Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.613
Filtrar
1.
PLoS One ; 15(8): e0234098, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32817616

RESUMO

In French Guiana, the malaria, a parasitic infection transmitted by Anopheline mosquitoes, remains a disease of public health importance. To prevent malaria transmission, the main effective way remains Anopheles control. For an effective control, accurate Anopheles species identification is indispensable to distinguish malaria vectors from non-vectors. Although, morphological and molecular methods are largely used, an innovative tool, based on protein pattern comparisons, the Matrix Assisted Laser Desorption / Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) profiling, emerged this last decade for arthropod identification. However, the limited mosquito fauna diversity of reference MS spectra remains one of the main drawback for its large usage. The aim of the present study was then to create and to share reference MS spectra for the identification of French Guiana Anopheline species. A total of eight distinct Anopheles species, among which four are malaria vectors, were collected in 6 areas. To improve Anopheles identification, two body parts, legs and thoraxes, were independently submitted to MS for the creation of respective reference MS spectra database (DB). This study underlined that double checking by MS enhanced the Anopheles identification confidence and rate of reliable classification. The sharing of this reference MS spectra DB should make easier Anopheles species monitoring in endemic malaria area to help malaria vector control or elimination programs.


Assuntos
Anopheles/classificação , Mosquitos Vetores/classificação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Animais , Anopheles/química , Guiana Francesa , Malária/classificação , Malária/transmissão , Especificidade da Espécie , Tórax
2.
PLoS One ; 15(8): e0236920, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32745085

RESUMO

BACKGROUND: Twenty-seven villages were selected in southwest Burkina Faso to implement new vector control strategies in addition to long lasting insecticidal nets (LLINs) through a Randomized Controlled Trial (RCT). We conducted entomological surveys in the villages during the dry cold season (January 2017), dry hot season (March 2017) and rainy season (June 2017) to describe malaria vectors bionomics, insecticide resistance and transmission prior to this trial. METHODS: We carried out hourly catches (from 17:00 to 09:00) inside and outside 4 houses in each village using the Human Landing Catch technique. Mosquitoes were identified using morphological taxonomic keys. Specimens belonging to the Anopheles gambiae complex and Anopheles funestus group were identified using molecular techniques as well as detection of Plasmodium falciparum infection and insecticide resistance target-site mutations. RESULTS: Eight Anopheles species were detected in the area. Anopheles funestus s.s was the main vector during the dry cold season. It was replaced by Anopheles coluzzii during the dry hot season whereas An. coluzzii and An. gambiae s.s. were the dominant species during the rainy season. Species composition of the Anopheles population varied significantly among seasons. All insecticide resistance mechanisms (kdr-w, kdr-e and ace-1 target site mutations) investigated were found in each members of the An. gambiae complex but at different frequencies. We observed early and late biting phenotypes in the main malaria vector species. Entomological inoculation rates were 2.61, 2.67 and 11.25 infected bites per human per month during dry cold season, dry hot season and rainy season, respectively. CONCLUSION: The entomological indicators of malaria transmission were high despite the universal coverage with LLINs. We detected early and late biting phenotypes in the main malaria vector species as well as physiological insecticide resistance mechanisms. These data will be used to evaluate the impact of complementary tools to LLINs in an upcoming RCT.


Assuntos
Anopheles , Resistência a Inseticidas/genética , Malária Falciparum/transmissão , Mosquitos Vetores/genética , Animais , Anopheles/classificação , Anopheles/genética , Anopheles/parasitologia , Burkina Faso/epidemiologia , Culex/classificação , Culex/genética , Culex/parasitologia , Culicidae/classificação , Culicidae/genética , Culicidae/parasitologia , Ecologia , Genótipo , Humanos , Malária Falciparum/prevenção & controle , Controle de Mosquitos/métodos , Controle de Mosquitos/organização & administração , Mosquitos Vetores/classificação , Mosquitos Vetores/parasitologia , Plasmodium falciparum/isolamento & purificação , Estações do Ano
3.
Mem Inst Oswaldo Cruz ; 115: e200043, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32667459

RESUMO

BACKGROUND The number of malaria cases in Roraima nearly tripled from 2016 to 2018. The capital, Boa Vista, considered a low-risk area for malaria transmission, reported an increasing number of autochthonous and imported cases. OBJECTIVES This study describes a spatial analysis on malaria cases in an urban region of Boa Vista, which sought to identify the autochthonous and imported cases and associated them with Anopheles habitats and the potential risk of local transmission. METHODS In a cross-sectional study at the Polyclinic Cosme e Silva, 520 individuals were interviewed and diagnosed with malaria by microscopic examination. Using a global positional system, the locations of malaria cases by type and origin and the breeding sites of anopheline vectors were mapped and the risk of malaria transmission was evaluated by spatial point pattern analysis. FINDINGS Malaria was detected in 57.5% of the individuals and there was a disproportionate number of imported cases (90.6%) linked to Brazilian coming from gold mining sites in Venezuela and Guyana. MAIN CONCLUSIONS The increase in imported malaria cases circulating in the west region of Boa Vista, where there are positive breeding sites for the main vectors, may represent a potential condition for increased autochthonous malaria transmission in this space.


Assuntos
Anopheles/parasitologia , Malária/diagnóstico , Malária/transmissão , Mineradores/estatística & dados numéricos , Mosquitos Vetores/parasitologia , Plasmodium/isolamento & purificação , Viagem , Adulto , Animais , Anopheles/classificação , Brasil/epidemiologia , Estudos Transversais , Feminino , Sistemas de Informação Geográfica , Ouro , Guiana , Humanos , Malária/epidemiologia , Malária/parasitologia , Masculino , Pessoa de Meia-Idade , Plasmodium/classificação , Análise Espacial , População Urbana , Venezuela
4.
Parasitol Res ; 119(9): 2765-2774, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32671542

RESUMO

Before the background of increasingly frequent outbreaks and cases of mosquito-borne diseases in various European countries, Germany recently realised the necessity of updating decade-old data on the occurrence and spatiotemporal distribution of culicid species. Starting in 2011, a mosquito monitoring programme was therefore launched with adult and immature mosquito stages being collected at numerous sites all over Germany both actively by trapping, netting, aspirating and dipping, and passively by the citizen science project 'Mueckenatlas'. Until the end of 2019, about 516,000 mosquito specimens were analysed, with 52 (probably 53) species belonging to seven genera found, including several species not reported for decades due to being extremely rare (Aedes refiki, Anopheles algeriensis, Culex martinii) or local (Culiseta alaskaensis, Cs. glaphyroptera, Cs. ochroptera). In addition to 43 (probably 44 including Cs. subochrea) out of 46 species previously described for Germany, nine species were collected that had never been documented before. These consisted of five species recently established (Ae. albopictus, Ae. japonicus, Ae. koreicus, An. petragnani, Cs. longiareolata), three species probably introduced on one single occasion only and not established (Ae. aegypti, Ae. berlandi, Ae. pulcritarsis), and a newly described cryptic species of the Anopheles maculipennis complex (An. daciae) that had probably always been present but not been differentiated from its siblings. Two species formerly listed for Germany could not be documented (Ae. cyprius, Ae. nigrinus), while presence is likely for another species (Cs. subochrea), which could not be demonstrated in the monitoring programme as it can neither morphologically nor genetically be reliably distinguished from a closely related species (Cs. annulata) in the female sex. While Cs. annulata males were collected in the present programme, this was not the case with Cs. subochrea. In summary, although some species regarded endemic could not be found during the last 9 years, the number of culicid species that must be considered firmly established in Germany has increased to 51 (assuming Cs. subochrea and Ae. nigrinus are still present) due to several newly emerged ones but also to one species (Ae. cyprius) that must be considered extinct after almost a century without documentation. Most likely, introduction and establishment of the new species are a consequence of globalisation and climate warming, as three of them are native to Asia (Ae. albopictus, Ae. japonicus, Ae. koreicus) and three (Ae. albopictus, An. petragnani, Cs. longiareolata) are relatively thermophilic. Another thermophilic species, Uranotaenia unguiculata, which had been described for southwestern Germany in 1994 and had since been found only at the very site of its first detection, was recently documented at additional localities in the northeastern part of the country. As several mosquito species found in Germany are serious pests or potential vectors of disease agents and should be kept under permanent observation or even be controlled immediately on emergence, the German mosquito monitoring programme has recently been institutionalised and perpetuated.


Assuntos
Aedes/classificação , Anopheles/classificação , Culex/classificação , Monitoramento Ambiental/métodos , Mosquitos Vetores/classificação , Ochlerotatus/classificação , Animais , Ásia , Clima , Europa (Continente) , Feminino , Alemanha , Espécies Introduzidas , Masculino
5.
Acta Trop ; 207: 105494, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32330453

RESUMO

The Kingdom of Saudi Arabia (KSA) has a diverse fauna due to its peculiar position bordering the Afrotropical, Oriental and Palaearctic zoogeographic zones. The present study reports the phylogenetics of five mosquito species belonging to five series of Anopheles (Cellia) . We collected mosquito larvae from eastern, western and southwestern regions of KSA. The sampled mosquitoes were morphologically identified using the pictorial keys of mosquitoes and characterized by using single and multi-locus analysis of -internal transcribed spacer 2 (ITS2) region and cytochrome oxidase c subunit I (COI). Based on the morphological and molecular data, five species were recognized, like An. stephensi (Neocellia) (Oriental), An. arabiensis (Pyretophorus) (Afrotropical), An. dthali (Myzomyia) (Oriental and Palaearctic), An. cinereus (Paramyzomyia) and An. rhodesiensis rupicola (Neomyzomyia) (Oriental and Palaearctic). The phylogenetic analysis showed that An. stephensi is a monophyletic species with different ecotypes found in different geographic regions. Comprehensive phylogenetics and population genetics studies are crucial for a better understanding of the role of these five mosquito species in malarial transmission across various zoogeographic zones of different ecological and demographic characteristics.


Assuntos
Anopheles/classificação , Animais , Anopheles/genética , Malária/transmissão , Filogenia , Arábia Saudita
6.
Acta Trop ; 207: 105455, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32283092

RESUMO

This paper reports the results of a comparative molecular and morphological study of An. lindesayi collected from various districts of Bhutan and An. l. cameronensis from Thailand, compared with GenBank accessions and publications for An. l. japonicus from Japan, South Korea and China, An. l. pleccau from Taiwan, and An. lindesayi from India. Phylogenetic analyses based on ribosomal (ITS2) and mitochondrial (COI) DNA sequences using the Maximum Likelihood method revealed five genetically distinct clades (A, B, C, D and E) in Bhutan. Specimens in Clade A correspond to the original description of An. lindesayi, particularly in wing markings, the pattern of basal pale scales on the hindfemur and the single seta 4-C of larvae, and their COI sequences were closely related to one Indian sequence. Larvae of Clades B, C, D and E are similar in having seta 4-C branched rather than single. The adults of Clades C, D and E (B not available) are distinguishable from those of Clade A and other subspecies. Specimens of Clade C are unique in having a long pale spot on wing vein R and the subcosta, scattered pale scales on several veins and a dark spot at the tip of vein R2. The adults of Clades D and E are similar in having a dark spot at the tip of vein R2 and no scattered pale scales on all other veins. We provisionally recognize mosquitoes of Clades A, B, C, D and E as species A, B, C, D and E, respectively, of the Lindesayi Complex. Species A is An. lindesayi sensu stricto and the others are unnamed species. Concomitantly, the previous concept of the "Lindesayi Complex", which included An. lindesayi, An. menglangensis, An. nilgiricus and An. wellingtonianus, is now recognized as the Lindesayi Subgroup of the Lindesayi Group (Anopheles Series, subgenus Anopheles) with the five sibling species of An. lindesayi comprising a more apposite Lindesayi Complex within the subgroup.


Assuntos
Anopheles/anatomia & histologia , Anopheles/genética , Animais , Anopheles/classificação , Butão , Feminino , Masculino , Filogenia
7.
Malar J ; 19(1): 89, 2020 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-32093677

RESUMO

BACKGROUND: Accurate Anopheles species identification is key for effective malaria vector control. Identification primarily depends on morphological analysis of field samples as well as molecular species-specific identifications. During an intra-laboratory assessment (proficiency testing) of the Anopheles funestus group multiplex PCR assay, it was noted that Anopheles arabiensis can be misidentified as Anopheles leesoni, a zoophilic member of the An. funestus group. The aim of this project was, therefore, to ascertain whether other members of the Anopheles gambiae complex can also be misidentified as An. leesoni when using the standard An. funestus multiplex PCR. METHODS: The An. funestus multiplex PCR was used to amplify DNA from An. gambiae complex specimens. These included specimens from the laboratory colonies and field samples from the Democratic Republic of Congo. Amplified DNA from these specimens, using the universal (UV) and An. leesoni species-specific primers (LEES), were sequence analysed. Additionally, An. leesoni DNA was processed through the diagnostic An. gambiae multiplex PCR to determine if this species can be misidentified as a member of the An. gambiae complex. RESULTS: Laboratory-colonized as well as field-collected samples of An. arabiensis, An. gambiae, Anopheles merus, Anopheles quadriannulatus, Anopheles coluzzii as well as Anopheles moucheti produced an amplicon of similar size to that of An. leesoni when using an An. funestus multiplex PCR. Sequence analysis confirmed that the UV and LEES primers amplify a segment of the ITS2 region of members of the An. gambiae complex and An. moucheti. The reverse was not true, i.e. the An. gambiae multiplex PCR does not amplify DNA from An. leesoni. CONCLUSION: This investigation shows that An. arabiensis, An. gambiae, An. merus, An. quadriannulatus, An. coluzzii and An. moucheti can be misidentified as An. leesoni when using An. funestus multiplex PCR. This shows the importance of identifying specimens using standard morphological dichotomous keys as far as possible prior to the use of appropriate PCR-based identification methods. Should there be doubt concerning field-collected specimens molecularly identified as An. leesoni, the An. gambiae multiplex PCR and sequencing of the internal transcribed spacer 2 (ITS2) can be used to eliminate false identifications.


Assuntos
Anopheles/classificação , Mosquitos Vetores/classificação , Reação em Cadeia da Polimerase Multiplex , Animais , DNA/análise , República Democrática do Congo , Malária , Especificidade da Espécie
8.
Malar J ; 19(1): 65, 2020 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-32046734

RESUMO

BACKGROUND: Documentation of the species composition of Anopheles mosquitoes and characterization of larval breeding sites is of major importance for the implementation of larval control as part of malaria vector control interventions in Ethiopia. The aims of this study were to determine the Anopheles larval species composition, larval density, available habitat types and the effects of related environmental and physico-chemical parameters of habitats in the Ghibe River basin of southwestern Ethiopia. METHODS: Anopheles larvae were sampled from November 2014 to October 2016 on a monthly basis and 3rd and 4th instars were identified microscopically to species. The larval habitats were characterized based on habitat perimeter, water depth, intensity of light, water current, water temperature, water pH, water turbidity, distance to the nearest house, vegetation coverage, permanence of the habitat, surface debris coverage, emergent plant coverage, habitat type and substrate type. RESULTS: In total, 9277 larvae of Anopheles mosquitoes and 494 pupae were sampled from borrow pits, hoof prints, rain pools, pools at river edges, pools in drying river beds, rock pools, tire tracks and swamps. Anopheles larval density was highest in pools in drying river beds (35.2 larvae per dip) and lowest in swamps (2.1 larvae per dip) at Darge, but highest in rain pools (11.9 larvae per dip), borrow pits (11.2 larvae per dip) and pools at river edges (7.9 larvae per dip), and lowest in swamps (0.5 larvae per dip) at Ghibe. A total of 3485 late instar Anopheles mosquito larvae were morphologically identified. Anopheles gambiae sensu lato was the primary Anopheles mosquito found in all larval habitats except in swamps. Temperature at the time of sampling and emergent vegetation, were the most important variables for Anopheles mosquito larval density. Anopheles gambiae density was significantly associated with habitats that had smaller perimeters, were sunlit, had low vegetation cover, and a lack of emergent plants. Generally, Anopheles mosquito larval density was not significantly associated with water pH, water temperature, water turbidity, algal content, and larval habitat depth. CONCLUSION: Different species of Anopheles larvae were identified including An. gambiae s.l., the main malaria vector in Ethiopia. Anopheles gambiae s.l. is the most abundant species that bred in most of the larval habitat types identified in the study area. The density of this species was high in sunlit habitat, absence of emergent plants, lack of vegetation near habitat and habitats closer to human habitation. Rainfall plays a great role in determining the availability of breeding habitats. The presence of rain enable to create some of the habitat types, but alter the habitats formed at the edge of the rivers due to over flooding. Controlling the occurrence of mosquito larvae through larval source management during the dry season, targeting the pools in drying river bed and pools formed at the edge of the rivers as the water receded can be very crucial to interrupt the re-emergence of malaria vectors on the onset of rainy season.


Assuntos
Anopheles/classificação , Ecossistema , Malária/prevenção & controle , Mosquitos Vetores/classificação , Animais , Anopheles/fisiologia , Cruzamento , Etiópia , Feminino , Humanos , Concentração de Íons de Hidrogênio , Larva/classificação , Larva/fisiologia , Estudos Longitudinais , Malária/transmissão , Masculino , Mosquitos Vetores/fisiologia , Pupa/classificação , Pupa/fisiologia , Chuva , Análise de Regressão , Rios , Estatísticas não Paramétricas , Temperatura , Movimentos da Água , Áreas Alagadas
9.
Parasite ; 27: 10, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32048986

RESUMO

The contribution of Anopheles funestus to malaria transmission in the urban environment is still not well documented. The present study assesses the implication of An. funestus in malaria transmission in two districts, Nsam and Mendong, in the city of Yaoundé. Adult mosquitoes were collected using Centers for Disease Control and Prevention miniature light traps (CDC-LT) and human landing catches from April 2017 to March 2018 and were identified morphologically to the species level. Those belonging to the Anopheles gambiae complex and to the Anopheles funestus group were further processed by PCR to identify members of each complex/group. Anopheline mosquitoes were analysed to determine their infection status using an enzyme-linked immunosorbent assay. Bioassays were conducted with 2-5-day-old female Anopheles funestus and An. gambiae s.l. to determine their susceptibility to permethrin, deltamethrin and dichlorodiphenyltrichloroethane (DDT). Six anopheline species were collected in the peri-urban district of Mendong: Anopheles gambiae, An. coluzzii, An. funestus, An. leesoni, An. ziemanni and An. marshallii; only four out of the six were recorded in Nsam. Of the two members of the Anopheles gambiae complex collected, An. coluzzii was the most prevalent. Anopheles coluzzii was the most abundant species in Nsam, while An. funestus was the most abundant in Mendong. Both Anopheles funestus and An. gambiae s.l. were found to be infected with human Plasmodium at both sites, and both were found to be resistant to DDT, permethrin, and deltamethrin. This study confirms the participation of An. funestus in malaria transmission in Yaoundé and highlights the need to also target this species for sustainable control of malaria transmission.


Assuntos
Anopheles/fisiologia , Inseticidas , Malária/transmissão , Animais , Anopheles/classificação , Bioensaio , Camarões/epidemiologia , Cidades/estatística & dados numéricos , Feminino , Resistência a Inseticidas , Malária/epidemiologia , Malária/prevenção & controle , Controle de Mosquitos , Reforma Urbana
10.
Malar J ; 19(1): 70, 2020 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-32054502

RESUMO

BACKGROUND: In 1987, Gillies and Coetzee published a pictorial key for the morphological identification of adult female mosquitoes. Since then, several new species of anopheline mosquitoes have been described. METHODS: The 1987 key to adult female mosquitoes was used as the template for the current key. RESULTS: New species described in the literature over the past 32 years have been included. A list of all currently known Afrotropical species is provided. Anopheles stephensi is included for the first time as occurring on the African continent. CONCLUSIONS: An updated key for the morphological identification of Afrotropical anopheline species is presented.


Assuntos
Anopheles/classificação , África , Animais , Feminino , Clima Tropical
11.
Genes (Basel) ; 11(2)2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-32033356

RESUMO

Chromosomal inversions are important drivers of genome evolution. The Eurasian malaria vector Anopheles messeae has five polymorphic inversions. A cryptic species, An. daciae, has been discriminated from An. messeae based on five fixed nucleotide substitutions in the internal transcribed spacer 2 (ITS2) of ribosomal DNA. However, the inversion polymorphism in An. daciae and the genome divergence between these species remain unexplored. In this study, we sequenced the ITS2 region and analyzed the inversion frequencies of 289 Anopheles larvae specimens collected from three locations in the Moscow region. Five individual genomes for each of the two species were sequenced. We determined that An. messeae and An. daciae differ from each other by the frequency of polymorphic inversions. Inversion X1 was fixed in An. messeae but polymorphic in An. daciae populations. The genome sequence comparison demonstrated genome-wide divergence between the species, especially pronounced on the inversion-rich X chromosome (mean Fst = 0.331). The frequency of polymorphic autosomal inversions was higher in An. messeae than in An. daciae. We conclude that the X chromosome inversions play an important role in the genomic differentiation between the species. Our study determined that An. messeae and An. daciae are closely related species with incomplete reproductive isolation.


Assuntos
Anopheles/classificação , Anopheles/genética , Cromossomos/genética , DNA Espaçador Ribossômico/análise , Genes de Insetos , Mosquitos Vetores/genética , Polimorfismo Genético , Animais , Anopheles/parasitologia , Inversão Cromossômica , Genoma , Malária/parasitologia , Mosquitos Vetores/crescimento & desenvolvimento , Mosquitos Vetores/parasitologia , Especificidade da Espécie , Sequenciamento Completo do Genoma
12.
Malar J ; 19(1): 96, 2020 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-32103759

RESUMO

BACKGROUND: Anopheles fluviatilis is a species-complex comprising of four cryptic species provisionally designated as species S, T, U and V. Earlier, a 28S-rDNA based allele-specific polymerase chain reaction (ASPCR) assay was developed for the differentiation of the then known three members of the An. fluviatilis complex, i.e., species S, T, and U. This assay was modified in consequence of the discovery of a new cryptic member, species V, in the Fluviatilis Complex to include identification of new species. METHODS: In the modified procedure, the ASPCR assay was performed first, followed by restriction digestion of PCR product with an enzyme BamH I, which cleaves specifically PCR amplicon of species V and the resultant PCR-RFLP products can differentiate all the four cryptic members of the complex. Morphologically identified An. fluviatilis samples were subjected to sibling species identification by modified PCR-based assay and standard cytotaxonomy. The result of PCR-based assay was validated through cytotaxonomy as well as DNA sequencing of some representative samples. RESULTS: The modified PCR-based assay differentiates all four sibling species. The result of modified PCR-based assay tested on field samples was in agreement with results of cytotaxonomy as well as DNA sequencing of representative samples. CONCLUSIONS: The modified PCR-based assay unambiguously differentiates all four known members of the An. fluviatilis species complex. This assay will be useful in studies related to bionomics of members of the Fluviatilis Complex in their role in malaria transmission.


Assuntos
Anopheles/classificação , Mosquitos Vetores/classificação , Reação em Cadeia da Polimerase/métodos , Animais , Feminino , Malária , Masculino , RNA Ribossômico 28S/análise
13.
PLoS One ; 15(2): e0224718, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32097407

RESUMO

BACKGROUND: Understanding the interactions between increased insecticide resistance and resting behaviour patterns of malaria mosquitoes is important for planning of adequate vector control. This study was designed to investigate the resting behavior, host preference and rates of Plasmodium falciparum infection in relation to insecticide resistance of malaria vectors in different ecologies of western Kenya. METHODS: Anopheles mosquito collections were carried out during the dry and rainy seasons in Kisian (lowland site) and Bungoma (highland site), both in western Kenya using pyrethrum spray catches (PSC), mechanical aspiration (Prokopack) for indoor collections, clay pots, pit shelter and Prokopack for outdoor collections. WHO tube bioassay was used to determine levels of phenotypic resistance of indoor and outdoor collected mosquitoes to deltamethrin. PCR-based molecular diagnostics were used for mosquito speciation, genotype for knockdown resistance mutations (1014S and 1014F) and to determine specific host blood meal origins. Enzyme-linked Immunosorbent Assay (ELISA) was used to determine mosquito sporozoite infections. RESULTS: Anopheles gambiae s.l. was the most predominant species (75%, n = 2706) followed by An. funestus s.l. (25%, n = 860). An. gambiae s.s hereafter (An. gambiae) accounted for 91% (95% CI: 89-93) and An. arabiensis 8% (95% CI: 6-9) in Bungoma, while in Kisian, An. arabiensis composition was 60% (95% CI: 55-66) and An. gambiae 39% (95% CI: 34-44). The resting densities of An. gambiae s.l and An. funestus were higher indoors than outdoor in both sites (An. gambiae s.l; F1, 655 = 41.928, p < 0.0001, An. funestus; F1, 655 = 36.555, p < 0.0001). The mortality rate for indoor and outdoor resting An. gambiae s.l F1 progeny was 37% (95% CI: 34-39) vs 67% (95% CI: 62-69) respectively in Bungoma. In Kisian, the mortality rate was 67% (95% CI: 61-73) vs 76% (95% CI: 71-80) respectively. The mortality rate for F1 progeny of An. funestus resting indoors in Bungoma was 32% (95% CI: 28-35). The 1014S mutation was only detected in indoor resitng An. arabiensis. Similarly, the 1014F mutation was present only in indoor resting An. gambiae. The sporozoite rates were highest in An. funestus followed by An. gambiae, and An. arabiensis resting indoors at 11% (34/311), 8% (47/618) and 4% (1/27) respectively in Bungoma. Overall, in Bungoma, the sporozoite rate for indoor resting mosquitoes was 9% (82/956) and 4% (8/190) for outdoors. In Kisian, the sporozoite rate was 1% (1/112) for indoor resting An. gambiae. None of the outdoor collected mosquitoes in Kisian tested positive for sporozoite infections (n = 73). CONCLUSION: The study reports high indoor resting densities of An. gambiae and An. funestus, insecticide resistance, and persistence of malaria transmission indoors regardless of the use of long-lasting insecticidal nets (LLINs). These findings underline the difficulties of controlling malaria vectors resting and biting indoors using the current interventions. Supplemental vector control tools and implementation of sustainable insecticide resistance management strategies are needed in western Kenya.


Assuntos
Anopheles/genética , Malária Falciparum/epidemiologia , Malária Falciparum/prevenção & controle , Controle de Mosquitos/métodos , Mosquitos Vetores/fisiologia , Plasmodium falciparum/imunologia , Descanso/fisiologia , Animais , Anopheles/classificação , Anopheles/parasitologia , Ensaio de Imunoadsorção Enzimática , Comportamento Alimentar/efeitos dos fármacos , Feminino , Genótipo , Comportamento de Busca por Hospedeiro/efeitos dos fármacos , Resistência a Inseticidas/genética , Mosquiteiros Tratados com Inseticida , Inseticidas/farmacologia , Quênia/epidemiologia , Malária Falciparum/transmissão , Nitrilos/farmacologia , Reação em Cadeia da Polimerase , Piretrinas/farmacologia , Esporozoítos/imunologia
14.
Malar J ; 19(1): 29, 2020 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-31952536

RESUMO

BACKGROUND: Anopheles maculipennis complex, the historic vector of malaria, causes serious medical problems worldwide and exhibits different behaviours. Studying the odorant-binding proteins (OBPs), which influence the chemosensory system and behavioural responses, is essential to understanding the population structure and developing effective control measures against this vector. The present study was designed to identify and analyse the obp1 gene in An. maculipennis. METHODS: Adults of An. maculipennis sensu stricto were collected in Zanjan Province, northwest of Iran, and gDNAs of female mosquitoes were extracted. Fragments of An. maculipennis obp1 (Amacobp1) gene were amplified using degenerate and specific primers, and some of amplicons were selected for sequencing. RESULTS: Analysis of amplified products identified that the sequence of Amacobp1 gene was 1341 bp long. This gene contains three exons (5', internal, and 3'of 160, 256, and 18 bp, respectively) and encodes 144 amino acids. The sizes of introns I and II in deduced gene are 268 and 358 nucleotides, respectively. The amino acid sequence in the C-terminal of AmacOBP1 is similar to that of major malaria vector Anopheles species. However, its N-terminal has a specific signal peptide with 19 amino acids. This peptide is conserved in different studied populations, and its sequence of amino acids shows the most variation among anopheline species. CONCLUSIONS: Degenerate primers in this study are suggested for studying obp1 gene in Anopheles species. Amacobp1 gene is proposed as a molecular marker for the detection of intraspecific ecotypes and diagnosis of different species within Maculipennis Group. Moreover, the N-terminal of AmacOBP1 peptide is recommended as a molecular marker to identify the Amacobp1 expression patterns in different chemosensory organs for assessing the molecular mechanisms and developing novel behavioural disturbance agents to control An. maculipennis.


Assuntos
Anopheles/química , Mosquitos Vetores/química , Receptores Odorantes/genética , Sequência de Aminoácidos , Animais , Anopheles/classificação , Anopheles/genética , Sequência de Bases , DNA/química , DNA/genética , DNA/isolamento & purificação , Éxons , Feminino , Íntrons , Irã (Geográfico) , Masculino , Mosquitos Vetores/classificação , Mosquitos Vetores/genética , Filogenia , Sinais Direcionadores de Proteínas/genética , Sinais Direcionadores de Proteínas/fisiologia , Receptores Odorantes/química , Alinhamento de Sequência
15.
Rev Soc Bras Med Trop ; 53: e20190211, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31994661

RESUMO

INTRODUCTION: Anopheles stephensi is the main malaria vector in Southeast Asia. Recently, plant-sourced larvicides are attracting great interests. METHODS: The essential oil was extracted from the leaf of Cinnamomum camphora (L.), and a bioassay was conducted to determine the larvicidal efficacy. The chemical composition of the essential oil was determined by GC-MS analysis. RESULTS: The oil showed strong, dose-dependent larvicidal activities. The onset of larvicidal efficiency was rapid. The LC50 and LC95 were determined as 0.146% and 1.057% at 1 h, 0.031% and 0.237% at 12 h, 0.026% and 0.128% at 24 h, respectively. The oil contains 32 compounds. CONCLUSIONS: The essential oil of C. camphora leaf has an excellent larvicidal potential for the control of A. stephensi.


Assuntos
Anopheles/efeitos dos fármacos , Cinnamomum camphora/química , Inseticidas/farmacologia , Larva/efeitos dos fármacos , Mosquitos Vetores/efeitos dos fármacos , Óleos Voláteis/farmacologia , Animais , Anopheles/classificação , Bioensaio , Inseticidas/isolamento & purificação , Dose Letal Mediana , Mosquitos Vetores/classificação , Óleos Voláteis/isolamento & purificação
16.
Malar J ; 19(1): 23, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31941504

RESUMO

BACKGROUND: Malaria is a deadly vector-borne disease in tropical and subtropical regions. Although indigenous malaria has been eliminated in Guangxi of China, 473 confirmed cases were reported in the Northern region of neighbouring Vietnam in 2014. Considering that frequent population movement occurs across the China-Vietnam border and insecticide resistance is a major obstacle in disease vector control, there is a need to know the genotype and frequency of insecticide resistance alleles in Anopheles sinensis populations along the China-Vietnam border and to take action to prevent the possible migration of insecticide resistance alleles across the border. METHODS: Two hundred and eight adults of An. sinensis collected from seven locations in Guangxi along the China-Vietnam border were used in the investigation of individual genotypes of the AsRDL gene, which encodes the RDL gamma-aminobutyric acid (GABA) receptor subunit in An. sinensis. PCR-RFLP (polymerase chain reaction-restriction fragment length polymorphism) analysis was deployed to genotype codon 345, while direct sequencing of PCR products was conducted to clarify the genotypes for codons 296 and 327 of the AsRDL gene. The genealogical relation of AsRDL haplotypes was analyzed using Network 5.0. RESULTS: Three putative insecticide resistance related mutations (A296S, V327I and T345S) were detected in all the seven populations of An. sinensis in Guangxi along the China-Vietnam border. The resistance-conferring A296S mutation was found to be widely distributed and present at notably high frequencies (78.8% to 100%). Relatively lower frequencies of mutations V327I (26.9% to 53.2%) and T345S (0% to 28.8%) were observed. The V327I or T345S always occurred in the presence of A296S. Evolutionary analysis of 21 AsRDL haplotypes indicated multiple origins of the A296S and V327I mutations. CONCLUSION: The resistance A296S allele was present at high frequencies in the An. sinensis populations along the China-Vietnam border, indicating a risk of resistance to insecticides targeting RDL. The double mutations (A296S + V327I) may have evolved from alleles carrying the A296S mutation by scaffolding the additional mutation V327I, and A296S allele may have multiple evolutionary origins. These findings will help inform strategies for vector control and malaria prevention.


Assuntos
Anopheles/genética , Evolução Biológica , Resistência a Inseticidas/genética , Mutação , Receptores de GABA/genética , Alelos , Migração Animal , Animais , Anopheles/classificação , China , Dieldrin/farmacologia , Genótipo , Polimorfismo Genético/genética , Vietnã
17.
Malar J ; 19(1): 27, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31941507

RESUMO

BACKGROUND: Bubaque is the most populous island of the Bijagos archipelago, a group of malaria-endemic islands situated off the coast of Guinea-Bissau, West Africa. Malaria vector control on Bubaque relies almost exclusively on the use of long-lasting insecticidal nets (LLINs). However, there is little information on local vector bionomics and insecticide resistance. METHODS: A survey of mosquito species composition was performed at the onset of the wet season (June/July) and the beginning of the dry season (November/December). Sampling was performed using indoor adult light-traps and larval dipping. Anopheles mosquitoes were identified to species level and assessed for kdr allele frequency by TaqMan PCR. Females were analysed for sporozoite positivity by CSP-ELISA. Resistance to permethrin and α-cypermethrin was measured using the CDC-bottle bioassay incorporating the synergist piperonyl-butoxide. RESULTS: Several Anopheles species were found on the island, all belonging to the Anopheles gambiae sensu lato (s.l.) complex, including An. gambiae sensu stricto, Anopheles coluzzii, Anopheles melas, and An. gambiae/An. coluzzii hybrids. Endophagic Anopheles species composition and abundance showed strong seasonal variation, with a majority of An. gambiae (50% of adults collected) caught in June/July, while An. melas was dominant in November/December (83.9% of adults collected). Anopheles gambiae had the highest sporozoite rate in both seasons, with infection rates of 13.9% and 20% in June/July and November/December, respectively. Moderate frequencies of the West African kdr allele were found in An. gambiae (36%), An. coluzzii (35%), An. gambiae/An. coluzzii hybrids (42%). Bioassays suggest moderate resistance to α-cypermethrin, but full susceptibility to permethrin. CONCLUSIONS: The island of Bubaque maintained an An. gambiae s.l. population in both June/July and November/December. Anopheles gambiae was the primary vector at the onset of the wet season, while An. melas is likely to be responsible for most dry season transmission. There was moderate kdr allele frequency and synergist assays suggest likely metabolic resistance, which could reduce the efficacy of LLINs. Future control of malaria on the islands should consider the seasonal shift in mosquito species, and should employ continuous monitoring for insecticide resistance.


Assuntos
Anopheles/classificação , Resistência a Inseticidas , Malária/transmissão , Mosquitos Vetores/classificação , Animais , Anopheles/enzimologia , Anopheles/genética , Bioensaio/métodos , DNA/isolamento & purificação , Feminino , Técnicas de Genotipagem , Guiné-Bissau , Resistência a Inseticidas/genética , Ilhas , Malária/prevenção & controle , Mosquitos Vetores/enzimologia , Mosquitos Vetores/genética , Projetos Piloto , Estações do Ano , Inquéritos e Questionários , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética
18.
Malar J ; 19(1): 22, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31941508

RESUMO

BACKGROUND: Malaria control in Africa relies extensively on indoor residual spraying (IRS) and insecticide-treated nets (ITNs). IRS typically targets mosquitoes resting on walls, and in few cases, roofs and ceilings, using contact insecticides. Unfortunately, little attention is paid to where malaria vectors actually rest indoors, and how such knowledge could be used to improve IRS. This study investigated preferred resting surfaces of two major malaria vectors, Anopheles funestus and Anopheles arabiensis, inside four common house types in rural south-eastern Tanzania. METHODS: The assessment was done inside 80 houses including: 20 with thatched roofs and mud walls, 20 with thatched roofs and un-plastered brick walls, 20 with metal roofs and un-plastered brick walls, and 20 with metal roofs and plastered brick walls, across four villages. In each house, resting mosquitoes were sampled in mornings (6 a.m.-8 a.m.), evenings (6 p.m.-8 p.m.) and at night (11 p.m.-12.00 a.m.) using Prokopack aspirators from multiple surfaces (walls, undersides of roofs, floors, furniture, utensils, clothing, curtains and bed nets). RESULTS: Overall, only 26% of An. funestus and 18% of An. arabiensis were found on walls. In grass-thatched houses, 33-55% of An. funestus and 43-50% of An. arabiensis rested under roofs, while in metal-roofed houses, only 16-20% of An. funestus and 8-30% of An. arabiensis rested under roofs. Considering all data together, approximately 40% of mosquitoes rested on surfaces not typically targeted by IRS, i.e. floors, furniture, utensils, clothing and bed nets. These proportions were particularly high in metal-roofed houses (47-53% of An. funestus; 60-66% of An. arabiensis). CONCLUSION: While IRS typically uses contact insecticides to target adult mosquitoes on walls, and occasionally roofs and ceilings, significant proportions of vectors rest on surfaces not usually sprayed. This gap exceeds one-third of malaria mosquitoes in grass-thatched houses, and can reach two-thirds in metal-roofed houses. Where field operations exclude roofs during IRS, the gaps can be much greater. In conclusion, there is need for locally-obtained data on mosquito resting behaviours and how these influence the overall impact and costs of IRS. This study also emphasizes the need for alternative approaches, e.g. house screening, which broadly tackle mosquitoes beyond areas reachable by IRS and ITNs.


Assuntos
Anopheles/fisiologia , Habitação/classificação , Malária/prevenção & controle , Mosquitos Vetores/fisiologia , População Rural , Animais , Anopheles/classificação , Anopheles/parasitologia , Feminino , Humanos , Mosquiteiros Tratados com Inseticida/classificação , Malária/transmissão , Controle de Mosquitos/métodos , Controle de Mosquitos/normas , Mosquitos Vetores/parasitologia , Proteínas de Protozoários/isolamento & purificação , Glândulas Salivares/química , Glândulas Salivares/parasitologia , Tanzânia , Fatores de Tempo
19.
Acta Trop ; 205: 105300, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31846614

RESUMO

Anopheles kochi DÓ§nitz (Diptera: Culicidae) is a malaria vector in some countries in South and Southeast Asia. This is the first report to provide clear evidence that two different cytological forms of An. kochi are conspecific based on systematic studies. Two karyotypic forms, i.e., Form A (X1, X2, Y1) and a novel Form B (X1, X2, Y2) were obtained from a total of 15 iso-female lines collected from five provinces in Thailand. Form A was common in all provinces, whereas Form B was restricted to Ubon Ratchathani province. This study determined whether the two karyotypic variants of An. kochi exist as a single or cryptic species by performing cross-mating experiments in association with the sequencing of the second internal transcribed spacer (ITS2) of ribosomal DNA (rDNA), and cytochrome c oxidase subunit I (COI) of mitochondrial DNA (mtDNA). Cross-mating experiments between the two karyotypic forms revealed genetic compatibility by providing viable progenies through F2 generations. The two forms showed a high sequence similarity of those two DNA regions (average genetic distances: ITS2 = 0.002-0.005, COI = 0.000-0.009). The phylogenetic trees based on ITS2 and COI sequences also supported that four strains (from Bhutan, Cambodia, Indonesia, and Thailand) were all of the same species. Five sensilla types housed on the antennae of female An. kochi were observed under scanning electron microscopy (SEM). In addition, this study found that An. kochi was a refractory vector, revealed by 0% susceptibility rates to infection with nocturnally subperiodic Brugia malayi. The cibarial armature was a resistant mechanism, as it killed the microfilariae in the foregut before they penetrated into the developmental site.


Assuntos
Anopheles/parasitologia , Brugia Malayi/isolamento & purificação , Malária/transmissão , Mosquitos Vetores/parasitologia , Animais , Anopheles/classificação , Anopheles/genética , Suscetibilidade a Doenças , Feminino , Mosquitos Vetores/genética , Filogenia
20.
Parasitol Res ; 119(1): 75-84, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31832758

RESUMO

Between May and September 2016, mosquitoes were collected on a biweekly basis at 55 locations with CO2-baited encephalitis vector surveillance traps along the Upper Rhine, Germany, to evaluate the species composition, geographical distribution and abundance of the Anopheles maculipennis complex, some members of this complex being considered vectors of historical malaria in Germany. A total of 2115 Anopheles maculipennis complex specimens were collected during the season, of which a sample of 1252 individuals was determined to species level by amplification of species-specific internal transcribed spacer 2 (ITS2) sequences. A total of 856 individuals of Anopheles daciae (68.37%), 394 Anopheles messeae (31.47%) and 2 Anopheles maculipennis s.s. (0.16%) were recorded. The number and proportion of A. daciae was remarkably higher in the northern meandering zone of the Upper Rhine (843 specimens, 79.90%), than in the more canalised southern furcation zone where A. messeae with 183 collected specimens represented 92.89% of 197 classified individuals. The average number of collected A. maculipennis s.l. individuals per trapping site was 38.45, equalling 0.64% of the total mosquito collection. Despite an increase in imported malaria cases, this comparatively low abundance of A. maculipennis s.l. may indicate a low risk of endemic malaria transmission by members of the A. maculipennis complex today. The proportionally dominance of A. daciae suggests that this species could be suspected the main historical vector of malaria in the Upper Rhine region. Sequence analyses of the ITS2 fragment revealed intraindividual polymorphisms within 3 of 5 diagnostic nucleotides in all specimens of A. daciae, raising the question if additional loci should be considered, to gain further insight into the taxonomical relation to A. messeae.


Assuntos
Anopheles/classificação , Anopheles/genética , Controle de Mosquitos/métodos , Animais , DNA Espaçador Ribossômico/genética , Encefalite/epidemiologia , Encefalite/parasitologia , Geografia , Alemanha/epidemiologia , Malária/epidemiologia , Tipagem Molecular/métodos , Mosquitos Vetores/classificação , Polimorfismo Genético , Estações do Ano , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...