Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 881
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(37): 22944-22952, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32868441

RESUMO

γδ T cells form an abundant part of the human cellular immune system, where they respond to tissue damage, infection, and cancer. The spectrum of known molecular targets recognized by Vδ1-expressing γδ T cells is becoming increasingly diverse. Here we describe human γδ T cells that recognize CD1b, a lipid antigen-presenting molecule, which is inducibly expressed on monocytes and dendritic cells. Using CD1b tetramers to study multiple donors, we found that many CD1b-specific γδ T cells use Vδ1. Despite their common use of Vδ1, three CD1b-specific γδ T cell receptors (TCRs) showed clear differences in the surface of CD1b recognized, the requirement for lipid antigens, and corecognition of butryophilin-like proteins. Several Vγ segments were present among the CD1b-specific TCRs, but chain swap experiments demonstrated that CD1b specificity was mediated by the Vδ1 chain. One of the CD1b-specific Vδ1+ TCRs paired with Vγ4 and shows dual reactivity to CD1b and butyrophilin-like proteins. αß TCRs typically recognize the peptide display platform of MHC proteins. In contrast, our results demonstrate the use of rearranged receptors to mediate diverse modes of recognition across the surface of CD1b in ways that do and do not require carried lipids.


Assuntos
Antígenos CD1/metabolismo , Linfócitos Intraepiteliais/imunologia , Linfócitos Intraepiteliais/metabolismo , Apresentação do Antígeno , Antígenos CD1/imunologia , Cristalografia por Raios X/métodos , Humanos , Linfócitos Intraepiteliais/fisiologia , Lipídeos/imunologia , Ativação Linfocitária/imunologia , Modelos Moleculares , Monócitos/metabolismo , Linfócitos T/imunologia
2.
J Exp Med ; 217(3)2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-31845972

RESUMO

Plasmacytoid dendritic cells (pDCs) produce type I interferon (IFN-I) and are traditionally defined as being BDCA-2+CD123+. pDCs are not readily detectable in healthy human skin, but have been suggested to accumulate in wounds. Here, we describe a CD1a-bearing BDCA-2+CD123int DC subset that rapidly infiltrates human skin wounds and comprises a major DC population. Using single-cell RNA sequencing, we show that these cells are largely activated DCs acquiring features compatible with lymph node homing and antigen presentation, but unexpectedly express both BDCA-2 and CD123, potentially mimicking pDCs. Furthermore, a third BDCA-2-expressing population, Axl+Siglec-6+ DCs (ASDC), was also found to infiltrate human skin during wounding. These data demonstrate early skin infiltration of a previously unrecognized CD123intBDCA-2+CD1a+ DC subset during acute sterile inflammation, and prompt a re-evaluation of previously ascribed pDC involvement in skin disease.


Assuntos
Células Dendríticas/metabolismo , Inflamação/metabolismo , Lectinas Tipo C/metabolismo , Glicoproteínas de Membrana/metabolismo , Receptores Imunológicos/metabolismo , Pele/metabolismo , Apresentação do Antígeno/fisiologia , Antígenos CD1/metabolismo , Humanos , Subunidade alfa de Receptor de Interleucina-3/metabolismo , Linfonodos/metabolismo
3.
Mol Biol Rep ; 47(2): 1491-1498, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31811500

RESUMO

Safe harbor loci allow predicable integration of a transgene into the genome without perturbing endogenous gene activity and for decades have been exploited in the mouse to investigate gene function, generate humanised models and create tissue specific reporter and Cre recombinase expressing lines. Herein, we show that the murine Hipp11 intergenic region can facilitate highly efficient integration of a large transgene-the human CD1A promoter and coding region-by means of CRISPR-Cas9 mediated homology directed repair. The data shows that the single copy human CD1A transgene is faithfully expressed in an inducible manner in homozygous animals in both macrophage and dendritic cells. Our results validate the Hipp11 intergenic region as being a highly amenable target site for functional transgene integration in mouse.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , DNA Intergênico/genética , Expressão Gênica , Transgenes , Animais , Antígenos CD1/metabolismo , Proteína 9 Associada à CRISPR/metabolismo , Loci Gênicos , Genoma , Humanos , Camundongos Transgênicos
4.
Ann Lab Med ; 40(1): 48-56, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31432639

RESUMO

BACKGROUND: Anti-carbohydrate antibody responses, including those of anti-blood group ABO antibodies, are yet to be thoroughly studied in humans. Because anti-ABO antibody-mediated rejection is a key hurdle in ABO-incompatible transplantation, it is important to understand the cellular mechanism of anti-ABO responses. We aimed to identify the main human B cell subsets that produce anti-ABO antibodies by analyzing the correlation between B cell subsets and anti-ABO antibody titers. METHODS: Blood group A-binding B cells were analyzed in peritoneal fluid and peripheral blood samples from 43 patients undergoing peritoneal dialysis and 18 healthy volunteers with blood group B or O. The correlation between each blood group A-specific B cell subset and anti-A antibody titer was then analyzed using Pearson's correlation analysis. RESULTS: Blood group A-binding B cells were enriched in CD27+CD43+CD1c- B1, CD5+ B1, CD11b+ B1, and CD27+CD43+CD1c+ marginal zone-B1 cells in peripheral blood. Blood group A-specific B1 cells (P=0.029 and R=0.356 for IgM; P=0.049 and R=0.325 for IgG) and marginal zone-B1 cells (P=0.011 and R=0.410 for IgM) were positively correlated with anti-A antibody titer. Further analysis of peritoneal B cells confirmed B1 cell enrichment in the peritoneal cavity but showed no difference in blood group A-specific B1 cell enrichment between the peritoneal cavity and peripheral blood. CONCLUSIONS: Human B1 cells are the key blood group A-specific B cells that have a moderate correlation with anti-A antibody titer and therefore constitute a potential therapeutic target for successful ABO-incompatible transplantation.


Assuntos
Anticorpos/sangue , Linfócitos B/metabolismo , Sistema ABO de Grupos Sanguíneos/imunologia , Adulto , Antígenos CD1/metabolismo , Subpopulações de Linfócitos B/citologia , Subpopulações de Linfócitos B/metabolismo , Linfócitos B/citologia , Feminino , Glicoproteínas/metabolismo , Humanos , Falência Renal Crônica/imunologia , Falência Renal Crônica/patologia , Leucossialina/metabolismo , Masculino , Pessoa de Meia-Idade , Diálise Peritoneal , Estudos Prospectivos
5.
Artigo em Inglês | MEDLINE | ID: mdl-31783478

RESUMO

Cluster of differentiation (CD) antigens are cell surface markers used to differentiate haematopoietic cell types. These antigens are present in various malignancies and are reportedly linked to patient prognosis; however, they have not been implemented as prostate cancer progression markers. Here, we aimed to assess the impact of genetic variation in haematopoietic cell CD markers on clinical outcomes in patients with prostate cancer. An association study of 458 patients with prostate cancer was conducted to identify single-nucleotide polymorphisms in 11 candidate CD marker genes associated with biochemical recurrence (BCR) after radical prostatectomy. Identified predictors were further evaluated in an additional cohort of 185 patients. Joint population analyses showed that CD1B rs3181082 is associated with BCR (adjusted hazard ratio 1.42, 95% confidence interval 1.09-1.85, p = 0.010). In addition, rs3181082 overlapped with predicted transcriptional regulatory elements and affected CD1B expression. Furthermore, low CD1B expression correlated with poorer BCR-free survival. Our results indicated that CD1B rs3181082 confers prostate cancer progression and may help improve clinical prognostic stratification.


Assuntos
Antígenos CD1/metabolismo , Neoplasias da Próstata/metabolismo , Idoso , Biomarcadores Tumorais/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Valor Preditivo dos Testes , Modelos de Riscos Proporcionais , Neoplasias da Próstata/genética
6.
Proc Natl Acad Sci U S A ; 116(44): 22262-22268, 2019 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-31611396

RESUMO

Interleukin-4 (IL-4) is produced by a unique subset of invariant natural killer T (iNKT) cells (NKT2) in the thymus in the steady state, where it conditions CD8+ T cells to become "memory-like" among other effects. However, the signals that cause NKT2 cells to constitutively produce IL-4 remain poorly defined. Using histocytometry, we observed IL-4-producing NKT2 cells localized to the thymic medulla, suggesting that medullary signals might instruct NKT2 cells to produce IL-4. Moreover, NKT2 cells receive and require T cell receptor (TCR) stimulation for continuous IL-4 production in the steady state, since NKT2 cells lost IL-4 production when intrathymically transferred into CD1d-deficient recipients. In bone marrow chimeric recipients, only hematopoietic, not stromal, antigen-presenting cells (APCs), provided such stimulation. Furthermore, using different Cre-recombinase transgenic mouse strains to specifically target CD1d deficiency to various APCs, together with the use of diphtheria toxin receptor (DTR) transgenic mouse strains to deplete various APCs, we found that macrophages were the predominant cell to stimulate NKT2 IL-4 production. Thus, NKT2 cells appear to encounter and require different activating ligands for selection in the cortex and activation in the medulla.


Assuntos
Interleucina-4/metabolismo , Células Matadoras Naturais/imunologia , Células Mieloides/imunologia , Timo/imunologia , Animais , Células Apresentadoras de Antígenos/imunologia , Antígenos CD1/genética , Antígenos CD1/metabolismo , Células Cultivadas , Interleucina-4/genética , Ativação Linfocitária , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Timo/citologia
7.
Theranostics ; 9(20): 5797-5809, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31534520

RESUMO

The human skin is an attractive anti-tumor vaccination site due to the vast network of dendritic cell (DC) subsets that carry antigens to the draining lymph nodes and stimulate tumor specific CD4+ and CD8+ T cells in. Specific vaccine delivery to skin DC can be accomplished by targeting glycan coated antigens to C-type lectin receptors (CLRs) such as DC-SIGN expressed by human dermal DCs and Langerin expressed by Langerhans cells (LCs), which facilitate endocytosis and processing for antigen presentation and T cell activation. Although there are multiple human skin DC subsets, targeting individual DC subsets and receptors has been a focus in the past. However, the simultaneous targeting of multiple human skin DC subsets that mobilize the majority of the skin antigen presenting cells (APC) is preferred to accomplish more robust and efficient T cell stimulation. Dual CLR targeting using a single tumor vaccine has been difficult, as we previously showed Langerin to favor binding and uptake of monovalent glyco-peptides whereas DC-SIGN favors binding of larger multivalent glyco-particles such as glyco-liposomes. Methods: We used branched polyamidoamine (PAMAM) dendrimers as scaffold for melanoma specific gp100 synthetic long peptides and the common DC-SIGN and Langerin ligand Lewis Y (LeY), to create multivalent glyco-dendrimers with varying molecular weights for investigating dual DC-SIGN and Langerin targeting. Using DC-SIGN+ monocyte derived DC (moDC) and Langerin+ primary LC we investigated glyco-dendrimer CLR targeting properties and subsequent gp100 specific CD8+ T cell activation in vitro. In situ targeting ability to human dermal DC and LC through intradermal injection in a human skin explant model was elucidated. Results: Dual DC-SIGN and Langerin binding was achieved using glyco-dendrimers of approximately 100kD, thereby fulfilling our criteria to simultaneously target LCs and CD1a+ and CD14+ dermal DC in situ. Both DC-SIGN and Langerin targeting by glyco-dendrimers resulted in enhanced internalization and gp100 specific CD8+ T cell activation. Conclusion: We designed the first glyco-vaccine with dual CLR targeting properties, thereby reaching multiple human skin DC subsets in situ for improved anti-tumor CD8+ T cell responses.


Assuntos
Vacinas Anticâncer/imunologia , Dendrímeros/química , Células Dendríticas/metabolismo , Células de Langerhans/metabolismo , Poliaminas/química , Antígenos CD/metabolismo , Antígenos CD1/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Vacinas Anticâncer/química , Vacinas Anticâncer/uso terapêutico , Linhagem Celular Tumoral , Humanos , Lectinas Tipo C/metabolismo , Lectinas de Ligação a Manose/metabolismo
8.
Curr Opin Immunol ; 59: 121-129, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31445404

RESUMO

T cell receptor (TCR) recognition of antigens presented by relatively non-polymorphic MHC-like molecules is emerging as a significant contributor to health and disease. These evolutionarily ancient pathways have been inappropriately labelled 'non-conventional' because their roles were discovered after viral-specific peptide presentation by polymorphic MHC class I molecules. We suggest that these pathways are complementary to mainstream peptide presentation. HLA-E, CD1 and MR1 can present diverse self and foreign antigens to TCRs and therefore contribute to tissue homeostasis, pathogen defence, inflammation and immune responses to cancer. Despite presenting different classes of antigens, they share many features and are under common selective pressures. Through understanding their roles in disease, therapeutic manipulation for disease prevention and treatment should become possible.


Assuntos
Antígenos CD1/metabolismo , Infecções Bacterianas/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos de Histocompatibilidade Menor/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Imunidade Adaptativa , Animais , Apresentação do Antígeno , Antígenos de Bactérias/metabolismo , Humanos , Imunidade Inata
9.
Cells ; 8(7)2019 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-31330824

RESUMO

Lymph nodes (LNs) are highly organized structures where specific immune responses are initiated by dendritic cells (DCs). We investigated the frequency and distribution of human myeloid (mDCs) and plasmacytoid (pDCs) in LNs and blood during the earliest phases of rheumatoid arthritis (RA). We included 22 RA-risk individuals positive for IgM rheumatoid factor and/or anti-citrullinated protein antibodies, 16 biological-naïve RA patients and 8 healthy controls (HCs). DC subsets (CD1c+ mDCs and CD304+ pDCs) in LN tissue and paired peripheral blood were analyzed using flow cytometry and confocal microscopy. In blood of RA patients a significant decreased frequency of pDCs was found, with a similar trend for mDCs. In contrast, mDC frequencies were higher in RA compared with HCs and RA-risk individuals, especially in LN. Frequency of mDCs seemed higher in LNs compared to paired blood samples in all donors, while pDCs were higher in LNs only in RA patients. As expected, both mDCs and pDCs localized mainly in T-cell areas of LN tissue. In conclusion, compared with RA-risk individuals, mDCs and pDCs were enriched in the LN tissue of early-RA patients, while their frequency in RA-risk individuals was comparable to HCs. This may suggest that other antigen-presenting cells are responsible for initial breaks of tolerance, while mDCs and pDCs are involved in sustaining inflammation.


Assuntos
Artrite Reumatoide/patologia , Células Dendríticas Foliculares/patologia , Células Dendríticas/patologia , Adulto , Antígenos CD1/genética , Antígenos CD1/metabolismo , Células Cultivadas , Células Dendríticas/metabolismo , Células Dendríticas Foliculares/metabolismo , Feminino , Glicoproteínas/genética , Glicoproteínas/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Neuropilina-1/genética , Neuropilina-1/metabolismo
10.
PLoS Pathog ; 15(7): e1007935, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31356648

RESUMO

Plasmacytoid dendritic cells (pDCs) are "natural" interferon α (IFNα)-producing cells. Despite their importance to antiviral defense, autoimmunity, and ischemic liver graft injury, because DC subsets are rare and heterogeneous, basic questions about liver pDC function and capacity to make cytokines remain unanswered. Previous investigations failed to consistently detect IFNα mRNA in HCV-infected livers, suggesting that pDCs may be incapable of producing IFNα. We used a combination of molecular, biochemical, cytometric, and high-dimensional techniques to analyze DC frequencies/functions in liver and peripheral blood mononuclear cells (PBMCs) of hepatitis C virus (HCV)-infected patients, to examine correlations between DC function and gene expression of matched whole liver tissue and liver mononuclear cells (LMCs), and to determine if pDCs can produce multiple cytokines. T cells often produce multiple cytokines/chemokines but until recently technical limitations have precluded tests of polyfunctionality in individual pDCs. Mass cytometry (CyTOF) revealed that liver pDCs are the only LMC that produces detectable amounts of IFNα in response TLR-7/8 stimulation. Liver pDCs secreted large quantities of IFNα (~2 million molecules of IFNα/cell/hour) and produced more IFNα than PBMCs after stimulation, p = 0.0001. LMCs secreted >14-fold more IFNα than IFNλ in 4 hours. Liver pDC frequency positively correlated with whole liver expression of "IFNα-response" pathway (R2 = 0.58, p = 0.007) and "monocyte surface" signature (R2 = 0.54, p = 0.01). Mass cytometry revealed that IFNα-producing pDCs were highly polyfunctional; >90% also made 2-4 additional cytokines/chemokines of our test set of 10. Liver BDCA1 DCs, but not BDCA3 DCs, were similarly polyfunctional. pDCs from a healthy liver were also polyfunctional. Our data show that liver pDCs retain the ability to make abundant IFNα during chronic HCV infection and produce many other immune modulators. Polyfunctional liver pDCs are likely to be key drivers of inflammation and immune activation during chronic HCV infection.


Assuntos
Citocinas/biossíntese , Células Dendríticas/imunologia , Hepatite C Crônica/imunologia , Interferon-alfa/biossíntese , Idoso , Antígenos CD1/sangue , Antígenos CD1/metabolismo , Antígenos de Superfície/sangue , Antígenos de Superfície/metabolismo , Quimiocinas/biossíntese , Células Dendríticas/classificação , Células Dendríticas/patologia , Feminino , Glicoproteínas/sangue , Glicoproteínas/metabolismo , Hepatite C Crônica/sangue , Hepatite C Crônica/patologia , Humanos , Interferon-alfa/sangue , Interferon gama/biossíntese , Interferon gama/sangue , Fígado/imunologia , Fígado/patologia , Masculino , Pessoa de Meia-Idade
11.
Naunyn Schmiedebergs Arch Pharmacol ; 392(12): 1503-1513, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31312848

RESUMO

Pulmonary fibrosis is an emerging disease with a poor prognosis and high mortality rate that is even surpassing some types of cancer. This disease has been linked to the concomitant appearance of liver cirrhosis. Bleomycin-induced pulmonary fibrosis is a widely used mouse model that mimics the histopathological and biochemical features of human systemic sclerosis, an autoimmune disease that is associated with inflammation and expressed in several corporal systems as fibrosis or other alterations. To determine the effects on proliferation, redox and inflammation protein expression markers were analyzed by immunohistochemistry. Analyses showed a significant increase in protein oxidation levels by lipoperoxidation bio-products and in proliferation and inflammation processes. These phenomena were associated with the induction of the redox status in mice subjected to 100 U/kg bleomycin. These findings clearly show that the bleomycin model induces histopathological alterations in the liver and partially reproduces the complexity of systemic sclerosis. Our results using the bleomycin-induced pulmonary fibrosis model provide a protocol to investigate the mechanism underlying the molecular alteration found in the liver linked to systemic sclerosis.


Assuntos
Bleomicina , Modelos Animais de Doenças , Hepatopatias/etiologia , Fibrose Pulmonar/complicações , Actinas/metabolismo , Animais , Antígenos CD1/metabolismo , Colágeno/metabolismo , Antígeno Ki-67/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Hepatopatias/metabolismo , Hepatopatias/patologia , Pulmão/efeitos dos fármacos , Pulmão/patologia , Masculino , Camundongos , Antígeno Nuclear de Célula em Proliferação/metabolismo , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Escleroderma Sistêmico , Pele/efeitos dos fármacos , Pele/patologia
12.
J Cutan Pathol ; 46(12): 945-948, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31278769

RESUMO

Histiocytoses are a group of rare disorders characterized by a proliferation of monocytes/macrophages and dendritic cells. We present a case of a 3-year-old girl with a diffuse papular eruption without systemic symptoms demonstrating a proliferation of strongly CD1a+ histiocytes, but negative for S-100 and langerin on histopathology. Systemic work-up including bone marrow biopsy was unremarkable, and the patient received a diagnosis of CD1a+ S- 100-indeterminate cell histiocytosis.


Assuntos
Antígenos CD1/metabolismo , Histiocitose/metabolismo , Histiocitose/patologia , Pré-Escolar , Feminino , Histiócitos/metabolismo , Histiócitos/patologia , Histiocitose/diagnóstico , Humanos , Imuno-Histoquímica , Pele/patologia , Dermatopatias/imunologia , Dermatopatias/patologia
13.
Nat Commun ; 10(1): 2498, 2019 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-31175312

RESUMO

Allogeneic mesenchymal stem cells (MSCs) exhibit immunoregulatory function in human autoimmune diseases such as systemic lupus erythematosus (SLE), but the underlying mechanisms remain incompletely understood. Here we show that the number of peripheral tolerogenic CD1c+ dendritic cells (DCs) and the levels of serum FLT3L are significantly decreased in SLE patients especially with lupus nephritis, compared to healthy controls. Transplantation of allogeneic umbilical cord-derived MSCs (UC-MSCs) significantly up-regulates peripheral blood CD1c+DCs and serum FLT3L. Mechanistically, UC-MSCs express FLT3L that binds to FLT3 on CD1c+DCs to promote the proliferation and inhibit the apoptosis of tolerogenic CD1c+DCs. Conversely, reduction of FLT3L with small interfering RNA in MSCs abolishes the up-regulation of tolerogenic CD1c+DCs in lupus patients treated with MSCs. Interferon-γ induces FLT3L expression in UC-MSCs through JAK/STAT signaling pathway. Thus, allogeneic MSCs might suppress inflammation in lupus through up-regulating tolerogenic DCs.


Assuntos
Antígenos CD1/imunologia , Células Dendríticas/imunologia , Glicoproteínas/imunologia , Tolerância Imunológica/imunologia , Lúpus Eritematoso Sistêmico/terapia , Proteínas de Membrana/imunologia , Transplante de Células-Tronco Mesenquimais , Adulto , Antígenos CD1/metabolismo , Estudos de Casos e Controles , Células Dendríticas/metabolismo , Feminino , Glicoproteínas/metabolismo , Humanos , Interferon gama/farmacologia , Janus Quinases/efeitos dos fármacos , Janus Quinases/metabolismo , Lúpus Eritematoso Sistêmico/imunologia , Nefrite Lúpica/imunologia , Nefrite Lúpica/terapia , Masculino , Proteínas de Membrana/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Pessoa de Meia-Idade , Fatores de Transcrição STAT/efeitos dos fármacos , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transplante Homólogo , Adulto Jovem
14.
Front Immunol ; 10: 1264, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31214199

RESUMO

The lysosome has a key role in the presentation of lipid antigens by CD1 molecules. While defects in lipid antigen presentation and in invariant Natural Killer T (iNKT) cell response were detected in several mouse models of lysosomal storage diseases (LSD), the impact of lysosomal engorgement in human lipid antigen presentation is poorly characterized. Here, we analyzed the capacity of monocyte-derived dendritic cells (Mo-DCs) from Fabry, Gaucher, Niemann Pick type C and Mucopolysaccharidosis type VI disease patients to present exogenous antigens to lipid-specific T cells. The CD1b- and CD1d-restricted presentation of lipid antigens by Mo-DCs revealed an ability of LSD patients to induce CD1-restricted T cell responses within the control range. Similarly, freshly isolated monocytes from Fabry and Gaucher disease patients had a normal ability to present α-Galactosylceramide (α-GalCer) antigen by CD1d. Gaucher disease patients' monocytes had an increased capacity to present α-Gal-(1-2)-αGalCer, an antigen that needs internalization and processing to become antigenic. In summary, our results show that Fabry, Gaucher, Niemann Pick type C, and Mucopolysaccharidosis type VI disease patients do not present a decreased capacity to present CD1d-restricted lipid antigens. These observations are in contrast to what was observed in mouse models of LSD. The percentage of total iNKT cells in the peripheral blood of these patients is also similar to control individuals. In addition, we show that the presentation of exogenous lipids that directly bind CD1b, the human CD1 isoform with an intracellular trafficking to the lysosome, is normal in these patients.


Assuntos
Apresentação do Antígeno/imunologia , Antígenos CD1/metabolismo , Antígenos CD1d/metabolismo , Lipídeos/imunologia , Doenças por Armazenamento dos Lisossomos/etiologia , Doenças por Armazenamento dos Lisossomos/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores , Criança , Pré-Escolar , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Suscetibilidade a Doenças , Feminino , Humanos , Imunofenotipagem , Lactente , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Contagem de Linfócitos , Doenças por Armazenamento dos Lisossomos/diagnóstico , Masculino , Pessoa de Meia-Idade , Monócitos/imunologia , Monócitos/metabolismo , Adulto Jovem
15.
Methods Mol Biol ; 1988: 259-270, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31147945

RESUMO

Ubiquitination is a reversible process that controls the intracellular transport of many transmembrane molecules. Ubiquitination of MHC I, MHC II, and CD1a by different members of the MARCH family of E3 ubiquitin ligases is a key event in the regulation of the potent immunostimulatory properties of activated dendritic cells. We describe here methods to monitor and quantify the ubiquitination levels of these different antigen presentation molecules and its impact on their cell surface accumulation.


Assuntos
Antígenos de Histocompatibilidade Classe II/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Antígenos CD1/metabolismo , Diferenciação Celular , Células Dendríticas/citologia , Antígenos HLA-DR/metabolismo , Células HeLa , Humanos , Ubiquitina/metabolismo
16.
Immunogenetics ; 71(7): 465-478, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31123763

RESUMO

Invariant NKT (iNKT) cells in both humans and non-human primates are activated by the glycolipid antigen, α-galactosylceramide (α-GalCer). However, the extent to which the molecular mechanisms of antigen recognition and in vivo phenotypes of iNKT cells are conserved among primate species has not been determined. Using an evolutionary genetic approach, we found a lack of diversifying selection in CD1 genes over 45 million years of evolution, which stands in stark contrast to the history of the MHC system for presenting peptide antigens to T cells. The invariant T cell receptor (TCR)-α chain was strictly conserved across all seven primate clades. Invariant NKT cells from rhesus macaques (Macaca mulatta) bind human CD1D-α-GalCer tetramer and are activated by α-GalCer-loaded human CD1D transfectants. The dominant TCR-ß chain cloned from a rhesus-derived iNKT cell line is nearly identical to that found in the human iNKT TCR, and transduction of the rhesus iNKT TCR into human Jurkat cells show that it is sufficient for binding human CD1D-α-GalCer tetramer. Finally, we used a 20-color flow cytometry panel to probe tissue phenotypes of iNKT cells in a cohort of rhesus macaques. We discovered several tissue-resident iNKT populations that have not been previously described in non-human primates but are known in humans, such as TCR-γδ iNKTs. These data reveal a diversity of iNKT cell phenotypes despite convergent evolution of the genes required for lipid antigen presentation and recognition in humans and non-human primates.


Assuntos
Antígenos CD1/genética , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Primatas/genética , Sequência de Aminoácidos , Animais , Antígenos CD1/metabolismo , Sequência Conservada , Evolução Molecular , Feminino , Humanos , Células Jurkat , Macaca mulatta/imunologia , Masculino , Fenótipo , Primatas/imunologia , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo
18.
Immunol Lett ; 211: 41-48, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31141702

RESUMO

Although immunomodulatory drugs (IMiDs) were originally developed as anti-inflammatory drugs, they are effective for multiple myeloma. In order to gain further insights into the immunomodulatory mechanisms of IMiDs for the treatment of inflammatory disorders and myeloma, we investigated the influence of a representative IMiD, lenalidomide, on human primary dendritic cell (DC) subsets: myeloid-derived CD1c+ DCs, CD141+ DCs, and plasmacytoid DCs. Lenalidomide did not affect the viability or expression of costimulatory molecules, but it potently suppressed the production of the key inflammatory cytokines IL-12 and IL-23, and enhanced the production of the anti-inflammatory cytokine IL-10 by CD1c+ DCs. Lenalidomide also suppressed the production of IFN-α by CD141+ DCs but not that by plasmacytoid DCs. Lenalidomide likely targets pathways downstream of the nuclear translocation of the transcription factors nuclear factor κB (NF-κB) and IFN regulatory 5 (IRF5) in CD1c+ DCs. Consistent with the direct immunomodulatory effects on DCs, lenalidomide decreased the capacity of CD1c+ DCs to induce differentiation of naïve CD4+ T cells into effector cells producing immune activating and myeloma-promoting cytokines. This study demonstrated that lenalidomide has anti-inflammatory effects via the modulation of cytokine production by human myeloid-derived DCs. Such effects on DCs may allow for beneficial immunomodulation aiding in the treatment of inflammatory disorders and multiple myeloma.


Assuntos
Anti-Inflamatórios/farmacologia , Linfócitos T CD4-Positivos/imunologia , Células Dendríticas/imunologia , Lenalidomida/farmacologia , Antígenos CD1/metabolismo , Diferenciação Celular , Células Cultivadas , Citocinas/antagonistas & inibidores , Glicoproteínas/metabolismo , Humanos , Imunomodulação , Mediadores da Inflamação/antagonistas & inibidores , Fatores Reguladores de Interferon/metabolismo , Ativação Linfocitária , Células Mieloides/patologia , NF-kappa B/metabolismo
19.
J Immunother Cancer ; 7(1): 109, 2019 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-30999964

RESUMO

Dendritic cells (DCs) can initiate and direct adaptive immune responses. This ability is exploitable in DC vaccination strategies, in which DCs are educated ex vivo to present tumor antigens and are administered into the patient with the aim to induce a tumor-specific immune response. DC vaccination remains a promising approach with the potential to further improve cancer immunotherapy with little or no evidence of treatment-limiting toxicity. However, evidence for objective clinical antitumor activity of DC vaccination is currently limited, hampering the clinical implementation. One possible explanation for this is that the most commonly used monocyte-derived DCs may not be the best source for DC-based immunotherapy. The novel approach to use naturally circulating DCs may be an attractive alternative. In contrast to monocyte-derived DCs, naturally circulating DCs are relatively scarce but do not require extensive culture periods. Thereby, their functional capabilities are preserved, the reproducibility of clinical applications is increased, and the cells are not dysfunctional before injection. In human blood, at least three DC subsets can be distinguished, plasmacytoid DCs, CD141+ and CD1c+ myeloid/conventional DCs, each with distinct functional characteristics. In completed clinical trials, either CD1c+ myeloid DCs or plasmacytoid DCs were administered and showed encouraging immunological and clinical outcomes. Currently, also the combination of CD1c+ myeloid and plasmacytoid DCs as well as the intratumoral use of CD1c+ myeloid DCs is under investigation in the clinic. Isolation and culture strategies for CD141+ myeloid DCs are being developed. Here, we summarize and discuss recent clinical developments and future prospects of natural DC-based immunotherapy.


Assuntos
Imunidade Adaptativa , Vacinas Anticâncer/uso terapêutico , Células Dendríticas/transplante , Imunoterapia/métodos , Neoplasias/terapia , Antígenos CD1/imunologia , Antígenos CD1/metabolismo , Vacinas Anticâncer/imunologia , Técnicas de Cultura de Células/métodos , Ensaios Clínicos como Assunto , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Glicoproteínas/imunologia , Glicoproteínas/metabolismo , Humanos , Imunoterapia/tendências , Neoplasias/imunologia , Resultado do Tratamento
20.
J Immunol ; 202(11): 3143-3150, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-31019059

RESUMO

An increased repertoire of potential osteoclast (OC) precursors could accelerate the development of bone-erosive OCs and the consequent bone damage in rheumatoid arthritis (RA). Immature dendritic cells (DCs) can develop into OCs, however, the mechanisms underlying this differentiation switch are poorly understood. We investigated whether protein citrullination and RA-specific anti-citrullinated protein Abs (ACPAs) could regulate human blood-derived DC-OC transdifferentiation. We show that plasticity toward the OC lineage correlated with peptidyl arginine deiminase (PAD) activity and protein citrullination in DCs. Citrullinated actin and vimentin were present in DCs and DC-derived OCs, and both proteins were deposited on the cell surface, colocalizing with ACPAs binding to the cells. ACPAs enhanced OC differentiation from monocyte-derived or circulating CD1c+ DCs by increasing the release of IL-8. Blocking IL-8 binding or the PAD enzymes completely abolished the stimulatory effect of ACPAs, whereas PAD inhibition reduced steady-state OC development, as well, suggesting an essential role for protein citrullination in DC-OC transdifferentiation. Protein citrullination and ACPA binding to immature DCs might thus promote differentiation plasticity toward the OC lineage, which can facilitate bone erosion in ACPA-positive RA.


Assuntos
Artrite Reumatoide/imunologia , Células Dendríticas/fisiologia , Osteoclastos/fisiologia , Anticorpos Anti-Proteína Citrulinada/metabolismo , Antígenos CD1/metabolismo , Diferenciação Celular , Linhagem da Célula , Plasticidade Celular , Transdiferenciação Celular , Células Cultivadas , Citrulinação , Humanos , Interleucina-8/metabolismo , Monócitos/citologia , Desiminases de Arginina em Proteínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...