RESUMO
Abstract Blood and fecal samples of chukar partridge (Alectoris chukar), albino pheasant (Phasianus colchicus), silver pheasant (Lophura nycthemera), rose-ringed parakeet (Psittacula krameri) and turkeys (Meleagris gallopavo) were analyzed to check parasitic prevalence. To record parasites these five avian species were placed kept in separate cages at Avian Conservation and Research Center, Department of Wildlife an Ecology, University of Veterinary and Animal Sciences, Lahore, Pakistan. 100 fecal and 100 blood samples for each bird species were inspected to analyze internal parasites. During present study, 17 species of endoparasites 14 from fecal samples and three from blood were examined. Two species of ectoparasites i.e. mite Dermanyssus gallinae 42% and fowl ticks Args persicus 41%were studied. Blood parasites included Plasmodium juxtanucleare 50%, Leucoctoyzoon simond having parasitic prevalence 40%, and Aegyptinella pullorum having parasitic prevalence of 40%. Parasitic species recorded from fecal samples included 6 species of nematodes viz. Allodpa suctoria 2%. Syngamus trachea with parasitic prevalence of 60%, Capillaria annulata 37.5%, Ascardia galli 24%, Capillaria anatis 40% and Heterakis gallinarum 28.3%. Similarly, two species of trematodes viz. Prosthogonimus ovatus having parasitic prevalence of 50% and Prosthogonimus macrorchis 21% were also documented from fecal avian samples . Single cestode species Raillietina echinobothrida having parasitic prevalence of 72% and 3 protozoan species i.e. Eimeria maxima having parasitic prevalence of 21%, Giardia lamblia 41% and Histomonas meleagridis 18% were documented during corpological analysis. In our recommendation, proper sanitation, medication and vaccination of bird's enclousres are suggested to avoid parasites.
RESUMO Amostras de sangue e fezes de perdiz chukar (Alectoris chukar), faisão-albino (Phasianus colchicus), faisão-prateado (Lophura nycthemera), periquito-de-rosa (Psittacula krameri) e perus (Meleagris gallopavo) foram analisadas para verificar a prevalência de parasitas. Para registrar os parasitas, essas cinco espécies de aves foram colocadas em gaiolas separadas no Centro de Conservação e Pesquisa de Aves, Departamento de Vida Selvagem e Ecologia, Universidade de Veterinária e Ciências Animais, Lahore, Paquistão. Cem amostras fecais e 100 amostras de sangue para cada espécie de ave foram inspecionadas para analisar os parasitas internos. Durante o presente estudo, foram examinadas 17 espécies de endoparasitas, 14 de amostras fecais e 3 de sangue. Foram estudadas duas espécies de ectoparasitas, ou seja, o ácaro Dermanyssus gallinae 42% e o carrapato aviário Args persicus 41%. Os parasitas sanguíneos incluíram Plasmodium juxtanucleare 50%, Leucoctoyzoon simond com prevalência parasitária de 40% e Aegyptinella pullorum com prevalência parasitária de 40%. As espécies parasitas registradas em amostras fecais incluíram 6 espécies de nematoides viz. Allodpa suctoria 2%, Syngamus traqueia com prevalência parasitária de 60%, Capillaria annulata 37,5%, Ascardia galli 24%, Capillaria anatis 40% e Heterakis gallinarum 28,3%. Da mesma forma, duas espécies de trematódeos viz. Prosthogonimus ovatus com prevalência parasitária de 50% e Prosthogonimus macrorchis 21% também foram documentados em amostras fecais de aves. Espécies de cestoide único Raillietina echinobothrida com prevalência parasitária de 72% e 3 espécies de protozoários, isto é, Eimeria maxima com prevalência parasitária de 21%, Giardia lamblia 41% e Histomonas meleagridis 18% foram documentadas durante a análise corpológica. Em nossa recomendação, o saneamento adequado, medicação e vacinação de invólucros de pássaros são sugeridos para evitar parasitas.
Assuntos
Animais , Parasitos , Doenças das Aves/epidemiologia , Galliformes , Prevalência , Animais SelvagensRESUMO
Abstract Mining is vital for human sustenance and a crucial sector in the state economy. However, its impacts on the environment and biodiversity cannot be underestimated. Which are potent to the attract government's attention. Environment and wildlife are subject to the harmful impacts of mining and its related activities. In this study, districts, namely Mardan and Mohmand have been targeted with respect to mining impacts. The assessment was carried out on wildlife adversely affected by the mining sector. The fauna has been keenly observed to bring the calculated risks and threat perception of the regional wildlife. Total 9 species of mammals, 21 species of birds, were recorded in District Mardan. While in District Mohmand 2 species of mammals, 9 species of birds, and 4 species of reptiles were studied. The Study explored that mining primarily responsible for land degradation. Which lead to food and agriculture losses. Several other factors like blasting, pollution, hunting, deforestation, habitat loss was also observed. Deforestation surfaced one of the major causes for extinction of fauna in the said region. preemptive measures are needed to seize the man-made catastrophe.
Resumo A mineração é vital para o sustento humano e um setor crucial na economia do Estado. No entanto, seus impactos sobre o meio ambiente e a biodiversidade não podem ser subestimados, visto serem potentes para atrair a atenção do governo. O meio ambiente e a vida selvagem estão sujeitos aos impactos prejudiciais da mineração e de suas atividades relacionadas. Neste estudo, os distritos, nomeadamente Mardan e Mohmand, foram selecionados no que diz respeito aos impactos da mineração. A avaliação foi realizada em animais selvagens afetados negativamente pelo setor de mineração. A fauna tem sido observada atentamente para trazer os riscos calculados e a percepção de ameaça à vida selvagem regional. Um total de nove espécies de mamíferos, 21 espécies de pássaros, foi registrado no Distrito Mardan. Enquanto no Distrito Mohmand, duas espécies de mamíferos, nove espécies de pássaros e quatro espécies de répteis foram estudadas. O estudo explorou essa mineração que é principalmente responsável pela degradação do solo, acarretando perdas de alimentos e na agricultura. Vários outros fatores como explosões, poluição, caça, desmatamento, perda de habitat também foram observados. O desmatamento veio à tona como uma das principais causas de extinção da fauna da região, e tem-se que medidas preventivas são necessárias para dimensionar a catástrofe provocada pelo homem.
Assuntos
Humanos , Animais , Biodiversidade , Animais Selvagens , Mineração , PaquistãoRESUMO
Novel coronavirus species of public health and veterinary importance have emerged in the first two decades of the twenty-first century, with bats identified as natural hosts for progenitors of many coronaviruses. Targeted wildlife surveillance is needed to identify the factors involved in viral perpetuation within natural host populations, and drivers of interspecies transmission. We monitored a natural colony of Egyptian rousette bats at monthly intervals across two years to identify circulating coronaviruses, and to investigate shedding dynamics and viral maintenance within the colony. Three distinct lineages were detected, with different seasonal temporal excretion dynamics. For two lineages, the highest periods of coronavirus shedding were at the start of the year, when large numbers of bats were found in the colony. Highest peaks for a third lineage were observed towards the middle of the year. Among individual bat-level factors (age, sex, reproductive status, and forearm mass index), only reproductive status showed significant effects on excretion probability, with reproductive adults having lower rates of detection, though factors were highly interdependent. Analysis of recaptured bats suggests that viral clearance may occur within one month. These findings may be implemented in the development of risk reduction strategies for potential zoonotic coronavirus transmission.
Assuntos
Líquidos Corporais , Braquiterapia , COVID-19 , Quirópteros , Animais , Animais SelvagensRESUMO
Delimiting and naming biodiversity is a vital step toward wildlife conservation and research. However, species delimitation must be consistent across biota so that the limited resources available for nature protection can be spent effectively and objectively. To date, newly discovered lineages typically are either left undescribed and thus remain unprotected or are being erroneously proposed as new species despite mixed evidence for completed speciation, in turn contributing to the emerging problem of taxonomic inflation. Inspired by recent conceptual and methodological progress, we propose a standardized workflow for species delimitation that combines phylogenetic and hybrid zone analyses of genomic datasets ("genomic taxonomy"), in which phylogeographic lineages that do not freely admix are ranked as species, while those that have remained fully genetically compatible are ranked as subspecies. In both cases, we encourage their formal taxonomic naming, diagnosis, and description to promote social awareness toward biodiversity. The use of loci throughout the genome overcomes the unreliability of widely used barcoding genes when phylogeographic patterns are complex, while the evaluation of divergence and reproductive isolation unifies the long-opposed concepts of lineage species and biological species. We suggest that a shift in conservation assessments from a single level (species) toward a two-level hierarchy (species and subspecies) will lead to a more balanced perception of biodiversity in which both intraspecific and interspecific diversity are valued and more adequately protected.
Assuntos
Biodiversidade , Biota , Animais , Filogenia , Animais Selvagens , GenômicaRESUMO
Peste des petits ruminants (PPR) is an infectious viral disease, primarily of small ruminants such as sheep and goats, but is also known to infect a wide range of wild and domestic Artiodactyls including African buffalo, gazelle, saiga and camels. The livestock-wildlife interface, where free-ranging animals can interact with captive flocks, is the subject of scrutiny as its role in the maintenance and spread of PPR virus (PPRV) is poorly understood. As seroconversion to PPRV indicates previous infection and/or vaccination, the availability of validated serological tools for use in both typical (sheep and goat) and atypical species is essential to support future disease surveillance and control strategies. The virus neutralisation test (VNT) and enzyme-linked immunosorbent assay (ELISA) have been validated using sera from typical host species. Still, the performance of these assays in detecting antibodies from atypical species remains unclear. We examined a large panel of sera (n = 793) from a range of species from multiple countries (sourced 2015-2022) using three tests: VNT, ID VET N-ELISA and AU-PANVAC H-ELISA. A sub-panel (n = 30) was also distributed to two laboratories and tested using the luciferase immunoprecipitation system (LIPS) and a pseudotyped virus neutralisation assay (PVNA). We demonstrate a 75.0-88.0% agreement of positive results for detecting PPRV antibodies in sera from typical species between the VNT and commercial ELISAs, however this decreased to 44.4-62.3% in sera from atypical species, with an inter-species variation. The LIPS and PVNA strongly correlate with the VNT and ELISAs for typical species but vary when testing sera from atypical species.
Assuntos
Antílopes , Peste dos Pequenos Ruminantes , Vírus da Peste dos Pequenos Ruminantes , Animais , Ovinos , Soroconversão , Peste dos Pequenos Ruminantes/diagnóstico , Anticorpos , Animais Selvagens , Búfalos , Camelus , CabrasRESUMO
The threatened Mojave desert tortoise (Gopherus agassizii) exhibits temperature-dependent sex determination, and individuals appear externally sexually monomorphic until sexual maturity. A non-surgical sex identification method that is suitable for a single in situ encounter with hatchlings is essential for minimizing handling of wild animals. We tested (1) whether plasma testosterone quantified by enzyme-linked immunosorbent assay differentiated males from females in 0-3 month old captive hatchlings, and (2) whether an injection of follicle-stimulating hormone (FSH) differentially elevates testosterone in male hatchlings to aid in identifying sex. We validated sex by ceolioscopic (laparoscopic) surgery. We then fit the testosterone concentrations to lognormal distributions and identified the concentration below which individuals are more likely female, and above which individuals are more likely male. Using a parametric bootstrapping procedure, we estimated a 0.01-0.04% misidentification rate for naïve testosterone samples, and a 1.26-1.39% misidentification rate for challenged (post-FSH injection) testosterone samples. Quantification of plasma testosterone concentration from small volume (0.1 mL) blood samples appears to be a viable, highly accurate method to identify sex of 0-3 month old hatchlings and could be a valuable tool for conservation measures and investigation of trends and variation in sex ratios for in situ wild nests.
Assuntos
Testosterona , Tartarugas , Feminino , Masculino , Animais , Animais Selvagens , Ensaio de Imunoadsorção Enzimática , Hormônio Foliculoestimulante HumanoRESUMO
Previous studies have documented natural infections of SARS-CoV-2 in various domestic and wild animals. More recently, studies have been published noting the susceptibility of members of the Cervidae family, and infections in both wild and captive cervid populations. In this study, we investigated the presence of SARS-CoV-2 in mammalian wildlife within the state of Vermont. 739 nasal or throat samples were collected from wildlife throughout the state during the 2021 and 2022 harvest season. Data was collected from red and gray foxes (Vulpes vulples and Urocyon cineroargentus, respectively), fishers (Martes pennati), river otters (Lutra canadensis), coyotes (Canis lantrans), bobcats (Lynx rufus rufus), black bears (Ursus americanus), and white-tailed deer (Odocoileus virginianus). Samples were tested for the presence of SARS-CoV-2 via quantitative RT-qPCR using the CDC N1/N2 primer set and/or the WHO-E gene primer set. Surprisingly, we initially detected a number of N1 and/or N2 positive samples with high cycle threshold values, though after conducting environmental swabbing of the laboratory and verifying with a second independent primer set (WHO-E) and PCR without reverse transcriptase, we showed that these were false positives due to plasmid contamination from a construct expressing the N gene in the general laboratory environment. Our final results indicate that no sampled wildlife were positive for SARS-CoV-2 RNA, and highlight the importance of physically separate locations for the processing of samples for surveillance and experiments that require the use of plasmid DNA containing the target RNA sequence. These negative findings are surprising, given that most published North America studies have found SARS-CoV-2 within their deer populations. The absence of SARS-CoV-2 RNA in populations sampled here may provide insights in to the various environmental and anthropogenic factors that reduce spillover and spread in North American's wildlife populations.
Assuntos
COVID-19 , Coiotes , Cervos , Lynx , Lontras , Animais , Animais Selvagens , COVID-19/epidemiologia , RNA Viral/genética , SARS-CoV-2/genética , Vermont/epidemiologia , RaposasRESUMO
This Editorial provides summaries and an overview of research and review articles published in the Sensors journal, volumes 21 (2021), 22 (2022), and 23 (2023), within the biomedical Special Issue "Portable Electronic-Nose Devices for Noninvasive Early Disease Detection", which focused on recent sensors, biosensors, and clinical instruments developed for noninvasive early detection and diagnosis of human and animal diseases. The ten articles published in this Special Issue provide new information associated with recent electronic-nose (e-nose) and related volatile organic compound (VOC)-detection technologies developed to improve the effectiveness and efficiency of diagnostic methodologies for early disease detection prior to symptom development. For review purposes, the summarized articles were placed into three broad groupings or topic areas, including veterinary-wildlife pathology, human clinical pathology, and the detection of dietary effects on VOC emissions. These specified categories were used to define sectional headings devoted to related research studies with a commonality based on a particular disease being investigated or type of analytical instrument used in analyses.
Assuntos
Nariz Eletrônico , Compostos Orgânicos Voláteis , Animais , Humanos , Diagnóstico Precoce , Animais Selvagens , EletrônicaRESUMO
Co-infection is an underappreciated phenomenon in contemporary disease ecology despite its ubiquity and importance in nature. Viruses, and other co-infecting agents, can interact in ways that shape host and agent communities, influence infection dynamics, and drive evolutionary selective pressures. Bats are host to many viruses of zoonotic potential and have drawn increasing attention in their role as wildlife reservoirs for human spillover. However, the role of co-infection in driving viral transmission dynamics within bats is unknown. Here, we systematically review peer-reviewed literature reporting viral co-infections in bats. We show that viral co-infection is common in bats but is often only reported as an incidental finding. Biases identified in our study database related to virus and host species were pre-existing in virus studies of bats generally. Studies largely speculated on the role co-infection plays in viral recombination and few investigated potential drivers or impacts of co-infection. Our results demonstrate that current knowledge of co-infection in bats is an ad hoc by-product of viral discovery efforts, and that future targeted co-infection studies will improve our understanding of the role it plays. Adding to the broader context of co-infection studies in other wildlife species, we anticipate our review will inform future co-infection study design and reporting in bats. Consideration of detection strategy, including potential viral targets, and appropriate analysis methodology will provide more robust results and facilitate further investigation of the role of viral co-infection in bat reservoirs.
Assuntos
Quirópteros , Coinfecção , Viroses , Humanos , Animais , Coinfecção/veterinária , Viroses/veterinária , Animais Selvagens , Evolução BiológicaRESUMO
Free-living cats usually live in colonies in urban areas, especially close to parks and neighbourhoods where people feed them without any sanitary control. This can pose a human, animal and environmental health concern due to the close contact between uncontrolled colonies, the population and other domestic and/or wild animals. Thus, this study aimed to assess the genetic diversity and antimicrobial resistance (AMR) among Salmonella enterica subsp. enterica strains isolated from feral cats in a previous epidemiological study in the Gran Canaria island (Spain). A total of nineteen Salmonella isolates were obtained from November 2018 to January 2019 in a Salmonella epidemiological study in feral cats. All isolates obtained were genotyped by pulsed-field gel electrophoresis (PGFE) and were tested for antimicrobial susceptibility, in accordance with Decision 2013/652/EU. PFGE analysis revealed isolates clustering by serovar, with identical clones for serovars Bredeney and Grancanaria, while differing pulsotypes were observed for serovars Florida (88.89 % similarity) and Nima (83.23 % similarity). All but two isolates were resistant to at least one antimicrobial. The results obtained demonstrate that feral cats in the region investigated are a reservoir of Salmonella strains resistant to gentamicin (94.1 %) and of the critically important antimicrobial tigecycline (23.5 %). Hence, they could excrete AMR strains through their faeces and contaminate the environment, favoring the spread of such bacteria to cohabiting pets. Moreover, this widespread presence of AMR Salmonella clones across various serovars highlights the urgent need to implement efficient antimicrobial stewardship and control programs by the local governments due to the ongoing need to protect human and animal health under a One Health concept.
Assuntos
Anti-Infecciosos , Saúde Única , Salmonelose Animal , Salmonella enterica , Gatos , Animais , Humanos , Antibacterianos/farmacologia , Animais Selvagens , Salmonella , Testes de Sensibilidade Microbiana/veterinária , Variação Genética , Eletroforese em Gel de Campo Pulsado/veterinária , Farmacorresistência Bacteriana Múltipla/genética , Salmonelose Animal/epidemiologiaRESUMO
Plastic pollution is rapidly increasing worldwide, causing adverse impacts on the environment, wildlife and human health. One tempting solution to this crisis is upcycling plastics into products with engineered microorganisms; however, this remains challenging due to complexity in conversion. Here we present a synthetic microbial consortium that efficiently degrades polyethylene terephthalate hydrolysate and subsequently produces desired chemicals through division of labor. The consortium involves two Pseudomonas putida strains, specializing in terephthalic acid and ethylene glycol utilization respectively, to achieve complete substrate assimilation. Compared with its monoculture counterpart, the consortium exhibits reduced catabolic crosstalk and faster deconstruction, particularly when substrate concentrations are high or crude hydrolysate is used. It also outperforms monoculture when polyhydroxyalkanoates serves as a target product and confers flexible tuning through population modulation for cis-cis muconate synthesis. This work demonstrates engineered consortia as a promising, effective platform that may facilitate polymer upcycling and environmental sustainability.
Assuntos
Trabalho de Parto , Poli-Hidroxialcanoatos , Humanos , Gravidez , Feminino , Animais , Engenharia , Animais Selvagens , Reações CruzadasRESUMO
Represented by feline panleukopenia virus (FPV) and canine parvovirus (CPV), the species carnivore protoparvovirus 1 has a worldwide distribution through continuous ci13rculation in companion animals such as cats and dogs. Subsequently, both FPV and CPV had engaged in host-to-host transfer to other wild animal hosts of the order Carnivora. In the present study, we emphasized the significance of cross-species transmission of parvoviruses with the isolation and characterization of an FPV from giant panda displaying severe and fatal symptoms. The isolated virus, designated pFPV-sc, displayed similar morphology as FPV, while phylogenetic analysis indicated that the nucleotide sequence of pFPV-sc clades with Chinese FPV isolates. Despite pFPV-sc is seemingly an outcome of a spillover infection event from domestic cats to giant pandas, our study also provided serological evidence that FPV or other parvoviruses closely related to FPV could be already prevalent in giant pandas in 2011. Initiation of host transfer of pFPV-sc is likely with association to giant panda transferrin receptor (TfR), as TfR of giant panda shares high homology with feline TfR. Strikingly, our data also indicate that pFPV-sc can infect cell lines of other mammal species, including humans. To sum up, observations from this study shall promote future research of cross-host transmission and antiviral intervention of Carnivore protoparvovirus 1, and necessitate surveillance studies in thus far unacknowledged potential reservoirs.
Assuntos
Vírus da Panleucopenia Felina , Ursidae , Humanos , Gatos , Animais , Cães , Vírus da Panleucopenia Felina/genética , Filogenia , Animais Selvagens , TropismoRESUMO
Genomic data can be used to track the transmission and geographic spread of infectious diseases. However, the sequencing capacity required for genomic surveillance remains limited in many low- and middle-income countries (LMICs), where dog-mediated rabies and/or rabies transmitted by wildlife such as vampire bats pose major public health and economic concerns. We present here a rapid and affordable sample-to-sequence-to-interpretation workflow using nanopore technology. Protocols for sample collection and the diagnosis of rabies are briefly described, followed by details of the optimized whole genome sequencing workflow, including primer design and optimization for multiplex polymerase chain reaction (PCR), a modified, low-cost sequencing library preparation, sequencing with live and offline base calling, genetic lineage designation, and phylogenetic analysis. Implementation of the workflow is demonstrated, and critical steps are highlighted for local deployment, such as pipeline validation, primer optimization, inclusion of negative controls, and the use of publicly available data and genomic tools (GLUE, MADDOG) for classification and placement within regional and global phylogenies. The turnaround time for the workflow is 2-3 days, and the cost ranges from $25 per sample for a 96 sample run to $80 per sample for a 12 sample run. We conclude that setting up rabies virus genomic surveillance in LMICs is feasible and can support progress toward the global goal of zero dog-mediated human rabies deaths by 2030, as well as enhanced monitoring of wildlife rabies spread. Moreover, the platform can be adapted for other pathogens, helping to build a versatile genomic capacity that contributes to epidemic and pandemic preparedness.
Assuntos
Quirópteros , Nanoporos , Vírus da Raiva , Raiva , Humanos , Animais , Cães , Vírus da Raiva/genética , Raiva/diagnóstico , Raiva/veterinária , Filogenia , Animais Selvagens , Tecnologia , Sequenciamento Completo do GenomaRESUMO
There has been a recent upsurge in human cases of leptospirosis in New Zealand, with wildlife a suspected emerging source, but up-to-date knowledge on this topic is lacking. We conducted a cross-sectional study in two farm environments to estimate Leptospira seroprevalence in wildlife and sympatric livestock, PCR/culture prevalence in wildlife, and compare seroprevalence and prevalence between species, sex, and age groups. Traps targeting house mice (Mus musculus), black rats (Rattus rattus), hedgehogs (Erinaceus europaeus) and brushtail possums (Trichosurus vulpecula) were set for 10 trap-nights in March-April 2017 on a dairy (A) and a beef and sheep (B) farm. Trapped wild animals and an age-stratified random sample of domestic animals, namely cattle, sheep and working dogs were blood sampled. Sera were tested by microagglutination test for five serogroups and titres compared using a Proportional Similarity Index (PSI). Wildlife kidneys were sampled for culture and qPCR targeting the lipL32 gene. True prevalence in mice was assessed using occupancy modelling by collating different laboratory results. Infection profiles varied by species, age group and farm. At the MAT cut-point of ≥ 48, up to 78% of wildlife species, and 16-99% of domestic animals were seropositive. Five of nine hedgehogs, 23/105 mice and 1/14 black rats reacted to L. borgpetersenii sv Ballum. The sera of 4/18 possums and 4/9 hedgehogs reacted to L. borgpetersenii sv Hardjobovis whilst 1/18 possums and 1/9 hedgehogs reacted to Tarassovi. In ruminants, seroprevalence for Hardjobovis and Pomona ranged 0-90% and 0-71% depending on the species and age group. Titres against Ballum, Tarassovi and Copenhageni were also observed in 4-20%, 0-25% and 0-21% of domestic species, respectively. The PSI indicated rodents and livestock had the most dissimilar serological responses. Three of nine hedgehogs, 31/105 mice and 2/14 rats were carrying leptospires (PCR and/or culture positive). True prevalence estimated by occupancy modelling in mice was 38% [95% Credible Interval 26, 51%] on Farm A and 22% [11, 40%] on Farm B. In the same environment, exposure to serovars found in wildlife species was commonly detected in livestock. Transmission pathways between and within species should be assessed to help in the development of efficient mitigation strategies against Leptospira.
Assuntos
Animais Selvagens , Leptospira , Cães , Humanos , Animais , Camundongos , Ratos , Bovinos , Ovinos , Gado , Estudos Transversais , Leptospira/genética , Nova Zelândia/epidemiologia , Ouriços , Estudos Soroepidemiológicos , Animais DomésticosRESUMO
BACKGROUND: Infectious diseases transmitted by wild animals are major threats to public health. This study aimed to investigate the potential of rescued wild animals that died of unknown causes as reservoirs of infectious agents. From 2018 to 2019, 121 dead wild animals (55 birds and 66 mammals) were included in this study. All wild animals died during treatment after anthropogenic events. After deaths of animals, necropsies were performed and trachea, lungs, large intestine (including stool), and spleen were collected to determine causes of deaths. A high-throughput screening (HTS) quantitative polymerase chain reaction (qPCR) designed to detect 19 pathogens simultaneously against 48 samples in duplicate was performed using nucleic acids extracted from pooled tissues and peripheral blood samples. If positive, singleplex real-time PCR was performed for individual organs or blood samples. RESULTS: The HTS qPCR showed positive results for Campylobacter jejuni (10/121, 8.3%), Campylobacter coli (1/121, 0.8%), Mycoplasma spp. (78/121, 64.5%), and Plasmodium spp. (7/121, 5.7%). Singleplex real-time PCR confirmed that C. jejuni was detected in the large intestine but not in the blood. C. coli was only detected in the large intestine. Mycoplasma spp. were detected in all organs, having the highest proportion in the large intestine and lowest in the blood. Plasmodium spp. was also detected in all organs, with proportions being were similar among organs. CONCLUSIONS: This study shows that wild animals can become carriers of infectious agents without showing any clinical symptoms.
Assuntos
Campylobacter jejuni , Mycoplasma , Animais , Animais Selvagens , Ensaios de Triagem em Larga Escala/veterinária , República da Coreia , Autopsia/veterinária , MamíferosRESUMO
Marine traffic poses a growing threat to wildlife in the marine environment, including Arctic seabirds, which are exposed to high vessel densities when breeding in coastal areas. However, little is known about the magnitude of the problem. Here, we utilized underwater acoustic monitoring to quantify marine traffic and above-water disturbances at two thick-billed murre colonies in Greenland in 2016. We detected a total of 307 vessels, and only 4 % was known from automatic monitoring systems. Based on proximity, noise emission, and boating behavior, we classified 11 vessels as disturbing and an additional 12 as potentially disturbing for the seabirds. One colony facing population decline was located closest to the main boating route and experienced 2-5 times more disturbances than the other (increasing) colony, suggesting a negative impact of marine traffic. Our study shows that underwater acoustics can be a useful method to quantify above-water disturbances of seabird colonies.
Assuntos
Acústica , Charadriiformes , Animais , Groenlândia , Animais Selvagens , ÁguaRESUMO
Leptospirosis, the most widespread zoonotic disease in the world, is broadly understudied in multi-host wildlife systems. Knowledge gaps regarding Leptospira circulation in wildlife, particularly in densely populated areas, contribute to frequent misdiagnoses in humans and domestic animals. We assessed Leptospira prevalence levels and risk factors in five target wildlife species across the greater Los Angeles region: striped skunks (Mephitis mephitis), raccoons (Procyon lotor), coyotes (Canis latrans), Virginia opossums (Didelphis virginiana), and fox squirrels (Sciurus niger). We sampled more than 960 individual animals, including over 700 from target species in the greater Los Angeles region, and an additional 266 sampled opportunistically from other California regions and species. In the five target species seroprevalences ranged from 5 to 60%, and infection prevalences ranged from 0.8 to 15.2% in all except fox squirrels (0%). Leptospira phylogenomics and patterns of serologic reactivity suggest that mainland terrestrial wildlife, particularly mesocarnivores, could be the source of repeated observed introductions of Leptospira into local marine and island ecosystems. Overall, we found evidence of widespread Leptospira exposure in wildlife across Los Angeles and surrounding regions. This indicates exposure risk for humans and domestic animals and highlights that this pathogen can circulate endemically in many wildlife species even in densely populated urban areas.
Assuntos
Coiotes , Didelphis , Geraniaceae , Leptospira , Animais , Humanos , Leptospira/genética , Animais Selvagens , Ecossistema , Mephitidae , Los Angeles , Animais Domésticos , Guaxinins , SciuridaeRESUMO
Avian influenza viruses pose a threat to wildlife and livestock health. The emergence of highly pathogenic avian influenza (HPAI) in wild birds and poultry in North America in late 2021 was the first such outbreak since 2015 and the largest outbreak in North America to date. Despite its prominence and economic impacts, we know relatively little about how HPAI spreads in wild bird populations. In January 2022, we captured 43 mallards (Anas platyrhynchos) in Tennessee, USA, 11 of which were actively infected with HPAI. These were the first confirmed detections of HPAI H5N1 clade 2.3.4.4b in the Mississippi Flyway. We compared movement patterns of infected and uninfected birds and found no clear differences; infected birds moved just as much during winter, migrated slightly earlier, and migrated similar distances as uninfected birds. Infected mallards also contacted and shared space with uninfected birds while on their wintering grounds, suggesting ongoing transmission of the virus. We found no differences in body condition or survival rates between infected and uninfected birds. Together, these results show that HPAI H5N1 clade 2.3.4.4b infection was unrelated to body condition or movement behavior in mallards infected at this location during winter; if these results are confirmed in other seasons and as HPAI H5N1 continues to evolve, they suggest that these birds could contribute to the maintenance and dispersal of HPAI in North America. Further research on more species across larger geographic areas and multiple seasons would help clarify potential impacts of HPAI on waterfowl and how this emerging disease spreads at continental scales, across species, and potentially between wildlife and domestic animals.
Assuntos
Virus da Influenza A Subtipo H5N1 , Influenza Aviária , Animais , Influenza Aviária/epidemiologia , Estações do Ano , Patos , Animais Selvagens , América do Norte/epidemiologiaRESUMO
Infections with the coccidian parasite Neospora caninum affect domestic and wild animals worldwide. In Australia, N. caninum infections cause considerable losses to the cattle industry with seroprevalence of 8.7% in beef and 10.9% in dairy cattle. Conversely, the role of wild animals, in maintaining the parasite cycle is also unclear. It is possible that native or introduced herbivorous species could be reservoir hosts of N. caninum in Australia, but to date, this has not been investigated. We report here the first large-scale screening of N. caninum antibodies in Australian wild deer, spanning three species (fallow, red and sambar deer). Consequently, we also assessed two commercial cELISA tests validated for detecting N. caninum in cattle for their ability to detect N. caninum antibodies in serum samples of wild deer. N. caninum antibodies were detected in 3.7% (7/189, 95% CI 1.8 - 7.45) of the wild deer serum samples collected in south-eastern Australia (n = 189), including 97 fallow deer (Dama dama), 14 red deer (Cervus elaphus), and 78 sambar deer (Rusa unicolor). Overall, our study provides the first detection of N. caninum antibodies in wild deer and quantifies deer's potential role in the sylvatic cycle of N. caninum.
Assuntos
Antígenos de Grupos Sanguíneos , Cervos , Animais , Bovinos , Animais Selvagens , Estudos Soroepidemiológicos , Austrália/epidemiologia , Meio AmbienteRESUMO
Renewable energy production and development will drastically affect how we meet global energy demands, while simultaneously reducing the impact of climate change. Although the possible effects of renewable energy production (mainly from solar- and wind-energy facilities) on wildlife have been explored, knowledge gaps still exist, and collecting data from wildlife remains (when negative interactions occur) at energy installations can act as a first step regarding the study of species and communities interacting with facilities. In the case of avian species, samples can be collected relatively easily (as compared to other sampling methods), but may only be able to be identified when morphological characteristics are diagnostic for a species. Therefore, many samples that appear as partial remains, or "feather spots"-known to be of avian origin but not readily assignable to species via morphology-may remain unidentified, reducing the efficiency of sample collection and the accuracy of patterns observed. To obtain data from these samples and ensure their identification and inclusion in subsequent analyses, we applied, for the first time, a DNA barcoding approach that uses mitochondrial genetic data to identify unknown avian samples collected at solar facilities to species. We also verified and compared identifications obtained by our genetic method to traditional morphological identifications using a blind test, and discuss discrepancies observed. Our results suggest that this genetic tool can be used to verify, correct, and supplement identifications made in the field and can produce data that allow accurate comparisons of avian interactions across facilities, locations, or technology types. We recommend implementing this genetic approach to ensure that unknown samples collected are efficiently identified and contribute to a better understanding of wildlife impacts at renewable energy projects.