite de Detecção , Pandemias , Pneumonia Viral/virologia , Saliva/virologia , Análise de Sequência de RNA/economia , Zika virus/genética , Infecção por Zika virus/diagnóstico , Infecção por Zika virus/virologia
17.
Ann Hematol ; 99(11): 2611-2617, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32980888

RESUMO

EP300-ZNF384 fusion is a rare recurrent cytogenetic abnormality associated with B cell acute lymphoblastic leukemia (B-ALL), which was rarely studied in Chinese patient cohort. Here, we used a customized RNA fusion gene panel to investigate gene fusions in 56 selected acute leukemia patients without conventional genetic abnormalities. Two EP300-ZNF384 fusion forms were detected in ten cases, which were in-frame fusions of EP300 exon 6 fused with exon 3 or 2 of ZNF384. The fusions led to the lack of most functional domains of EP300. We firstly reported EP300-ZNF384 fusion in a mixed-phenotype acute leukemia (MPAL) patient whose CD33 and CD13 were negative. The rest nine B-ALL patients with EP300-ZNF384 fusion expressed CD33 and/or CD13. Fifty-six percent of B-ALL patients (5/9) with EP300-ZNF384 fusion were positive with CD10. After the diagnosis of EP300-ZNF384 fusion, 70% of the patients achieved remission after chemotherapy. Our observations indicated that EP300-ZNF384 fusion consists of a distinct subgroup of B-ALL with a characteristic immunophenotype. These patients are sensitive to current chemotherapy regimen and have an excellent outcome.


Assuntos
Proteína p300 Associada a E1A , Proteínas de Fusão Oncogênica , Leucemia-Linfoma Linfoblástico de Células Precursoras , RNA Neoplásico , Análise de Sequência de RNA , Transativadores , Adulto , Estudos de Coortes , Proteína p300 Associada a E1A/genética , Proteína p300 Associada a E1A/metabolismo , Feminino , Humanos , Masculino , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , RNA Neoplásico/genética , RNA Neoplásico/metabolismo , Transativadores/genética , Transativadores/metabolismo
18.
Ecotoxicol Environ Saf ; 203: 110934, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32888599

RESUMO

Pharmaceuticals and personal care products are emerging contaminants that are increasingly detected in the environment worldwide. Certain classes of pharmaceuticals, such as selective serotonin reuptake inhibitors (SSRIs), are a major environmental concern due to their widespread use and the fact that these compounds are designed to have biological effects at low doses. A complication in predicting toxic effects of SSRIs in nontarget organisms is that their mechanism of action is not fully understood. To better understand the potential toxic effects of SSRIs, we employed an ultra-low input RNA-sequencing method to identify potential pathways that are affected by early exposure to two SSRIs (fluoxetine and paroxetine). We exposed wildtype zebrafish (Danio rerio) embryos to 100 µg/L of either fluoxetine or paroxetine for 6 days before extracting and sequencing mRNA from individual larval brains. Differential gene expression analysis identified 1550 genes that were significantly affected by SSRI exposure with a core set of 138 genes altered by both SSRIs. Weighted gene co-expression network analysis identified 7 modules of genes whose expression patterns were significantly correlated with SSRI exposure. Functional enrichment analysis of differentially expressed genes as well as network module genes repeatedly identified various terms associated with mitochondrial and neuronal structures, mitochondrial respiration, and neurodevelopmental processes. The enrichment of these terms indicates that toxic effects of SSRI exposure are likely caused by mitochondrial dysfunction and subsequent neurodevelopmental effects. To our knowledge, this is the first effort to study the tissue-specific transcriptomic effects of SSRIs in developing zebrafish, providing specific, high resolution molecular data regarding the sublethal effects of SSRI exposure.


Assuntos
Encéfalo/efeitos dos fármacos , Larva/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Inibidores de Captação de Serotonina/toxicidade , Transcriptoma/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Peixe-Zebra , Animais , Encéfalo/embriologia , Biologia Computacional , Embrião não Mamífero/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Humanos , Larva/genética , Análise de Sequência de RNA , Peixe-Zebra/genética
19.
Adv Exp Med Biol ; 1255: 195-202, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32949401

RESUMO

In this chapter, we discussed some of the specific uses of scRNA-seq in exploring viral infections and diseases of the kidney and pancreas. This review, however, is by no means exhaustive, and indeed this technology has advanced the study of pulmonary and cardiac diseases, transplant immunology, cancer, and many others as well. Nevertheless, the above reviewed studies do illustrate the utility and resolution of scRNA-seq in understanding exact cellular compositions, discovering heterogeneity within cellular expression patterns, and uncovering clues that may eventually lead to the development of more targeted and personalized therapies. Additionally, the increasing availability of whole tissue cellular atlases in both health and disease as a result of scRNA-seq studies provides an important resource to better understand complicated molecular signaling patterns and events that are similar and different between human diseases.


Assuntos
Nefropatias/genética , Pancreatopatias/genética , Análise de Sequência de RNA , Análise de Célula Única , Viroses/genética , Humanos
20.
PLoS Negl Trop Dis ; 14(9): e0008133, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32925939

RESUMO

The emergence and spread of tick-borne arboviruses pose an increased challenge to human and animal health. In Europe this is demonstrated by the increasingly wide distribution of tick-borne encephalitis virus (TBEV, Flavivirus, Flaviviridae), which has recently been found in the United Kingdom (UK). However, much less is known about other tick-borne flaviviruses (TBFV), such as the closely related louping ill virus (LIV), an animal pathogen which is endemic to the UK and Ireland, but which has been detected in other parts of Europe including Scandinavia and Russia. The emergence and potential spatial overlap of these viruses necessitates improved understanding of LIV genomic diversity, geographic spread and evolutionary history. We sequenced a virus archive composed of 22 LIV isolates which had been sampled throughout the UK over a period of over 80 years. Combining this dataset with published virus sequences, we detected no sign of recombination and found low diversity and limited evidence for positive selection in the LIV genome. Phylogenetic analysis provided evidence of geographic clustering as well as long-distance movement, including movement events that appear recent. However, despite genomic data and an 80-year time span, we found that the data contained insufficient temporal signal to reliably estimate a molecular clock rate for LIV. Additional analyses revealed that this also applied to TBEV, albeit to a lesser extent, pointing to a general problem with phylogenetic dating for TBFV. The 22 LIV genomes generated during this study provide a more reliable LIV phylogeny, improving our knowledge of the evolution of tick-borne flaviviruses. Our inability to estimate a molecular clock rate for both LIV and TBEV suggests that temporal calibration of tick-borne flavivirus evolution should be interpreted with caution and highlight a unique aspect of these viruses which may be explained by their reliance on tick vectors.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos/genética , Evolução Molecular , Genoma Viral , Animais , Linhagem Celular , Cricetinae , Vírus da Encefalite Transmitidos por Carrapatos/classificação , Encefalite Transmitida por Carrapatos/virologia , Genética Populacional , Metagenômica , Filogenia , Análise de Sequência de RNA , Ovinos , Reino Unido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA