Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 426
Filtrar
1.
Nutrients ; 14(19)2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36235593

RESUMO

Oxidative stress induces DNA damage which can be repaired by DNA repair proteins, such as Ku70/80. Excess reactive oxygen species (ROS) stimulate the activation of caspase-3, which degrades Ku 70/80. Cells with decreased Ku protein levels undergo apoptosis. Astaxanthin exerts antioxidant activity by inducing the expression of catalase, an antioxidant enzyme, in gastric epithelial cells. Therefore, astaxanthin may inhibit oxidative stress-induced DNA damage by preventing Ku protein degradation and thereby suppressing apoptosis. Ku proteins can be degraded via ubiquitination and neddylation which adds ubiquitin-like protein to substrate proteins. We aimed to determine whether oxidative stress decreases Ku70/80 expression through the ubiquitin-proteasome pathway to induce apoptosis and whether astaxanthin inhibits oxidative stress-induced changes in gastric epithelial AGS cells. We induced oxidative stress caused by the treatment of ß-D-glucose (G) and glucose oxidase (GO) in the cells. As a result, the G/GO treatment increased ROS levels, decreased nuclear Ku protein levels and Ku-DNA-binding activity, and induced the ubiquitination of Ku80. G/GO increased the DNA damage marker levels (γ-H2AX; DNA fragmentation) and apoptosis marker annexin V-positive cells and cell death. Astaxanthin inhibited G/GO-induced alterations, including Ku degradation in AGS cells. MLN4924, a neddylation inhibitor, and MG132, a proteasome inhibitor, suppressed G/GO-mediated DNA fragmentation and decreased cell viability. These results indicated that G/GO-induced oxidative stress causes Ku protein loss through the ubiquitin-proteasome pathway, resulting in DNA fragmentation and apoptotic cell death. Astaxanthin inhibited oxidative stress-mediated apoptosis via the reduction of ROS levels and inhibition of Ku protein degradation. In conclusion, dietary astaxanthin supplementation or astaxanthin-rich food consumption may be effective for preventing or delaying oxidative stress-mediated cell damage by suppressing Ku protein loss and apoptosis in gastric epithelial cells.


Assuntos
Antioxidantes , Complexo de Endopeptidases do Proteassoma , Anexina A5/metabolismo , Anexina A5/farmacologia , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Apoptose , Caspase 3/metabolismo , Catalase/metabolismo , DNA/metabolismo , Proteínas de Ligação a DNA/genética , Células Epiteliais/metabolismo , Glucose/metabolismo , Glucose Oxidase/metabolismo , Glucose Oxidase/farmacologia , Autoantígeno Ku/metabolismo , Estresse Oxidativo , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/farmacologia , Proteólise , Espécies Reativas de Oxigênio/metabolismo , Ubiquitinas/metabolismo , Ubiquitinas/farmacologia , Xantofilas
2.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 36(10): 1277-1287, 2022 Oct 15.
Artigo em Chinês | MEDLINE | ID: mdl-36310467

RESUMO

Objective: To explore the effect of Kaempferol on bone microvascular endothelial cells (BMECs) in glucocorticoid induced osteonecrosis of the femoral head (GIONFH) in vitro. Methods: BMECs were isolated from cancellous bone of femoral head or femoral neck donated voluntarily by patients with femoral neck fracture. BMECs were identified by von Willebrand factor and CD31 immunofluorescence staining and tube formation assay. The cell counting kit 8 (CCK-8) assay was used to screen the optimal concentration and the time point of dexamethasone (Dex) to inhibit the cell activity and the optimal concentration of Kaempferol to improve the inhibition of Dex. Then the BMECs were divided into 4 groups, namely, the cell group (group A), the cells treated with optimal concentration of Dex group (group B), the cells treated with optimal concentration of Dex+1 µmol/L Kaempferol group (group C), and the cells treated with optimal concentration of Dex+5 µmol/L Kaempferol group (group D). EdU assay, in vitro tube formation assay, TUNEL staining assay, Annexin Ⅴ/propidium iodide (PI) staining assay, Transwell migration assay, scratch healing assay, and Western blot assay were used to detect the effect of Kaempferol on the proliferation, tube formation, apoptosis, migration, and protein expression of BMECs treated with Dex. Results: The cultured cells were identified as BMECs. CCK-8 assay showed that the optimal concentration and the time point of Dex to inhibit cell activity was 300 µmol/L for 24 hours, and the optimal concentration of Kaempferol to improve the inhibitory activity of Dex was 1 µmol/L. EdU and tube formation assays showed that the cell proliferation rate, tube length, and number of branch points were significantly lower in groups B-D than in group A, and in groups B and D than in group C ( P<0.05). TUNEL and Annexin V/PI staining assays showed that the rates of TUNEL positive cells and apoptotic cells were significantly higher in groups B-D than in group A, and in groups B and D than in group C ( P<0.05). Scratch healing assay and Transwell migration assay showed that the scratch healing rate and the number of migration cells were significantly lower in groups B-D than in group A, and in groups B and D than in group C ( P<0.05). Western blot assay demonstrated that the relative expressions of Cleaved Caspase-3 and Bax proteins were significantly higher in groups B-D than in group A, and in groups B and D than in group C ( P<0.05); the relative expressions of matrix metalloproteinase 2, Cyclin D1, Cyclin E1, VEGFA, and Bcl2 proteins were significantly lower in groups B-D than in group A, and in groups B and D than in group C ( P<0.05). Conclusion: Kaempferol can alleviate the damage and dysfunction of BMECs in GIONFH.


Assuntos
Glucocorticoides , Osteonecrose , Humanos , Glucocorticoides/efeitos adversos , Células Endoteliais , Cabeça do Fêmur , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 2 da Matriz/farmacologia , Quempferóis/farmacologia , Quempferóis/metabolismo , Anexina A5/metabolismo , Anexina A5/farmacologia , Sincalida/metabolismo , Sincalida/farmacologia , Apoptose , Osteonecrose/induzido quimicamente , Osteonecrose/prevenção & controle
3.
Mol Med ; 28(1): 125, 2022 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-36273174

RESUMO

BACKGROUND: Oxidative stress-caused damage to the retinal pigment epithelium (RPE) underlies the onset and progression of age-related macular degeneration (AMD). Impaired mitochondrial biogenesis sensitizes RPE cells to mitochondrial dysfunction, energy insufficiency and death. Src-homology 2 domain-containing phosphatase (SHP)-1 is important in regulating immune responses and cell survival. However, its roles in cell survival are not always consistent. Until now, the effects of SHP-1 on RPE dysfunction, especially mitochondrial homeostasis, remain to be elucidated. We sought to clarify the effects of SHP-1 in RPE cells in response to atRAL-induced oxidative stress and determine the regulatory mechanisms involved. METHODS: In the all trans retinal (atRAL)-induced oxidative stress model, we used the vector of lentivirus to knockdown the expression of SHP-1 in ARPE-19 cells. CCK-8 assay, Annexin V/PI staining and JC-1 staining were utilized to determine the cell viability, cell apoptosis and mitochondrial membrane potential. We also used immunoprecipitation to examine the ubiquitination modification of stimulator of interferon genes (STING) and its interaction with SHP-1. The expression levels of mitochondrial marker, proteins related to mitochondrial biogenesis, and signaling molecules involved were examined by western blotting analysis. RESULTS: We found that SHP-1 knockdown predisposed RPE cells to apoptosis, aggravated mitochondrial damage, and repressed mitochondrial biogenesis after treatment with atRAL. Immunofluoresent staining and immunoprecipitation analysis confirmed that SHP-1 interacted with the endoplasmic reticulum-resident STING and suppressed K63-linked ubiquitination and activation of STING. Inhibition of STING with the specific antagonist H151 attenuated the effects of SHP-1 knockdown on mitochondrial biogenesis and oxidative damage. The adenosine monophosphate-activated protein kinase (AMPK) pathway acted as the crucial downstream target of STING and was involved in the regulatory processes. CONCLUSIONS: These findings suggest that SHP-1 knockdown potentiates STING overactivation and represses mitochondrial biogenesis and cell survival, at least in part by blocking the AMPK pathway in RPE cells. Therefore, restoring mitochondrial health by regulating SHP-1 in RPE cells may be a potential therapeutic strategy for degenerative retinal diseases including AMD.


Assuntos
Degeneração Macular , Mitocôndrias , Epitélio Pigmentado da Retina , Retinaldeído , Humanos , Monofosfato de Adenosina/metabolismo , Monofosfato de Adenosina/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Anexina A5/metabolismo , Anexina A5/farmacologia , Apoptose/genética , Interferons/genética , Interferons/metabolismo , Interferons/farmacologia , Degeneração Macular/genética , Degeneração Macular/metabolismo , Mitocôndrias/metabolismo , Biogênese de Organelas , Estresse Oxidativo , Monoéster Fosfórico Hidrolases/metabolismo , Monoéster Fosfórico Hidrolases/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/patologia , Retinaldeído/metabolismo , Retinaldeído/farmacologia , Sincalida/metabolismo , Sincalida/farmacologia
4.
Bratisl Lek Listy ; 123(11): 813-821, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36254639

RESUMO

OBJECTIVE: Cancer ranks first among the causes of morbidity and mortality all over the world, and it is expected to continue to be the main cause of death in the coming years. Therefore, new molecular targets and therapeutic strategies are urgently needed. In many cases, some reports show increased levels of endocannabinoids and their receptors in cancer, a condition often associated with tumour aggressiveness. Recent studies have suggested that cannabinoid-1/2 receptors contribute to tumour growth in a variety of cancers, including pancreatic, colon, prostate, and breast cancer. Understanding how cannabinoids can regulate key cellular processes involved in tumorigenesis, such as: cell proliferation and cell death, is crucial to improving existing and new therapeutic approaches for the cancer patients. The present study was aimed to characterize the in-vitro effect of L-759633 (a selective CB2 receptor agonist), ACPA (a selective CB1 receptor agonist) and ACEA (a selective CB1 receptor agonist) on the cell proliferation, clonogenicity, and apoptosis in pancreatic (PANC1) and breast (MDA-MB-231) cancer cells. METHODS: The viability and/or proliferation of cells were detected by MTS assay. A clonogenic survival assay was used to detect the ability of a single cell to grow into a colony. Apoptosis was determined with Annexin V staining (Annexin V-FITC/PI test) and by analyzing the expression of Bcl-2-associated X protein (Bax) and B-cell lymphoma 2 (Bcl-2). RESULTS: We found that selective CB1/2 agonists suppressed cell proliferation, clonogenicity and induced proapoptotic function in human PANC1 pancreatic and MDA-MB-231 breast cancer cells. Based on our findings, these agonists led to the inhibition of both cell viability and clonogenic growth in a dose dependent manner. CB1/2 agonists were observed to induce intrinsic apoptotic pathway by upregulating Bax, while downregulating Bcl-2 expression levels. CONCLUSION: Our data suggests that CB1/2 agonists have the therapeutic potential through the inhibition of survival of human PANC1 pancreatic and MDA-MB-231 breast cancer cells and also might be linked with further cellular mechanisms for the prevention (Fig. 5, Ref. 49).


Assuntos
Neoplasias da Mama , Canabinoides , Neoplasias Pancreáticas , Humanos , Anexina A5/farmacologia , Apoptose , Proteína X Associada a bcl-2/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Agonistas de Receptores de Canabinoides/farmacologia , Canabinoides/farmacologia , Endocanabinoides/farmacologia , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/metabolismo , Linhagem Celular Tumoral , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia
5.
Folia Biol (Praha) ; 68(1): 16-24, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36201854

RESUMO

Non-small cell lung cancer (NSCLC) results in high mortality and has gained increasing attention. C-Phycocyanin (C-PC) has been identified as a potential therapeutic inhibitor for NSCLC, but its underlying mechanism remains obscure. The gene expression of the long noncoding RNA neighbour of BRCAI RNA 2 (NBR2) in NSCLC cells was evaluated by quantitative reverse transcription-PCR. The cell capacity for proliferation and migration was examined by EdU and wound-healing assays. Furthermore, the viability and apoptosis of cells was measured with CCK-8 and annexin V/PI, respectively. Next, the protein level of activation of adenosine monophosphate- activated protein kinase and the rapamycin kinase (mTOR) signalling pathway-associated molecules was evaluated by western blotting. H292 cells were pre-treated with C-PC or transfected with plasmids encoding NBR2 or the shNBR2 plasmid, to over-express or knock down NBR2 expression, respectively. NBR2 expression was robustly down-regulated in NSCLC cell lines compared with a normal cell line (BEAS-2B). NBR2 over-expression inhibited migration and promoted apoptosis of H292 cells. Treatment of H292 cells with C-PC enhanced NBR2 levels in a dose- and time-dependent manner. Downregulation of NBR2 in H292 cells inhibited the activity of C-PC on cell proliferation, viability and clone formation. Further mechanistic investigation showed that the down-regulation of NBR2 abolished the modulatory effects of C-PC on the AMPK/mTOR signalling pathway. In conclusion, C-PC inhibits H292 cell growth by enhancing the NBR2/AMPK signalling pathway.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , RNA Longo não Codificante , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Quinases Ativadas por AMP/farmacologia , Monofosfato de Adenosina/farmacologia , Monofosfato de Adenosina/uso terapêutico , Anexina A5/farmacologia , Anexina A5/uso terapêutico , Apoptose , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Ficocianina/metabolismo , Ficocianina/farmacologia , Ficocianina/uso terapêutico , RNA Longo não Codificante/genética , Sincalida/metabolismo , Sincalida/farmacologia , Sincalida/uso terapêutico , Sirolimo/farmacologia , Sirolimo/uso terapêutico , Serina-Treonina Quinases TOR/metabolismo
6.
J Therm Biol ; 109: 103326, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36195392

RESUMO

Injury to the intestinal epithelial cells and loss of the intestinal barrier are critical to heatstroke. To reveal the mechanism through which heatstroke leads to intestinal epithelial injury, the relationship between reactive oxygen species (ROS), c-Jun NH2-terminal kinase (JNK), and lysosomes were studied in intestinal epithelial cells subjected to heat stress. Cells of heat stress groups were incubated at 43 °C for 1 h, then incubated at 37 °C as indicated. Control group cells were incubated at 37 °C. Cell-counting kit-8 assay was used to assess cell viability. Cells were labeled with 2'-7'dichlorofluorescin diacetate and acridine orange (AO) staining, respectively, the total ROS and AO were detected by confocal laser scanning microscopy and flow cytometry. Apoptosis was analyzed by flow cytometry using annexin V-fluorescein isothiocyanate/prodium iodide staining, the expressions of mitogen-activated protein kinases were detected by western blotting. Heat stress induced apoptosis and inhibited cell viability, the production of ROS, and lysosomal injury in IEC-6 cells. After pretreatment with the lysosomal cathepsin inhibitor E64, the JNK inhibitor SP600125, or the ROS scavenger NAC, the effect of heat stress on apoptosis or lysosomal injury was significantly attenuated. In conclusion, heat stress induced apoptosis, lysosomal injury, and the accumulation of ROS in IEC-6 cells; mechanistically, this occurred through the ROS-induced activation of JNK signaling, which mediated the lysosomal injury and ultimately apoptosis.


Assuntos
Transtornos de Estresse por Calor , Golpe de Calor , Enteropatias , Laranja de Acridina/metabolismo , Laranja de Acridina/farmacologia , Animais , Anexina A5/metabolismo , Anexina A5/farmacologia , Apoptose , Catepsinas/metabolismo , Catepsinas/farmacologia , Células Epiteliais/metabolismo , Fluoresceínas/metabolismo , Fluoresceínas/farmacologia , Transtornos de Estresse por Calor/metabolismo , Resposta ao Choque Térmico , Iodetos/metabolismo , Iodetos/farmacologia , Isotiocianatos/metabolismo , Isotiocianatos/farmacologia , Lisossomos/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/farmacologia , Fenazopiridina/metabolismo , Fenazopiridina/farmacologia , Ratos , Espécies Reativas de Oxigênio/metabolismo
7.
Life Sci ; 309: 120973, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36150463

RESUMO

AIM: Endothelial cell (EC) dysfunction initiates atherosclerosis by inducing inflammatory cytokines and adhesion molecules. Herein, we investigated the role of ginsenoside Rh1 (Rh1) in lipopolysaccharide (LPS)-induced EC dysfunction. MAIN METHODS: The inhibitory effect of Rh1 on LPS binding to toll-like receptor 2 (TLR2) or TLR4 was evaluated using an immunofluorescence (IF) assay. Annexin V and cleaved caspase-3-positive EC apoptosis were evaluated by flow cytometry and IF assay. Western blotting and quantitative reverse transcription-PCR were performed to clarify underlying molecular mechanisms. In vivo model, effect of Rh1 on EC dysfunction was evaluated by using en face IF assay on aortas isolated C57BL/6 mice. KEY FINDING: LPS (500 ng/mL) activated inflammatory signaling pathways, including ERK1/2, STAT3, and NF-κB. Interestingly, Rh1 significantly abolished the binding of LPS to TLR2 and TLR4. Consistently, Rh1 inhibited LPS-induced NF-κB activation and its downstream molecules, including inflammatory cytokines and adhesion molecules. Furthermore, Rh1 alleviated LPS-induced downregulation of eNOS promoter activity. Notably, inactivation of eNOS by 50 µM L-NAME significantly increased NF-κB promoter activity. In addition, Rh1 abolished LPS-mediated cell cycle arrest and EC apoptosis by inhibiting endoplasmic reticulum stress via PERK/CHOP/ERO1-α signaling pathway. Consistent with in vitro experimental data, Rh1 effectively suppressed LPS-induced VCAM-1 and CHOP expression and rescuing LPS-destroyed tight junctions between ECs as indicated in ZO-1 expression on mice aorta. SIGNIFICANCE: Rh1 suppresses LPS-induced EC inflammation and apoptosis by inhibiting STAT3/NF-κB and endoplasmic reticulum stress signaling pathways, mediated by blocking LPS binding-to TLR2 and TLR4. Consistently, Rh1 effectively reduced EC dysfunction in vivo model.


Assuntos
Lipopolissacarídeos , NF-kappa B , Humanos , Camundongos , Animais , NF-kappa B/metabolismo , Lipopolissacarídeos/farmacologia , Receptor 2 Toll-Like/metabolismo , Células Endoteliais/metabolismo , Caspase 3/metabolismo , Receptor 4 Toll-Like/metabolismo , Molécula 1 de Adesão de Célula Vascular/metabolismo , Anexina A5/metabolismo , Anexina A5/farmacologia , NG-Nitroarginina Metil Éster/farmacologia , Camundongos Endogâmicos C57BL , Transdução de Sinais , Citocinas/metabolismo
8.
Life Sci ; 308: 120963, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36113731

RESUMO

AIMS: Metal complexes have ignited considerable interest in the field of chemotherapy after the serendipitous discovery of cisplatin but the severe toxicity of these platinum-based drugs compelled researchers to search for newer, more effective lesser toxic anticancer drugs. MATERIALS AND METHODS: Structural analysis is done by different physicochemical techniques including X-ray single crystallography. Toxicity study has been done in normal Swiss albino mice. MTT assay assessed cell viability. Apoptosis, cell cycle arrest, and cell proliferation were assessed by FACS using Annexin V-PI, PI, and CFSE staining respectively. Western blot quantifies protein expression. While cell migration was studied by wound healing assay. KEY FINDINGS: One-pot synthesis of a novel mononuclear cobalt(III)-Schiff base complex (1) (>99 % purity) and its complete characterization have been done. Cell viability assay showed that 1 (IC50 = 16.81 ± 1.33 µM) exhibits cytotoxicity at much lower concentration in comparison to oxaliplatin (IC50 = 31.4 ± 0.69 µM) against MCF-7 cells for 24 h of therapy without being overly toxic to human PBMCs (IC50 ≥ 60 µM). Additional in vitro studies demonstrated that 1 induces apoptosis via G2-M cell cycle arrest and reduces cell proliferation as well as cell migration in MCF-7 cells. In vivo subacute toxicity (28 days) and systemic chronic toxicity (40 days) studies were carried out in normal Swiss albino mice showed 1 is significantly nontoxic to the host. SIGNIFICANCE: The readily synthesizable, significantly nontoxic cobalt complex with appreciable anticancer activity implies that it might be an effective chemotherapeutic agent for new-age anti-tumor medication.


Assuntos
Antineoplásicos , Neoplasias da Mama , Complexos de Coordenação , Animais , Anexina A5/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Apoptose , Neoplasias da Mama/tratamento farmacológico , Ciclo Celular , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Cisplatino/farmacologia , Cobalto/farmacologia , Complexos de Coordenação/farmacologia , Feminino , Humanos , Células MCF-7 , Camundongos , Oxaliplatina/farmacologia , Bases de Schiff/farmacologia
9.
Med Oncol ; 39(12): 191, 2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36071274

RESUMO

Klotho is an anti-aging, anti-inflammator, and anti-oxidative protein and has been shown to important role in tumorigenesis, proliferation, survival, autophagy, and resistance to tumor suppressor effects in several types of human cancers. In this study, we aimed to investigate possible anti-tümör and apoptotic effects of exogen klotho in human colorectal adenocarcinoma cells (HT-29) and healthy colon cells (CCD 841 CoN). The WST-8 test was used to determine the half-maximum inhibitory concentration (IC50) of the klotho protein. AO-PI fluorescent staining techniques and Annexin V-PI flow cytometry was utilized to observe and detect the apoptosis of cancer cells induced by klotho. Our results demonstrated that klotho had a cytotoxic effect against colorectal adenocarcinoma cells in a dose-dependent manner. Our Annexin V-PI flow cytometric and AO-PI fluorescent analyses showed that klotho induced quantitative and morphological changes that indicate apoptotic induction in the human colorectal adenocarcinoma. This study results proved for the first time that klotho may be an effective potential therapeutic agent that may be used in adjuvant therapy in human colorectal adenocarcinoma it does not affect selectively healthy colon cells and but leading cancer cells to apoptosis.


Assuntos
Adenocarcinoma , Neoplasias Colorretais , Proteínas Klotho , Adenocarcinoma/tratamento farmacológico , Anexina A5/farmacologia , Sobrevivência Celular , Neoplasias Colorretais/patologia , Células HT29 , Humanos
10.
Appl Microbiol Biotechnol ; 106(19-20): 6657-6669, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36066653

RESUMO

By interacting with the receptor on the host cells membrane, Mycoplasma genitalium, a prokaryotic bacterium primarily transmitted through sexual contact, can adhere to and even enter cells. The adhesion protein of M. genitalium (MgPa) plays a critical function in the adhering and subsequent invasion into host cells. Our prior studies verified that cyclophilin A (CypA) was the receptor of MgPa on human urethral epithelial cells (SV-HUC-1) membrane and could induce pro-inflammatory cytokines production through the CypA-CD147-ERK-NF-κB pathway. This research aims to understand how MgPa interacts with its membrane receptor CypA to cause apoptosis in host cells. We employed flow cytometry to see if MgPa prevents or enhances apoptosis of SV-HUC-1 cells. The apoptosis-related proteins such as Bax, caspase-3, and cleaved caspase-3 were assayed using Western blot. Results suggested that MgPa could inhibit the apoptosis of SV-HUC-1 cells. And we demonstrated that interference with the expression of CypA or CD147 significantly reversed the inhibitory effect of MgPa on SV-HUC-1 cells apoptosis, indicating that MgPa inhibited urothelial cells apoptosis through CypA/CD147. Furthermore, we discovered that MgPa regulates the PI3K/Akt/NF-κB pathway through CypA/CD147 to inhibit SV-HUC-1 cells apoptosis. Ultimately, the inhibitory effect of MgPa on the apoptosis of the urothelial epithelial cells extracted from CypA-knockout mice was validated by Annexin V/PI assay. The results corroborated that MgPa could also inhibit mouse urothelial epithelial cells apoptosis. In summary, we demonstrated that MgPa could inhibit SV-HUC-1 cells apoptosis via regulating the PI3K/Akt/NF-κB pathway through CypA/CD147, providing experimental evidence for elucidating the survival strategies of M. genitalium in host cells. KEY POINTS: • M. genitalium protein of adhesion inhibited human urethral epithelial cells apoptosis through CypA-CD147 activating the signal pathway of PI3K/Akt/NF-κB • The knockdown of CypA and CD147 could downregulate the M. genitalium -activated PI3K/Akt/NF-κB pathway in SV-HUC-1 cells • MgPa could inhibit the apoptosis of normal C57BL mouse primary urethral epithelial cells, but not for CypA-knockout C57BL mouse primary urethral epithelial cells.


Assuntos
Mycoplasma genitalium , Animais , Anexina A5/farmacologia , Apoptose , Basigina/metabolismo , Proteínas de Transporte/farmacologia , Caspase 3/metabolismo , Ciclofilina A/metabolismo , Ciclofilina A/farmacologia , Citocinas/metabolismo , Células Epiteliais/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Mycoplasma genitalium/genética , Mycoplasma genitalium/metabolismo , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína X Associada a bcl-2/metabolismo , Proteína X Associada a bcl-2/farmacologia
11.
Methods Cell Biol ; 172: 17-36, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36064223

RESUMO

Radiation therapy (RT) is well known for its capacity to mediate cytostatic and cytotoxic effects on malignant cells, largely reflecting the ability of ionizing radiation to cause direct and indirect damage to macromolecules including DNA and lipids. While low-dose RT generally causes limited cytotoxicity in an acute manner (as it imposes insufficient cellular damage to compromise homeostasis, or instead induces the delayed demise of cells that fail to complete mitosis successfully), high RT doses can mediate an acute wave of cell death that begins to manifest shortly (24-72h) after irradiation. Here, we provide two straightforward techniques to assess the acute cytotoxic effects of RT by the flow cytometry-assisted quantification of plasma membrane permeabilization (PMP, a late-stage manifestation of cell death) and either mitochondrial outer membrane permeabilization (MOMP) or phosphatidylserine (PS) externalization (two early-stage signs of cell death) in mouse mammary adenocarcinoma TS/A cells. With minor variations, the same protocols can be straightforwardly adapted to measure acute cell death responses as elicited by RT in a large panel of human and mouse cancer cells lines of different histological derivation.


Assuntos
Apoptose , Fosfatidilserinas , Animais , Anexina A5/metabolismo , Anexina A5/farmacologia , Apoptose/fisiologia , Morte Celular , Citometria de Fluxo/métodos , Humanos , Camundongos
12.
J Ethnopharmacol ; 299: 115658, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36075273

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Artemisia argyi H. Lév. & Vaniot (Asteraceae), also called "Chinese mugwort", is frequently used as a herbal medicine in China, Japan, Korea, and eastern parts of Russia. It is known as "ai ye" in China and "Gaiyou" in Japan. In ancient China, the buds and leaves of A. argyi were commonly consumed before and after Tomb-sweeping Day. It is used to treat malaria, hepatitis, cancer, inflammatory diseases, asthma, irregular menstrual cycle, sinusitis, and pathologic conditions of the kidney and liver. Although A. argyi extract (AAE) has shown anti-tumor activity against various cancers, the therapeutic effect and molecular mechanism of AAE remains to be further studied in lung cancer. AIM OF THE STUDY: This study aimed to demonstrate the anti-tumor effect of AAE and its associated biological mechanisms in CL1-0 parent and gemcitabine-resistant (CL1-0-GR) lung cancer cells. EXPERIMENTAL PROCEDURE: Human lung cancer cells CL1-0 and CL1-0-GR cells were treated with AAE. Cell viability was assessed using the MTT, colony, and spheroid formation assays. Migration, invasion, and immunofluorescence staining were used to determine the extent of epithelial- mesenchymal transition (EMT). JC-1 and MitoSOX fluorescent assays were performed to investigate the effect of AAE on mitochondria. Apoptosis was detected using the TUNEL assay and flow cytometry with Annexin V staining. RESULT: We found that A. argyi significantly decreased cell viability and induced apoptosis, accompanied by mitochondrial membrane depolarization and increased ROS levels in both parent cells (CL1-0) and gemcitabine-resistant lung cancer cells (CL1-0-GR). AAE-induced apoptosis is regulated via the PI3K/AKT and MAPK signaling pathways. It also prevents CL1-0 and CL1-0-GR cancer cell invasion, migration, EMT, colony formation, and spheroid formation. In addition, AAE acts cooperative with commercial chemotherapy drugs to enhance tumor spheroid shrinkage. CONCLUSION: Our study provides the first evidence that A. argyi treatment suppresses both parent and gemcitabine-resistant lung cancer cells by inducing ROS, mitochondrial membrane depolarization, and apoptosis, and reducing EMT. Our finding provides insights into the anti-cancer activity of A. argyi and suggests that A. argyi may serve as a chemotherapy adjuvant that potentiates the efficacy of chemotherapeutic agents.


Assuntos
Apoptose , Artemisia , Neoplasias Pulmonares , Anexina A5/metabolismo , Anexina A5/farmacologia , Anexina A5/uso terapêutico , Apoptose/efeitos dos fármacos , Artemisia/química , Linhagem Celular Tumoral , Desoxicitidina/análogos & derivados , Resistencia a Medicamentos Antineoplásicos , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Quinases de Proteína Quinase Ativadas por Mitógeno/efeitos dos fármacos , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Fosfatidilinositol 3-Quinases/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
13.
BMC Complement Med Ther ; 22(1): 250, 2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36180880

RESUMO

BACKGROUND: Akt and mTOR are aberrantly activated in cancers and targeting these proteins are interesting for cancer drug discovery. Napabucasin (NB), a phytochemical compound, has been reported as potential anti-cancer agent, however, Akt and mTOR targeting mechanisms remain unclear.  METHOD: Apoptosis induction was investigated by Hoechst 33342/PI double staining and annexin V/PI staining with flowcytometry. Autophagy was evaluated by monodansylcadaverine staining and Western blot analysis. Binding affinity of NB and essential signaling proteins (PI3K, Akt, and mTOR) was investigated using molecular docking and confirmed by Western blot analysis. RESULT: A structure modification from changing methyl moiety of acetyl group of NB to hydroxyl moiety of carboxyl group of NB derivative (napabucasin-acid or NB-acid) greatly affected the compound activities. NB showed more potent anti-cancer activity. NB reduced cell viability with an approximately 20 times lower IC50 and inhibited the colony formation capacity much more than NB-acid treated cells. NB induced cell apoptosis, which was accompanied by decrease Bcl­2 and Mcl-1 and clevage of PARP, while NB-acid show lesser effect on Mcl-1. NB was found to strongly induce autophagy indicated by acidic vesicle staining and the LC3B conversion. Interestingly, computational molecular docking analysis further demonstrated that NB directly bound to Akt and mTOR (complex 1 and 2) proteins at their critical sites indicating that NB targets the upstream regulators of apoptosis and autophagy. The docking results were confirmed by decrease of p-Akt/Akt, p-mTOR/mTOR, and c-Myc a downstream target of Akt protein levels. CONCLUSION: Results show for the first time that NB exerts an anti-cancer activity through the direct interaction to Akt and mTOR proteins. The methyl moiety of acetyl group of NB is required for its potent anti-cancer activities. These data encourage further development of NB compounds for Akt and mTOR driven cancers.


Assuntos
Neoplasias Pulmonares , Proteínas Proto-Oncogênicas c-akt , Anexina A5/metabolismo , Anexina A5/farmacologia , Apoptose , Autofagia , Benzofuranos , Proliferação de Células , Humanos , Simulação de Acoplamento Molecular , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Naftoquinonas , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
14.
Neoplasma ; 69(5): 1119-1128, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36004650

RESUMO

Prostate cancer is one of the most frequently diagnosed cancers in men. The medical treatment of metastatic prostate cancer relies heavily on androgen deprivation. The present study aimed to explore the inhibitory effect of anlotinib on androgen receptor (AR)-negative prostate cancer cell lines in vitro and investigate its mechanism of action. Two prostate cancer cell lines, DU145 and PC-3, were treated with different concentrations (0-80 µM) of anlotinib. Cell proliferation was accessed by CCK-8 assay and EdU staining. Cell nuclear morphology was observed after DAPI staining, cell apoptosis level was evaluated by Annexin-V-FITC/PI staining, and western blot was used to detect the proliferation- and apoptosis-related proteins. The potential interaction between anlotinib and AKT was revealed by molecular docking. After treatment with anlotinib, the cell proliferation rate was significantly inhibited in a dose-dependent manner. The DAPI staining showed that anlotinib could induce apoptosis. Further, Annexin V/PI double staining confirmed the occurrence of apoptosis, accompanied by the increase of cleaved caspase-3 and activated PARP. Moreover, anlotinib significantly decreased the phosphorylation of protein kinase B (AKT) and its downstream pathway proteins in prostate cells (p<0.05). Experiments further confirmed that the activation of the AKT pathway reversed the inhibitory effect of anlotinib on DU145 and PC-3 cell proliferation. In addition, molecular docking analysis revealed potential interactions between anlotinib and AKT1 at multiple sites. Overall, the present study suggested that anlotinib could inhibit the proliferation and induce apoptosis in the AR-negative prostate cancer cell lines, possibly via the inactivation of the AKT pathway.


Assuntos
Neoplasias da Próstata , Proteínas Proto-Oncogênicas c-akt , Antagonistas de Androgênios/uso terapêutico , Androgênios/farmacologia , Anexina A5/metabolismo , Anexina A5/farmacologia , Anexina A5/uso terapêutico , Apoptose , Caspase 3/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Fluoresceína-5-Isotiocianato/farmacologia , Fluoresceína-5-Isotiocianato/uso terapêutico , Humanos , Indóis , Masculino , Simulação de Acoplamento Molecular , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Próstata/patologia , Neoplasias da Próstata/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Quinolinas , Receptores Androgênicos , Transdução de Sinais , Sincalida/metabolismo , Sincalida/farmacologia , Sincalida/uso terapêutico
15.
Aging (Albany NY) ; 14(18): 7282-7299, 2022 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-35997650

RESUMO

αKlotho is a transmembrane protein acting as a co-receptor for FGF23, a bone hormone regulating renal phosphate and vitamin D metabolism. αKlotho expression is controlled by PPARγ. Soluble αklotho (sKL) regulates cellular signaling impacting stress resistance and death. αKlotho deficiency causes early onset of aging-associated diseases while its overexpression markedly increases lifespan. Cellular stress due to cytotoxic therapeutics or apoptosis induction through caspase activation or serum deficiency may result in cell death. Owing to αklotho's role in cellular stress and aging, this study explored the effect of cytotoxic agents or apoptosis stimulants on cellular αklotho expression. Experiments were performed in renal MDCK, NRK-52E and HK-2 cells. Gene expression was determined by qRT-PCR, sKL by ELISA, apoptosis and necrosis by annexin V binding and a fluorescent DNA dye, and cell viability by MTT assay. Cytostatic drugs cisplatin, paclitaxel, and doxorubicin as well as apoptosis induction with caspase 3 activator PAC-1 and serum deprivation induced αklotho and PPARG gene expression while decreasing viability and proliferation and inducing apoptosis of MDCK and NRK-52E cells to a variable extent. PPARγ antagonism attenuated up-regulation of αklotho in MDCK cells. In HK-2 cells, αklotho gene expression and sKL protein were down-regulated by chemotherapeutics. SKL serum levels in patients following chemotherapy were not significantly changed. In summary, potentially fatal stress results in up-regulation of αKlotho gene expression in MDCK and NRK-52E cells and down-regulation in HK-2 cells. These results indicate that different renal cell lines may exhibit completely different regulation of αklotho.


Assuntos
Citostáticos , PPAR gama , Anexina A5/farmacologia , Apoptose , Caspase 3/metabolismo , Cisplatino/farmacologia , Citostáticos/farmacologia , Citotoxinas/farmacologia , Doxorrubicina/farmacologia , Hormônios/farmacologia , Humanos , Rim/metabolismo , PPAR gama/metabolismo , Paclitaxel/farmacologia , Fosfatos , Vitamina D/farmacologia
16.
Pharmacol Rep ; 74(5): 998-1010, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35908023

RESUMO

BACKGROUND: The lack of drug targets is an obstacle to the treatment of patients with triple-negative breast cancer (TNBC). At present, non-specific cytotoxic drugs are first-line agents, but the development of resistance is a major problem with these agents. The epidermal growth factor receptor (EGFR) is a potential target in some TNBCs, because its tyrosine kinase activity drives tumorigenesis. Thus, small molecule inhibitors of the EGFR in combination with cytotoxic agents could be important for the treatment of TNBCs. METHODS: The present study evaluated the efficacies of clinically approved EGFR inhibitors in combination with the cytotoxic agent ixabepilone in parental and docetaxel-resistant MDA-MB-231 cells (231C and TXT cells, respectively). Cell viability was assessed using MTT reduction assays, cell death pathways were evaluated using annexin V/7-aminoactinomycin D staining and flow cytometry and Western immunoblotting was used to assess the expression of pro- and anti-apoptotic proteins in cells. RESULTS: Ixabepilone and the EGFR inhibitors gefitinib and vandetanib inhibited 231C and TXT cell proliferation, but the alternate EGFR inhibitors erlotinib and lapatinib were poorly active. Using combination analysis, ixabepilone/vandetanib was synergistic in both cell types, whereas the ixabepilone/gefitinib combination exhibited antagonism. By flow cytometry, ixabepilone/vandetanib enhanced 231C and TXT cell death over that produced by the single agents and also enhanced caspase-3 cleavage and the pro/anti-apoptotic Bcl-2 protein ratios over ixabepilone alone. CONCLUSIONS: These findings suggest that the ixabepilone/vandetanib combination may have promise for the treatment of patients with drug-resistant TNBC.


Assuntos
Antineoplásicos , Neoplasias de Mama Triplo Negativas , Humanos , Docetaxel/farmacologia , Gefitinibe/farmacologia , Gefitinibe/uso terapêutico , Lapatinib/farmacologia , Caspase 3/metabolismo , Cloridrato de Erlotinib/uso terapêutico , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Anexina A5/farmacologia , Anexina A5/uso terapêutico , Receptores ErbB , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Proliferação de Células , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Citotoxinas/farmacologia , Linhagem Celular Tumoral , Apoptose
17.
Ultrastruct Pathol ; 46(4): 348-358, 2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35727696

RESUMO

Breast cancer is the most common cancer in women in the world. Many anticancer drugs are currently used clinically have been isolated from plant species or are based on such substances. Linalool is aromatic compounds from the monoterpene group. It is the main constituents of essential oils and show antiproliferative, antioxidant, and antiseptic properties. The aim of this study was to investigate the antiproliferativeand apoptotic, effects of linalool in MCF-7 and MDA-MB-231 human breast cancer cells. MCF-7 and MDA-MB-231 human breast cancer cells were treated with different concentrations of linalool (100, 200, 400, 600, 800, 1000 µM) at 24 h and 48 h. MTT assay for cell proliferation and Annexin V assay for apoptosis was done. The morphology of breast cancer cells was investigated by light microscope and scanning electron microscope (SEM). The study show that linalool significantly induced apoptosis in all groups as dose and time-dependent (p < .05). Linalool has apoptotic and antiproliferative properties in a concentration and time-dependent manner in breast cancer cells. The cytotoxic effects of linalool on MCF-7 and MDA-MB-231 human breast cancer cells was found to be associated with apoptotic cell death. Linalool was more effective on MCF-7 human breast cancer cells in smaller amounts.


Assuntos
Anti-Infecciosos Locais , Antineoplásicos , Neoplasias da Mama , Óleos Voláteis , Monoterpenos Acíclicos , Anexina A5/farmacologia , Anexina A5/uso terapêutico , Anti-Infecciosos Locais/farmacologia , Anti-Infecciosos Locais/uso terapêutico , Antineoplásicos/farmacologia , Antioxidantes/farmacologia , Apoptose , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Humanos , Células MCF-7 , Monoterpenos/farmacologia , Monoterpenos/uso terapêutico , Óleos Voláteis/farmacologia
18.
J Food Biochem ; 46(10): e14301, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35765891

RESUMO

Vitiligo is a skin disease characterized by lack of functional melanocytes. Lycium barbarum polysaccharide (LBP) has been demonstrated to preserve keratinocytes and fibroblasts against oxidative stress. This study aimed to explore the efficacy and underlying mechanisms of LBP on autophagy in H2 O2 -damaged human melanocytes. Cellular viability was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and annexin V-fluorescein isothiocyanate/propidium iodide double staining. Reverse transcription-polymerase chain reaction, western blotting and electron microscopy were performed to detect autophagy. The protein expression level of Nrf2 and p62 were assessed by western blotting. Plasmid transfection and lentiviral infection were used to overexpress and silence Nrf2 in PIG1 cells. LBP promoted the proliferation and inhibited apoptosis of H2 O2 -damaged PIG1 cells. LBP increased the proliferation of H2 O2 -damaged PIG1 cells via induction of autophagy, and Nrf2 shRNA experiment confirmed that LBP activated the Nrf2/p62 signal pathway. These results suggest that LBP may be used for the treatment of vitiligo. PRACTICAL APPLICATIONS: Goji berry is the mature and dried fruit of Lycium barbarum L., which is a common food with a long history in China, as well as a Traditional Chinese Medicine. Our previous research found that LBP could activated the Nrf2/ARE pathway in an ultraviolet (UV)-induced photodamage model of keratinocytes, and increase the levels of phase II detoxification and antioxidant enzymes. We firstly confirmed the anti-vitiligo effects of L. barbarum polysaccharide (LBP) by inducing autophagy and promoted proliferation of human melanocytes, and LBP induced autophagy via activating the Nrf2/p62 signaling pathway in this study. These results proved that LBP can be an effective therapy for vitiligo treatment.


Assuntos
Antioxidantes , Fator 2 Relacionado a NF-E2 , Anexina A5/metabolismo , Anexina A5/farmacologia , Antioxidantes/farmacologia , Autofagia , Proliferação de Células , Medicamentos de Ervas Chinesas , Fluoresceínas/farmacologia , Humanos , Isotiocianatos/farmacologia , Melanócitos/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Polissacarídeos/farmacologia , Propídio/farmacologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , Transdução de Sinais
19.
Biol Trace Elem Res ; 200(11): 4807-4816, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35508889

RESUMO

Obesity is a chronic disease associated with increased morbidity and mortality. The rapidly increasing prevalence of obesity makes it a global health problem, while treatment options remain limited. Given the potential of boron in the treatment of obesity, the aim of this study is to investigate the anti-adipogenic activity of the newly synthesised boron glycine monoester compound (BGM) using 3T3-L1 adipocytes by analysing lipid accumulation, CTRP3 and PPARy gene expression, oxidative stress and apoptotic effects. 3T3-L1 fibroblast cells (ATCC® CL-173) were transformed into adipocyte cells in vitro. Fat accumulation in the 3T3-L1 adipocyte cells was detected by Oil Red O staining. Gene expression levels were determined with qPCR. Biochemical analyzes were performed using spectrophotometric method (CAT, ALP and ACP) and ELISA kit (TAS, TOS, NADP-IDH). Apoptosis studies were performed on the muse cell nalyser using the Muse Annexin V & Dead Cell Assay Kit. When BGM-treated cells were compared to control adipocyte cells, lipid accumulation decreased in a dose-dependent manner. BGM-treated adipocyte cells had higher CTRP3 expression levels and lower PPAR-γ gene expression levels compared to control adipocyte cells (p < 0.001). While BGM application increased the TAS level, it showed an antioxidant effect by regulating the activity of oxidative metabolism enzymes (p < 0.001). BGM application increased total apoptosis by 1.5-fold. These results show that BGM is a potential therapeutic agent for obesity by regulating the expression of genes related to adipogenesis and lipogenesis in adipocyte cells and by affecting the activity of enzymes of oxidative metabolism and apoptosis.


Assuntos
Boro , PPAR gama , Células 3T3-L1 , Adipócitos , Adipogenia , Alprostadil/metabolismo , Alprostadil/farmacologia , Alprostadil/uso terapêutico , Animais , Anexina A5/metabolismo , Anexina A5/farmacologia , Anexina A5/uso terapêutico , Antioxidantes/metabolismo , Apoptose , Boro/farmacologia , Diferenciação Celular , Glicina/farmacologia , Lipogênese , Camundongos , NADP/metabolismo , NADP/farmacologia , NADP/uso terapêutico , Obesidade/metabolismo , Estresse Oxidativo , PPAR gama/genética , PPAR gama/metabolismo
20.
Int Urol Nephrol ; 54(11): 2919-2928, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35469112

RESUMO

OBJECTIVE: Anemia in patients with chronic kidney disease (CKD) is the result of reduced erythropoietin, disturbed erythropoiesis and decreased lifespan of circulating erythrocytes. Excessive eryptosis or premature suicidal erythrocyte death is characterized by cell shrinkage and phosphatidylserine externalization. This study aimed to explore accelerated eryptosis and accompanying biochemical alterations in CKD patients. PATIENTS AND METHODS: A total of 106 CKD patients (59 predialysis [PreD] patients, 26 haemodialysis [HD] patients and 21 peritoneal dialysis [PD] patients) and a control group composed of 29 healthy volunteers were included in this study. Data on superoxide dismutase (SOD) activity (U/mL), annexin-V binding (mean fluorescent intensity, MFI) and intracellular calcium ([Ca2+]i; MFI) as well as the hematologic and biochemical parameters were recorded. RESULTS: The [Ca2+]i levels were 3.05 ± 1.66 MFI, 2.24 ± 0.99 MFI, 2.38 ± 0.87 MFI and 1.71 ± 0.46 MFI in the PreD, HD, PD and control groups, respectively. Other than significantly higher [Ca2+]i levels in the PreD group than in the control group (p < 0.001), no significant difference was noted between study groups in terms of [Ca2+]i. Annexin-V binding was 1.05 ± 0.99 MFI in PreD group, 1.15 ± 0.56 MFI in HD group, 1.06 ± 0.87 MFI in PD group, and 0.88 ± 0.86 MFI in controls. Annexin-V binding was significantly higher in PreD, HD and PD groups compared with the control group (p < 0.001 for each). SOD activity was 0.07 ± 0.07 in the PreD group, 0.13 ± 0.08 in the HD group, 0.14 ± 0.07 in the PD group, and 0.03 ± 0.01 in the control group. SOD activity in both HD and PD groups were significantly higher than control and PreD groups (p < 0.001 for each). Lower albumin, higher ferritin, and higher parathormon levels were found to be correlated with eryptosis biomarkers. Patients treated vs. non-treated with calcium channel blockers had significantly lower annexin-V binding levels (p = 0.013). Patients treated vs. non-treated with erythropoietin (EPO) had elevated annexin-V binding level (p < 0.001) and lower [Ca2+]i (p = 0.014). CONCLUSION: In conclusion, our findings revealed the presence accelerated eryptosis, as a potential contributing factor to development of anemia, in patients with CKD stages 3-5D. Inflamation and parathormon can also accelerate eryptosis. Favorable effect of CCB and EPO on eryptosis needs to be confirmed in larger scale studies.


Assuntos
Anemia , Eriptose , Eritropoetina , Insuficiência Renal Crônica , Albuminas/metabolismo , Albuminas/farmacologia , Anexina A5/metabolismo , Anexina A5/farmacologia , Cálcio , Bloqueadores dos Canais de Cálcio/farmacologia , Eritropoetina/uso terapêutico , Ferritinas , Humanos , Fosfatidilserinas/metabolismo , Fosfatidilserinas/farmacologia , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/terapia , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...