Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.548
Filtrar
1.
Sci Rep ; 12(1): 6715, 2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35468918

RESUMO

The immune and circulatory systems of insects are functionally integrated. Following infection, immune cells called hemocytes aggregate around the ostia (valves) of the heart. An earlier RNA sequencing project in the African malaria mosquito, Anopheles gambiae, revealed that the heart-associated hemocytes, called periostial hemocytes, express transglutaminases more highly than hemocytes elsewhere in the body. Here, we further queried the expression of these transglutaminase genes and examined whether they play a role in heart-associated immune responses. We found that, in the whole body, injury upregulates the expression of TGase2, whereas infection upregulates TGase1, TGase2 and TGase3. RNAi-based knockdown of TGase1 and TGase2 did not alter periostial hemocyte aggregation, but knockdown of TGase3 increased the number of periostial hemocytes during the early stages of infection and the sequestration of melanin by periostial hemocytes during the later stages of infection. In uninfected mosquitoes, knockdown of TGase3 also slightly reduced the number of sessile hemocytes outside of the periostial regions. Taken altogether, these data show that TGase3 negatively regulates periostial hemocyte aggregation, and we hypothesize that this occurs by negatively regulating the immune deficiency pathway and by altering hemocyte adhesion. In conclusion, TGase3 is involved in the functional integration between the immune and circulatory systems of mosquitoes.


Assuntos
Anopheles , Animais , Anopheles/fisiologia , Coração , Hemócitos , Imunidade , Transglutaminases/genética
2.
Parasit Vectors ; 15(1): 143, 2022 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-35461301

RESUMO

BACKGROUND: The olfactory system plays a crucial role in regulating insect behaviors. The detection of odorants is mainly mediated by various odorant receptors (ORs) that are expressed in the dendrites of olfactory neurons of chemosensilla. Anopheles sinensis is a major malaria vector in Eastern Asia and its genome has recently been successfully sequenced and annotated. In this study, we present genome-wide identification and expression profiling of OR genes in different chemosensory tissues of An. sinensis. METHODS: The OR genes were identified using the available genome sequences of An. sinensis. A series of bioinformatics analyses were conducted to investigate the structure, genome distribution, selective pressure and phylogenetic relationships of OR genes, the conserved domains and specific functional sites in the OR amino acid sequences. The expression levels of OR genes were analyzed from transcriptomic data from An. sinensis antennae, proboscis and maxillary palps of both sexes. RESULTS: A total of 59 putative OR genes have been identified and characterized in An. sinensis. This number is significantly less than that in An. gambiae. Whether this difference is caused by the contraction or expansion of OR genes after divergence of the two species remains unknown. The RNA-seq analysis showed that AsORs have obvious tissue- and sex-specific expression patterns. Most AsORs are highly expressed in the antennae and the expression pattern and number of AsORs expressed in antennae are similar in males and females. However, the relative levels of AsOR transcripts are much higher in female antennae than in male antennae, which indicates that the odor sensitivity is likely to be increased in female mosquitoes. Based on the expression patterns and previous studies, we have speculated on the functions of some OR genes but this needs to be validated by further behavioral, molecular and electrophysiological studies. Further studies are necessary to compare the olfactory-driven behaviors and identify receptors that respond strongly to components of human odors that may act in the process of human recognition. CONCLUSIONS: This is the first genome-wide analysis of the entire repertoire of OR genes in An. sinensis. Characterized features and profiled expression patterns of ORs suggest their involvement in the odorous reception of this species. Our findings provide a basis for further research on the functions of OR genes and additional genetic and behavioral targets for more sustainable management of An. sinensis in the future.


Assuntos
Anopheles , Malária , Receptores Odorantes , Animais , Anopheles/fisiologia , Antenas de Artrópodes/metabolismo , Feminino , Perfilação da Expressão Gênica , Humanos , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Masculino , Mosquitos Vetores/genética , Filogenia , Receptores Odorantes/genética , Receptores Odorantes/metabolismo
3.
PLoS One ; 17(4): e0266420, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35390050

RESUMO

BACKGROUND: Long-lasting insecticidal nets are an effective tool in reducing malaria transmission. However, with increasing insecticide resistance little is known about how physiologically resistant malaria vectors behave around a human-occupied bed net, despite their importance in malaria transmission. We used the Mbita bednet trap to assess the host-seeking behavior of insecticide-resistant Anopheles gambiae mosquitoes under semi-field conditions. The trap incorporates a mosquito netting panel which acts as a mechanical barrier that prevents host-seeking mosquitoes from reaching the human host baiting the trap. METHODS: Susceptible and pyrethroid-resistant colonies of female Anopheles gambiae mosquitoes aged 3-5 days old were used in this study. The laboratory-bred mosquitoes were color-marked with fluorescent powders and released inside a semi-field environment where a human subject slept inside a bednet trap erected in a traditional African hut. The netting panel inside the trap was either untreated (control) or deltamethrin-impregnated. The mosquitoes were released outside the hut. Only female mosquitoes were used. A window exit trap was installed on the hut to catch mosquitoes exiting the hut. A prokopack aspirator was used to collect indoor and outdoor resting mosquitoes. In addition, clay pots were placed outside the hut to collect outdoor resting mosquitoes. The F1 progeny of wild-caught mosquitoes were also used in these experiments. RESULTS: The mean number of resistant mosquitoes trapped in the deltamethrin-impregnated bed net trap was higher (mean = 50.21± 3.7) compared to susceptible counterparts (mean + 22.4 ± 1.31) (OR = 1.445; P<0.001). More susceptible mosquitoes were trapped in an untreated (mean = 51.9 ± 3.6) compared to a deltamethrin-treated bed net trap (mean = 22.4 ± 1.3) (OR = 2.65; P<0.001). Resistant mosquitoes were less likely to exit the house when a treated bed net was present compared to the susceptible mosquitoes. The number of susceptible mosquitoes caught resting outdoors (mean + 28.6 ± 2.22) when a treated bed net was hanged was higher than when untreated bednet was present inside the hut (mean = 4.6 ± 0.74). The susceptible females were 2.3 times more likely to stay outdoors away from the treated bed net (OR = 2.25; 95% CI = [1.7-2.9]; P<0.001). CONCLUSION: The results show that deltamethrin-treatment of netting panels inside the bednet trap did not alter the host-seeking behavior of insecticide-resistant female An. gambiae mosquitoes. On the contrary, susceptible females exited the hut and remained outdoors when a treated net was used. However, further investigations of the behavior of resistant mosquitoes under natural conditions should be undertaken to confirm these observations and improve the current intervention which are threatened by insecticide resistance and altered vector behavior.


Assuntos
Anopheles , Mosquiteiros Tratados com Inseticida , Inseticidas , Malária , Piretrinas , Animais , Anopheles/fisiologia , Feminino , Humanos , Resistência a Inseticidas , Inseticidas/farmacologia , Malária/prevenção & controle , Controle de Mosquitos/métodos , Mosquitos Vetores/fisiologia , Piretrinas/farmacologia
4.
PLoS One ; 17(3): e0264523, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35245324

RESUMO

BACKGROUND: Iron metabolism is crucial to maintain optimal physiological homeostasis of every organism and any alteration of the iron concentration (i.e. deficit or excess) can have adverse consequences. Transferrins are glycoproteins that play important role in iron transportation and have been widely characterized in vertebrates and insects, but poorly studied in blood-feeding mosquitoes. RESULTS: We characterized a 2102 bp long transcript AcTrf1a with complete CDS of 1872bp, and 226bp UTR region, encoding putative transferrin homolog protein from mosquito An. culicifacies. A detailed in silico analysis predicts AcTrf1a encodes 624 amino acid (aa) long polypeptide that carries transferrin domain. AcTrf1a also showed a putative N-linked glycosylation site, a characteristic feature of most of the mammalian transferrins and certain non-blood feeding insects. Structure modelling prediction confirms the presence of an iron-binding site at the N-terminal lobe of the transferrin. Our spatial and temporal expression analysis under altered pathophysiological conditions showed that AcTrf1a is abundantly expressed in the fat-body, ovary, and its response is significantly altered (enhanced) after blood meal uptake, and exogenous bacterial challenge. Additionally, non-heme iron supplementation of FeCl3 at 1 mM concentration not only augmented the AcTrf1a transcript expression in fat-body but also enhanced the reproductive fecundity of gravid adult female mosquitoes. RNAi-mediated knockdown of AcTrf1a causes a significant reduction in fecundity, confirming the important role of transferrin in oocyte maturation. CONCLUSION: All together our results advocate that detailed characterization of newly identified AcTrf1a transcript may help to select it as a unique target to impair the mosquito reproductive outcome.


Assuntos
Anopheles , Transferrina , Animais , Anopheles/fisiologia , Feminino , Insetos/metabolismo , Ferro/metabolismo , Mamíferos/metabolismo , Transferrina/metabolismo , Transferrinas/metabolismo
5.
Malar J ; 21(1): 97, 2022 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-35305668

RESUMO

BACKGROUND: Malaria is a devastating disease, transmitted by female Anopheles mosquitoes infected with Plasmodium parasites. Current insecticide-based strategies exist to control the spread of malaria by targeting vectors. However, the increase in insecticide resistance in vector populations hinder the efficacy of these methods. It is, therefore, essential to develop novel vector control methods that efficiently target transmission reducing factors such as vector density and competence. A possible vector control candidate gene, the ecdysone receptor, regulates longevity, reproduction, immunity and other physiological processes in several insects, including malaria vectors. Anopheles funestus is a prominent vector in sub-Saharan Africa, however, the function of the ecdysone receptor in this mosquito has not previously been studied. This study aimed to determine if the ecdysone receptor depletion impacts An. funestus longevity, reproduction and susceptibility to Plasmodium falciparum infection. METHODS: RNA interference was used to reduce ecdysone receptor expression levels in An. funestus females and investigate how the above-mentioned phenotypes are influenced. Additionally, the expression levels of the ecdysone receptor, and reproduction genes lipophorin and vitellogenin receptor as well as the immune gene, leucine rich immune molecule 9 were determined in ecdysone receptor-depleted mosquitoes using quantitative polymerase chain reaction. RESULTS: Ecdysone receptor-depleted mosquitoes had a shorter lifespan, impaired oogenesis, were less fertile, and had reduced P. falciparum infection intensity. CONCLUSIONS: Overall, this study provides the first experimental evidence that supports ecdysone receptor as a potential target in the development of vector control measures targeting An. funestus.


Assuntos
Anopheles , Receptores de Esteroides , Animais , Anopheles/fisiologia , Feminino , Resistência a Inseticidas/genética , Mosquitos Vetores/genética , Receptores de Esteroides/genética
6.
Curr Biol ; 32(6): 1232-1246.e5, 2022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-35134328

RESUMO

Flying insects have evolved the ability to evade looming objects, such as predators and swatting hands. This is particularly relevant for blood-feeding insects, such as mosquitoes that routinely need to evade the defensive actions of their blood hosts. To minimize the chance of being swatted, a mosquito can use two distinct strategies-continuously exhibiting an unpredictable flight path or maximizing its escape maneuverability. We studied how baseline flight unpredictability and escape maneuverability affect the escape performance of day-active and night-active mosquitoes (Aedes aegypti and Anopheles coluzzii, respectively). We used a multi-camera high-speed videography system to track how freely flying mosquitoes respond to an event-triggered rapidly approaching mechanical swatter, in four different light conditions ranging from pitch darkness to overcast daylight. Results show that both species exhibit enhanced escape performance in their natural blood-feeding light condition (daylight for Aedes and dark for Anopheles). To achieve this, they show strikingly different behaviors. The enhanced escape performance of Anopheles at night is explained by their increased baseline unpredictable erratic flight behavior, whereas the increased escape performance of Aedes in overcast daylight is due to their enhanced escape maneuvers. This shows that both day and night-active mosquitoes modify their flight behavior in response to light intensity such that their escape performance is maximum in their natural blood-feeding light conditions, when these defensive actions by their blood hosts occur most. Because Aedes and Anopheles mosquitoes are major vectors of several deadly human diseases, this knowledge can be used to optimize vector control methods for these specific species.


Assuntos
Aedes , Anopheles , Aedes/fisiologia , Animais , Anopheles/fisiologia , Escuridão , Humanos , Luz , Mosquitos Vetores/fisiologia
7.
Sci Rep ; 12(1): 2206, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35177630

RESUMO

Vector-borne diseases are worldwide public health issues. Despite research focused on vectorial capacity determinants in pathogen transmitting mosquitoes, their behavioural plasticity remains poorly understood. Memory and associative learning have been linked to behavioural changes in several insect species, but their relevance in behavioural responses to pesticide vector control has been largely overlooked. In this study, female Aedes aegypti and Culex quinquefasciastus were exposed to sub-lethal doses of 5 pesticide compounds using modified World Health Organization (WHO) tube bioassays. Conditioned females, subsequently exposed to the same pesticides in WHO tunnel assays, exhibited behavioural avoidance by forgoing blood-feeding to ensure survival. Standardized resting site choice tests showed that pre-exposed females avoided the pesticides smell and choose to rest in a pesticide-free compartment. These results showed that, following a single exposure, mosquitoes can associate the olfactory stimulus of pesticides with their detrimental effects and subsequently avoid pesticide contact. Findings highlight the importance of mosquito cognition as determinants of pesticide resistance in mosquito populations targeted by chemical control.


Assuntos
Anopheles/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Repelentes de Insetos/farmacologia , Mosquitos Vetores/efeitos dos fármacos , Aedes/efeitos dos fármacos , Aedes/patogenicidade , Animais , Anopheles/fisiologia , Bioensaio , Culex/efeitos dos fármacos , Culex/patogenicidade , Culicidae/efeitos dos fármacos , Culicidae/patogenicidade , Humanos , Inseticidas/farmacologia , Mosquitos Vetores/genética , Mosquitos Vetores/fisiologia , Organização Mundial da Saúde
8.
Sci Rep ; 12(1): 2597, 2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-35173215

RESUMO

In vertebrates dysregulation of the antioxidant defense system has a detrimental impact on male fertility and reproductive physiology. However, in insects, especially mosquitoes the importance of sperm quality has been poorly studied. Since long-term storage of healthy and viable sperm earmarks male reproductive competency, we tested whether the heme peroxidase, a member of antioxidant enzyme family proteins, and abundantly expressed in the testis, also influence male fertility in the mosquito An. stephensi. Here, we show that a heme peroxidase 12 (HPX12), is an important cellular factor to protect the sperms from oxidative stress, and maintains semen quality in the male mosquito reproductive organ. We demonstrate that knockdown of the HPX12 not only impairs the sperm parameters such as motility, viability but also causes a significant down-regulation of MAG expressing transcripts such as ASTEI02706, ASTEI00744, ASTEI10266, likely encoding putative Accessory gland proteins. Mating with HPX12 knockdown male mosquitoes, resulted in ~ 50% reduction in egg-laying, coupled with diminished larval hatchability of a gravid female mosquito. Our data further outlines that increased ROS in the HPX12 mRNA depleted mosquitoes is the ultimate cause of sperm disabilities both qualitatively as well as quantitatively. Our data provide evidence that testis expressing AsHPX12 is crucial for maintaining optimal homeostasis for storing and protecting healthy sperms in the male mosquito's reproductive organs. Since, high reproductive capacity directly influences the mosquito population, manipulating male mosquito reproductive physiology could be an attractive tool to combat vector-borne diseases.


Assuntos
Anopheles/fisiologia , Fertilidade/genética , Fertilidade/fisiologia , Proteínas de Insetos/fisiologia , Peroxidase/genética , Peroxidase/fisiologia , Testículo/metabolismo , Animais , Expressão Gênica/genética , Expressão Gênica/fisiologia , Técnicas de Silenciamento de Genes , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Masculino , Mosquitos Vetores , Peroxidase/metabolismo , Motilidade Espermática/genética , Doenças Transmitidas por Vetores/prevenção & controle
9.
Sci Rep ; 12(1): 240, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34997149

RESUMO

Regional optimisation of malaria vector control approaches requires detailed understanding both of the species composition of Anopheles mosquito communities, and how they vary over spatial and temporal scales. Knowledge of vector community dynamics is particularly important in settings where ecohydrological conditions fluctuate seasonally and inter-annually, such as the Barotse floodplain of the upper Zambezi river. DNA barcoding of anopheline larvae sampled in the 2019 wet season revealed the predominance of secondary vector species, with An. coustani comprising > 80% of sampled larvae and distributed ubiquitously across all ecological zones. Extensive larval sampling, plus a smaller survey of adult mosquitoes, identified geographic clusters of primary vectors, but represented only 2% of anopheline larvae. Comparisons with larval surveys in 2017/2018 and a contemporaneous independent 5-year dataset from adult trapping corroborated this paucity of primary vectors across years, and the consistent numerical dominance of An. coustani and other secondary vectors in both dry and wet seasons, despite substantial inter-annual variation in hydrological conditions. This marked temporal consistency of spatial distribution and anopheline community composition presents an opportunity to target predominant secondary vectors outdoors. Larval source management should be considered, alongside prevalent indoor-based approaches, amongst a diversification of vector control approaches to more effectively combat residual malaria transmission.


Assuntos
Anopheles/genética , Mosquitos Vetores/genética , Distribuição Animal , Animais , Anopheles/classificação , Anopheles/crescimento & desenvolvimento , Anopheles/fisiologia , Feminino , Inundações , Larva/genética , Larva/crescimento & desenvolvimento , Larva/fisiologia , Malária , Masculino , Controle de Mosquitos , Mosquitos Vetores/classificação , Mosquitos Vetores/crescimento & desenvolvimento , Mosquitos Vetores/fisiologia , Filogenia , Estações do Ano , Zâmbia
10.
Malar J ; 21(1): 13, 2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35027049

RESUMO

BACKGROUND: Malaria control requires local action. Assessing the vector diversity and abundance provides information on the local malariogenic potential or risk of transmission. This study aimed to determine the Anopheles species composition, habitats, seasonal occurrence, and distribution in areas with autochthonous and imported malaria cases in Roraima State. METHODS: A longitudinal study was conducted from January 2017 to October 2018, sampling larvae and adult mosquitoes in three municipalities of Roraima State: Boa Vista, Pacaraima and São João da Baliza. These areas have different risks of malaria importation. Four to six mosquito larval habitats were selected for larval sampling at each municipality, along with two additional sites for adult mosquito collection. All larval habitats were surveyed every two months using a standardized larval sampling methodology and MosqTent for adult mosquitoes. RESULTS: A total of 544 Anopheles larvae and 1488 adult mosquitoes were collected from the three municipalities studied. Although the species abundance differed between municipalities, the larvae of Anopheles albitarsis s.l., Anopheles nuneztovari s.l. and Anopheles triannulatus s.l. were collected from all larval habitats studied while Anopheles darlingi were collected only from Boa Vista and São João da Baliza. Adults of 11 species of the genus Anopheles were collected, and the predominant species in Boa Vista was An. albitarsis (88.2%) followed by An. darlingi (6.9%), while in São João da Baliza, An. darlingi (85.6%) was the most predominant species followed by An. albitarsis s.l. (9.2%). In contrast, the most abundant species in Pacaraima was Anopheles braziliensis (62%), followed by Anopheles peryassui (18%). Overall, the majority of anophelines exhibited greater extradomicile than peridomicile-biting preference. Anopheles darlingi was the only species found indoors. Variability in biting times was observed among species and municipalities. CONCLUSION: This study revealed the composition of anopheline species and habitats in Boa Vista, Pacaraima and São João da Baliza. The species sampled differed in their behaviour with only An. darlingi being found indoors. Anopheles darlingi appeared to be the most important vector in São João da Baliza, an area of autochthonous malaria, and An. albitarsis s.l. and An. braziliensis in areas of low transmission, although there were increasing reports of imported malaria. Understanding the diversity of vector species and their ecology is essential for designing effective vector control strategies for these municipalities.


Assuntos
Anopheles/fisiologia , Ecossistema , Geografia , Larva/fisiologia , Malária/parasitologia , Mosquitos Vetores/fisiologia , Estações do Ano , Animais , Brasil/epidemiologia , Estudos Longitudinais , Malária/epidemiologia
11.
Parasit Vectors ; 15(1): 11, 2022 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-34996508

RESUMO

BACKGROUND: Malaria is transmitted when infected Anopheles mosquitoes take a blood meal. During this process, the mosquitoes inject a cocktail of bioactive proteins that elicit antibody responses in humans and could be used as biomarkers of exposure to mosquito bites. This study evaluated the utility of IgG responses to members of the Anopheles gambiae D7 protein family as serological markers of human-vector contact. METHODS: The D7L2, D7r1, D7r2, D7r3, D7r4 and SG6 salivary proteins from An. gambiae were expressed as recombinant antigens in Escherichia coli. Antibody responses to the salivary proteins were compared in Europeans with no prior exposure to malaria and lifelong residents of Junju in Kenya and Kitgum in Uganda where the intensity of malaria transmission is moderate and high, respectively. In addition, to evaluate the feasibility of using anti-D7 IgG responses as a tool to evaluate the impact of vector control interventions, we compared responses between individuals using insecticide-treated bednets to those who did not in Junju, Kenya where bednet data were available. RESULTS: We show that both the long and short forms of the D7 salivary gland antigens elicit a strong antibody response in humans. IgG responses against the D7 antigens reflected the transmission intensities of the three study areas, with the highest to lowest responses observed in Kitgum (northern Uganda), Junju (Kenya) and malaria-naïve Europeans, respectively. Specifically, the long form D7L2 induced an IgG antibody response that increased with age and that was lower in individuals who slept under a bednet, indicating its potential as a serological tool for estimating human-vector contact and monitoring the effectiveness of vector control interventions. CONCLUSIONS: This study reveals that D7L2 salivary antigen has great potential as a biomarker of exposure to mosquito bites and as a tool for assessing the efficacy of vector control strategies such as bednet use.


Assuntos
Anopheles/química , Mordeduras e Picadas de Insetos/epidemiologia , Proteínas do Tecido Nervoso/imunologia , Proteínas e Peptídeos Salivares/química , Adolescente , Animais , Anopheles/fisiologia , Biomarcadores/química , Criança , Pré-Escolar , Estudos de Coortes , Estudos Transversais , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Imunoglobulina G/sangue , Lactente , Mordeduras e Picadas de Insetos/diagnóstico , Quênia , Proteínas do Tecido Nervoso/química , Proteínas e Peptídeos Salivares/imunologia
12.
Trends Parasitol ; 38(1): 54-66, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34483052

RESUMO

Malaria is one of the deadliest diseases. Because of the ineffectiveness of current malaria-control methods, several novel mosquito vector-based control strategies have been proposed to supplement existing control strategies. Mosquito transgenesis and gene drive have emerged as promising tools for preventing the spread of malaria by either suppressing mosquito populations by self-destructing mosquitoes or replacing mosquito populations with disease-refractory populations. Here we review the development of mosquito transgenesis and its application for malaria control, highlighting the transgenic expression of antiparasitic effector genes, inactivation of host factor genes, and manipulation of miRNAs and lncRNAs. Overall, from a malaria-control perspective, mosquito transgenesis is not envisioned as a stand-alone approach; rather, its use is proposed as a complement to existing vector-control strategies.


Assuntos
Anopheles , Malária , Animais , Anopheles/fisiologia , Técnicas de Transferência de Genes , Malária/parasitologia , Controle de Mosquitos , Mosquitos Vetores/genética
13.
Microsc Res Tech ; 85(4): 1580-1587, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34883537

RESUMO

The risk of malaria recurrence increases due to the main vector, Anopheles pharoensis. The physiological age of the mosquito population is needed to expect malaria vector dynamics. The number of completed gonotrophic cycles is of great importance in determining the physiological age of females. A technique has been described that focuses on the number of dilatations remaining in the ovarioles after each oviposition to determine how many blood meals have been taken. At each gonotrophic cycle, the chances of infection of the vectors are repeated. The histological changes that occur immediately in the ovarioles and ovulation itself were studied. Under the influence of the contractions of the ovarian muscles, the eggs begin to move over the distal end of the ovariole into the inner oviduct. The terminal pedicle is markedly dilated near the diameter of the eggs. After the expulsion of the mature eggs, ovariole dilations were found at the point of their development in the terminal pedicle due to the accumulation of nurse cell remnants and follicular epithelium. The results were used to develop epidemiological localization and to evaluate the effectiveness of antimalaria interventions. The ovarian inspection often provides a technique to distinguish nulliparous from parous female anophelines. In addition, this study can provide basic entomological knowledge on the physiological age of mosquitoes by considering the histological changes in the ovaries, which allow the evaluation of vector management strategies in the field.


Assuntos
Anopheles , Malária , Animais , Anopheles/fisiologia , Feminino , Técnicas Histológicas , Mosquitos Vetores , Oviposição
14.
J Med Entomol ; 59(1): 291-300, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-34516625

RESUMO

Essential oil of Cananga odorata Hook. F. & Tomson is a source of insect repellent, but contact irritancy and noncontact repellency actions that stimulate insect's avoidance behavior (escape away from chemical source after direct physical contact or without making physical contact, respectively) have not been investigated. Therefore, an excito-repellency test chamber was used for measuring avoidance behavior of four insectary-reared mosquito species (Diptera: Culicidae) that escape from esposure to four concentrations (0.5, 1.0, 2.5, and 5.0% v/v) of C. odorata oil. The oil strongly repelled both Culex quinquefasciatus Say (85-97% escape) and Anopheles minimus Theobald (97-99%) at high concentrations (2.5-5.0%). For Anopheles dirus Peyton & Harrison and Aedes aegypti (L.), highest repellency (64 and 39% escape, respectively) was demonstrated at 2.5% concentration. For contact irritancy, the oil produced relatively high percent escape found in Cx. quinquefasciatus (90-100% escape) and An. minimus (83-100%). Whereas moderate contact irritancy was observed against An. dirus (40-50% escape) and Ae. aegypti (51-59%). The percent escape was then adjusted with repellency to estimate the effect of contact irritancy alone. We found that highest contact irritancy was presented at 0.5% concentration against An. minimus (67% escape). Knockdown and toxic actions were only found in Anopheles mosquitoes at 5.0% concentration. The results revealed that An. minimus and Cx. quinquefasciatus were more prone to be repelled by C. odorata oil. Detailed analysis of oil identified primary compounds as methyl benzoate (14.6%), α-gurjunene (12.8%), p-methyl-anisole (11.3%), and benzyl acetate (9.9%). Further investigations are needed to assess excito-repellency actions of these compounds alone or in combination.


Assuntos
Aprendizagem da Esquiva , Cananga/química , Culicidae , Óleos Voláteis/farmacologia , Aedes/efeitos dos fármacos , Aedes/fisiologia , Animais , Anopheles/efeitos dos fármacos , Anopheles/fisiologia , Culex/efeitos dos fármacos , Culicidae/efeitos dos fármacos , Culicidae/fisiologia , Repelentes de Insetos/farmacologia , Inseticidas/farmacologia , Controle de Mosquitos/métodos
15.
PLoS One ; 16(12): e0260149, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34860850

RESUMO

BACKGROUND: Several human-produced volatiles have been reported to mediate the host-seeking process under laboratory conditions, yet no effective lure or repellent has been developed for field application. Previously, we found a gradation of the attractiveness of foot odors of different malaria free individuals to Anopheles gambiae sensu stricto Giles. In this study, foot odor of the individual with the most attractive 'smelly' feet to the An. gambiae was collected, analyzed and attractive blend components identified. METHODS: The foot odor of the individual with the most attractive 'smelly' feet to the An. gambiae was trapped on Porapak Q and analyzed by gas chromatography-linked mass spectrometry (GC-MS). Specific constituents perceived by the insect olfactory system were then identified by GC-linked to electro-antennography detector (GC-EAD) and characterized by GC-MS. The contribution of each constituent to the behavioral response of An. gambiae was assessed through subtractive assays under semi-field conditions in a screen-house using Counter Flow Geometry (CFG traps) baited with (i) the blend of all the EAD-active and (ii) other blends containing all components with exclusion of one component at a time. The number of mosquitoes trapped in the baited CFG traps were compared with those in the control traps. RESULTS: Eleven major and minor constituents: 2 carboxylic acids, six aldehydes, two ketones and one phenolic compound, were confirmed to be EAD-active. The contribution of each constituent to the behavioral response of An. gambiae was assessed through subtractive assays under semi- field conditions. Exclusion/ subtraction of one of the following compounds: i-butyric acid, i-valeric acid, n-octanal, n-nonanal, n-decanal, n-dodecanal, undecanal or n-tridecanal, from each blend led to reduction in the attractiveness of all the resulting blends, suggesting that all of them are critical/important for the attractiveness of the foot odor to An. gambiae mosquitoes. However, exclusion/subtraction of 4-ethoxyacetophenone, 4-ethylacetophenone and/or 2-methylphenol, led to significant enhancements in the attractiveness of the resulting blends, suggesting that each of these compounds had repellent effect on An. gambiae ss. Undecanal exhibited kairomonal activity at low natural concentrations under semi-field conditions but repellent activity at high unnatural conditions in the laboratory. Furthermore, the comparison of the mean mosquito catches in traps baited with the nine-component blend without 4-ethoxyacetophenone, 4-ethylacetophenone and the complete foot odor collection revealed that the former is significantly more attractive and confirmed the repellent effect of the two carbonyl compounds at low natural concentration levels. CONCLUSION: These results suggest that differential attractiveness of An. gambiae to human feet is due to qualitative and/or qualitative differences in the chemical compositions of the foot odors from individual human beings and relative proportions of the two chemical signatures (attractants versus repellents) as observed from the ratios of the bioactive components in the foot odors of the most attractive and least attractive individuals. Chemical signature means the ensemble of the compounds released by the organism in a specific physiological state. The chemical signature is emitter-dependent, but does not depend on receiver response. Thus, there is only one chemical signature for one individual or species that may eventually include inactive, attractive and repellent components for another organism. The nine-component attractive blend has a potential as an effective field bait for trapping of malaria vectors in human dwellings.


Assuntos
Acetofenonas/química , Anopheles/efeitos dos fármacos , Cresóis/química , Etil-Éteres/química , Repelentes de Insetos/química , Compostos Orgânicos Voláteis/química , Acetofenonas/isolamento & purificação , Animais , Anopheles/fisiologia , Cresóis/isolamento & purificação , Etil-Éteres/isolamento & purificação , Feminino , Pé/fisiologia , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Repelentes de Insetos/isolamento & purificação , Controle de Mosquitos/métodos , Mosquitos Vetores/efeitos dos fármacos , Mosquitos Vetores/fisiologia , Odorantes/análise , Compostos Orgânicos Voláteis/isolamento & purificação
16.
Sci Rep ; 11(1): 24102, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34916521

RESUMO

The mosquito Anopheles gambiae is a major African malaria vector, transmitting parasites responsible for significant mortality and disease burden. Although flight acoustics are essential to mosquito mating and present promising alternatives to insecticide-based vector control strategies, there is limited data on mosquito flight tones during swarming. Here, for the first time, we present detailed analyses of free-flying male and female An. gambiae flight tones and their harmonization (harmonic convergence) over a complete swarm sequence. Audio analysis of single-sex swarms showed synchronized elevation of male and female flight tones during swarming. Analysis of mixed-sex swarms revealed additional 50 Hz increases in male and female flight tones due to mating activity. Furthermore, harmonic differences between male and female swarm tones in mixed-sex swarms and in single-sex male swarms with artificial female swarm audio playback indicate that frequency differences of approximately 50 Hz or less at the male second and female third harmonics (M2:F3) are maintained both before and during mating interactions. This harmonization likely coordinates male scramble competition by maintaining ideal acoustic recognition within mating pairs while acoustically masking phonotactic responses of nearby swarming males to mating females. These findings advance our knowledge of mosquito swarm acoustics and provide vital information for reproductive control strategies.


Assuntos
Anopheles/fisiologia , Voo Animal/fisiologia , Malária/transmissão , Mosquitos Vetores/fisiologia , Comportamento Sexual Animal/fisiologia , Animais , Percepção Auditiva , Feminino , Audição , Masculino , Reprodução/fisiologia
17.
PLoS One ; 16(12): e0260253, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34919572

RESUMO

Microbial synthesis of silver nanoparticles is more advantageous and is eco-friendly to combat the various vectors that cause diseases in humans. Hence, in the present study a Bacillus strain is isolated from marine habitat and is evaluated for its ability to synthesize silver nanoparticles (AgNPs) and its efficacy evaluated against the immature stages of selected mosquito species. The effective candidate was confirmed to be Bacillus marisflavi after 16S rRNA sequencing. The synthesis of AgNPs was confirmed by UV-Vis spectrophotometer. Atomic Force Microscopic (AFM) analysis showed spherical nanoparticles. Size analysis using Scanning Electron Microscope (SEM) showed particles of nano size averaging 78.77 nm. The diameter of the particles analyzed by Dynamic Light Scattering (DLS) showed 101.6 nm with a poly-dispersive index of 0.3. Finally the elemental nature of the nanoparticles was identified by Fourier-transform infrared spectroscopy (FTIR). LC50 and LC90 values for the ovicidal, larvicidal and pupicidal efficacy of the AgNPs against the egg, larvae and pupae of Aedes aegypti, Culex quinquefasciatus and Anopheles stephensi respectively were evaluated. The present study revealed that the nanoparticles have an excellent toxic effect against the disease transmitting vector mosquitoes. Hence, the rapid synthesis of AgNPs would be an appropriate eco-friendly tool for biocontrol of vector mosquitoes.


Assuntos
Aedes/efeitos dos fármacos , Anopheles/efeitos dos fármacos , Bacillus/química , Culex/efeitos dos fármacos , Inseticidas/farmacologia , Mosquitos Vetores/efeitos dos fármacos , Prata/farmacologia , Aedes/fisiologia , Animais , Anopheles/fisiologia , Organismos Aquáticos , Bacillus/genética , Bacillus/metabolismo , Culex/fisiologia , Química Verde , Concentração Inibidora 50 , Inseticidas/química , Larva/efeitos dos fármacos , Larva/fisiologia , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Controle de Mosquitos/métodos , Mosquitos Vetores/fisiologia , Tamanho da Partícula , Pupa/efeitos dos fármacos , Pupa/fisiologia , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Prata/química , Zigoto/efeitos dos fármacos , Zigoto/fisiologia
18.
Malar J ; 20(1): 480, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34930272

RESUMO

BACKGROUND: Existing mechanisms of insecticide resistance are known to help the survival of mosquitoes following contact with chemical compounds, even though they could negatively affect the life-history traits of resistant malaria vectors. In West Africa, the knockdown resistance mechanism kdrR (L1014F) is the most common. However, little knowledge is available on its effects on mosquito life-history traits. The fitness effects associated with this knockdown resistance allele in Anopheles gambiae sensu stricto (s.s.) were investigated in an insecticide-free laboratory environment. METHODS: The life-history traits of Kisumu (susceptible) and KisKdr (kdr resistant) strains of An. gambiae s.s. were compared. Larval survivorship and pupation rate were assessed as well as fecundity and fertility of adult females. Female mosquitoes of both strains were directly blood fed through artificial membrane assays and then the blood-feeding success, blood volume and adult survivorship post-blood meal were assessed. RESULTS: The An. gambiae mosquitoes carrying the kdrR allele (KisKdr) laid a reduced number of eggs. The mean number of larvae in the susceptible strain Kisumu was three-fold overall higher than that seen in the KisKdr strain with a significant difference in hatching rates (81.89% in Kisumu vs 72.89% in KisKdr). The KisKdr larvae had a significant higher survivorship than that of Kisumu. The blood-feeding success was significantly higher in the resistant mosquitoes (84%) compared to the susceptible ones (34.75%). However, the mean blood volume was 1.36 µL/mg, 1.45 µL/mg and 1.68 µL/mg in Kisumu, homozygote and heterozygote KisKdr mosquitoes, respectively. After blood-feeding, the heterozygote KisKdr mosquitoes displayed highest survivorship when compared to that of Kisumu. CONCLUSIONS: The presence of the knockdown resistance allele appears to impact the life-history traits, such as fecundity, fertility, larval survivorship, and blood-feeding behaviour in An. gambiae. These data could help to guide the implementation of more reliable strategies for the control of malaria vectors.


Assuntos
Anopheles/fisiologia , Pleiotropia Genética , Resistência a Inseticidas/genética , Traços de História de Vida , Mosquitos Vetores/fisiologia , Animais , Anopheles/efeitos dos fármacos , Anopheles/genética , Mosquitos Vetores/efeitos dos fármacos , Mosquitos Vetores/genética
19.
Sci Rep ; 11(1): 24298, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34934127

RESUMO

The nutritional requirements of mosquitoes include both sugar (generally derived from the nectar of flowers) and blood (humans or animals). Mosquitoes express different degrees of preferences towards hosts depending on behavioral, ecological, and physiological factors. These preferences have implications for mosquito-borne disease risk. The present study is directed to reveal the effect of the human blood groups on the fecundity and fertility of the malaria vector Anopheles stephensi. In laboratory tests, mosquitoes were fed on ABO blood groups via artificial membrane feeders, and the level of attraction against different blood groups was tested by the electroantennogram and wind tunnel bioassay under control conditions. Results indicate that the female mosquitoes had a strong preference towards the blood group B, while in the case of females fed on O blood group had the highest digestibility rate. Overall, the human blood type had a significant impact on the fecundity and fertility of female An. stephensi. The highest numbers of eggs are laid, in the case of blood group B, (mean (± SD)) 216.3 (8.81) followed by the AB, 104.06 (7.67), and O, 98.01 (7.04). In the case of blood group B, females attain the highest fertility of about 92.1 (9.98). This study provides novel insight into the ABO blood type host choice of the mosquitoes that are still partially unknown and suggests encouraging personal protection for relevant individuals within communities at risk, which is a useful tool for preventing malaria where the An. stephensi is present as a dominant vector.


Assuntos
Sistema ABO de Grupos Sanguíneos , Anopheles/fisiologia , Comportamento Alimentar/fisiologia , Mosquitos Vetores/fisiologia , Animais , Feminino , Fertilidade , Humanos
20.
Malar J ; 20(1): 443, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34819092

RESUMO

BACKGROUND: Though most of Panamá is free from malaria, localized foci of transmission persist, including in the Guna Yala region. Government-led entomological surveillance using an entomological surveillance planning tool (ESPT) sought to answer programmatically-relevant questions that would enhance the understanding of both local entomological drivers of transmission and gaps in protection that result in persisting malaria transmission to guide local vector control decision-making. METHODS: The ESPT was used to design a sampling plan centered around the collection of minimum essential indicators to investigate the relevance of LLINs and IRS in the communities of Permé and Puerto Obaldía, Guna Yala, as well as to pinpoint any remaining spaces and times where humans are exposed to Anopheles bites (gaps in protection). Adult Anopheles were collected at three time points via human landing catches (HLCs), CDC Light Traps (LT), and pyrethrum spray catches (PSCs) during the rainy and dry seasons. Mosquitoes were identified to species via molecular methods. Insecticide susceptibility testing of the main vector species to fenitrothion was conducted. RESULTS: In total, 7537 adult Anopheles were collected from both sites. Of the 493 specimens molecularly confirmed to species, two thirds (n = 340) were identified as Nyssorhynchus albimanus, followed by Anopheles aquasalis. Overall Anopheles human biting rates (HBRs) were higher outdoors than indoors, and were higher in Permé than in Puerto Obaldía: nightly outdoor HBR ranged from 2.71 bites per person per night (bpn) (Puerto Obaldía), to 221.00 bpn (Permé), whereas indoor nightly HBR ranged from 0.70 bpn (Puerto Obaldía) to 81.90 bpn (Permé). Generally, peak biting occurred during the early evening. The CDC LT trap yields were significantly lower than that of HLCs and this collection method was dropped after the first collection. Pyrethrum spray catches resulted in only three indoor resting Anopheles collected. Insecticide resistance (IR) of Ny. albimanus to fenitrothion was confirmed, with only 65.5% mortality at the diagnostic time. CONCLUSION: The early evening exophagic behaviour of Anopheles vectors, the absence of indoor resting behaviours, and the presence of resistance to the primary intervention insecticide demonstrate limitations of the current malaria strategy, including indoor residual spraying (IRS) and long-lasting insecticidal nets (LLINs), and point to both gaps in protection and to the drivers of persisting malaria transmission in Guna Yala. These findings highlight the need for continued and directed entomological surveillance, based on programmatic questions, that generates entomological evidence to inform an adaptive malaria elimination strategy.


Assuntos
Anopheles/fisiologia , Resistência a Inseticidas , Mosquiteiros Tratados com Inseticida/estatística & dados numéricos , Inseticidas/administração & dosagem , Malária/transmissão , Mosquitos Vetores/fisiologia , Animais , Feminino , Humanos , Masculino , Controle de Mosquitos , Panamá
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...