Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 12.552
Filtrar
1.
Recent Results Cancer Res ; 214: 93-128, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31473850

RESUMO

As a specifically programmable, living immunotherapeutic drug, chimeric antigen receptor (CAR)-modified T cells are providing an alternative treatment option for a broad variety of diseases including so far refractory cancer. By recognizing a tumor-associated antigen, the CAR triggers an anti-tumor response of engineered patient's T cells achieving lasting remissions in the treatment of leukemia and lymphoma. During the last years, significant progress was made in optimizing the CAR design, in manufacturing CAR-engineered T cells, and in the clinical management of patients showing promise to establish adoptive CAR T cell therapy as an effective treatment option in the forefront.


Assuntos
Imunoterapia Adotiva , Neoplasias/terapia , Receptores de Antígenos Quiméricos , Antígenos de Neoplasias/imunologia , Ensaios Clínicos como Assunto , Humanos , Receptores de Antígenos de Linfócitos T , Linfócitos T/imunologia
2.
Recent Results Cancer Res ; 214: 153-167, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31473852

RESUMO

After more than a century of efforts to establish cancer immunotherapy in clinical practice, the advent of checkpoint inhibition (CPI) therapy was a critical breakthrough toward this direction (Hodi et al. in Cell Rep 13(2):412-424, 2010; Wolchok et al. in N Engl J Med 369(2):122-133, 2013; Herbst et al. in Nature 515(7528):563-567, 2014; Tumeh et al. in Nature 515(7528):568-571, 2014). Further, CPIs shifted the focus from long studied shared tumor-associated antigens to mutated ones. As cancer is caused by mutations in somatic cells, the concept to utilize these correlates of 'foreignness' to enable recognition and lysis of the cancer cell by T cell immunity seems an obvious thing to do.


Assuntos
Vacinas Anticâncer , Epitopos/imunologia , Imunoterapia , Neoplasias/terapia , Antígenos de Neoplasias/imunologia , Humanos
3.
Cancer Immunol Immunother ; 68(9): 1401-1415, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31414180

RESUMO

Although CAR T-cell therapy has demonstrated tremendous clinical efficacy especially in hematological malignancies, severe treatment-associated toxicities still compromise the widespread application of this innovative technology. Therefore, developing novel approaches to abrogate CAR T-cell-mediated side effects is of great relevance. Several promising strategies pursue the selective antibody-based depletion of adoptively transferred T cells via elimination markers. However, given the limited half-life and tissue penetration, dependence on the patients' immune system and on-target/off-side effects of proposed monoclonal antibodies, we sought to exploit αCAR-engineered T cells to efficiently eliminate CAR T cells. For comprehensive and specific recognition, a small peptide epitope (E-tag) was incorporated into the extracellular spacer region of CAR constructs. We provide first proof-of-concept for targeting this epitope by αE-tag CAR T cells, allowing an effective killing of autologous E-tagged CAR T cells both in vitro and in vivo whilst sparing cells lacking the E-tag. In addition to CAR T-cell cytotoxicity, the αE-tag-specific T cells can be empowered with cancer-fighting ability in case of relapse, hence, have versatile utility. Our proposed methodology can most probably be implemented in CAR T-cell therapies regardless of the targeted tumor antigen aiding in improving overall safety and survival control of highly potent gene-modified cells.


Assuntos
Epitopos de Linfócito T/genética , Imunoterapia Adotiva/métodos , Fragmentos de Peptídeos/genética , Neoplasias da Próstata/terapia , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos Quiméricos/genética , Linfócitos T Citotóxicos/imunologia , Animais , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/imunologia , Autoantígenos/imunologia , Citotoxicidade Imunológica , Epitopos de Linfócito T/imunologia , Engenharia Genética , Humanos , Masculino , Camundongos , Recidiva Local de Neoplasia , Células PC-3 , Neoplasias da Próstata/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Cancer Immunol Immunother ; 68(9): 1467-1477, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31451841

RESUMO

BACKGROUND: The lethal effects of multiple antigen-specific cellular therapy (MASCT) may be enhanced by blocking PD-1 in vitro and vascular endothelial growth factor receptor 2 inhibitor (apatinib). We analyzed the pooled data from our phase I/II trials to determine the toxicity and efficacy of PD-1 blockade (SHR-1210)-activated MASCT (aMASCT) alone or in combination with apatinib in advanced solid tumors. METHODS: Patients with advanced solid tumors received aMASCT alone (n = 32) or aMASCT plus apatinib (500 mg q.d., n = 38) after standard treatment. The safety profile was the primary end point. The secondary end points were antitumor response, progression-free survival (PFS), and overall survival (OS). The circulating T cells were quantified before and after aMASCT infusion. RESULTS: Treatment-related adverse events (AEs) occurred in 18/32 (56.3%) and 25/38 (65.8%) patients in the aMASCT and aMASCT plus apatinib groups, respectively. No serious AEs were reported, and apatinib did not increase immunotherapy-related toxicity. The objective response rate (34.2% and 18.8%) and PFS (median 6.0 and 4.5 months, P = 0.002) were improved in the aMASCT plus apatinib group compared with the aMASCT group; however, the OS was not improved (median 10.0 and 8.2 months, P = 0.098). Multivariate analyses indicated that two or more cycles of aMASCT treatment was an independent and favorable prognostic factor of PFS and OS. The circulating T cells increased and Tregs decreased in both groups after one cycle of aMASCT treatment. CONCLUSIONS: Treatment with aMASCT plus apatinib was safe and effective for the management of advanced solid tumors.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Células Dendríticas/imunologia , Imunoterapia/métodos , Neoplasias/tratamento farmacológico , Piridinas/uso terapêutico , Linfócitos T Citotóxicos/imunologia , Linfócitos T Reguladores/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Anticorpos Monoclonais Humanizados/farmacologia , Antígenos de Neoplasias/imunologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Terapia Combinada , Células Dendríticas/transplante , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias/imunologia , Neoplasias/mortalidade , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Estudos Prospectivos , Piridinas/farmacologia , Receptor ErbB-2/antagonistas & inibidores , Análise de Sobrevida
5.
Chem Commun (Camb) ; 55(68): 10060-10063, 2019 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-31328750
6.
Cancer Immunol Immunother ; 68(8): 1245-1261, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31222486

RESUMO

The efficacy of cancer immunotherapy, including treatment with immune-checkpoint inhibitors, often is limited by ineffective presentation of antigenic peptides that elicit T-cell-mediated anti-tumor cytotoxic responses. Manipulation of antigen presentation pathways is an emerging approach for enhancing the immunogenicity of tumors in immunotherapy settings. ER aminopeptidase 1 (ERAP1) is an intracellular enzyme that trims peptides as part of the system that generates peptides for binding to MHC class I molecules (MHC-I). We hypothesized that pharmacological inhibition of ERAP1 in cells could regulate the cellular immunopeptidome. To test this hypothesis, we treated A375 melanoma cells with a recently developed potent ERAP1 inhibitor and analyzed the presented MHC-I peptide repertoire by isolating MHC-I, eluting bound peptides, and identifying them using capillary chromatography and tandem mass spectrometry (LC-MS/MS). Although the inhibitor did not reduce cell-surface MHC-I expression, it induced qualitative and quantitative changes in the presented peptidomes. Specifically, inhibitor treatment altered presentation of about half of the total 3204 identified peptides, including about one third of the peptides predicted to bind tightly to MHC-I. Inhibitor treatment altered the length distribution of eluted peptides without change in the basic binding motifs. Surprisingly, inhibitor treatment enhanced the average predicted MHC-I binding affinity, by reducing presentation of sub-optimal long peptides and increasing presentation of many high-affinity 9-12mers, suggesting that baseline ERAP1 activity in this cell line is destructive for many potential epitopes. Our results suggest that chemical inhibition of ERAP1 may be a viable approach for manipulating the immunopeptidome of cancer.


Assuntos
Aminopeptidases/metabolismo , Antígenos de Neoplasias/metabolismo , Antineoplásicos/farmacologia , Vacinas Anticâncer/imunologia , Epitopos de Linfócito T/metabolismo , Imunoterapia/métodos , Melanoma/tratamento farmacológico , Antígenos de Histocompatibilidade Menor/metabolismo , Peptídeos/metabolismo , Inibidores de Proteases/farmacologia , Linfócitos T Citotóxicos/imunologia , Aminopeptidases/antagonistas & inibidores , Apresentação do Antígeno , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/imunologia , Linhagem Celular Tumoral , Citotoxicidade Imunológica , Epitopos de Linfócito T/genética , Epitopos de Linfócito T/imunologia , Antígenos HLA/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Imunogenicidade da Vacina , Ativação Linfocitária , Terapia de Alvo Molecular , Peptídeos/genética , Peptídeos/imunologia , Ligação Proteica
7.
J Dermatol ; 46(7): 610-614, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31166031

RESUMO

Primary cicatricial alopecia (PCA) is a group of poorly understood mechanisms in which the destruction of hair follicles leads to permanent hair loss. Lichen planopilaris (LPP) is a type of lymphocytic PCA and it has been known for epidermal Langerhans cells (LC) to disappear in the scar of LPP. We also found that epidermal LC also disappeared in the scar of folliculitis decalvans (FD), a type of neutrophilic PCA. Of note was that epidermal LC did not disappear in the scar of discoid lupus erythematosus, another type of lymphocytic PCA, suggesting that LC disappearance in the scar was not always a common feature of PCA. We found that the expression of integrin (ITG)-αvß6 in scar epidermis was significantly diminished in LPP and FD, but not in other PCA and disorders accompanied with scar formation. We also found that exogenous interleukin-1ß and α-interferon downregulated ITG-αvß6 expression in normal human epidermal keratinocytes. These data suggest that downregulation of ITG-αvß6 may be one of the causes of LC disappearance in the scar of LPP and FD.


Assuntos
Alopecia/patologia , Antígenos de Neoplasias/metabolismo , Cicatriz/patologia , Foliculite/patologia , Integrinas/metabolismo , Células de Langerhans/imunologia , Líquen Plano/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Alopecia/imunologia , Antígenos de Neoplasias/imunologia , Cicatriz/imunologia , Regulação para Baixo , Células Epidérmicas/imunologia , Epiderme/imunologia , Epiderme/patologia , Feminino , Foliculite/imunologia , Folículo Piloso/imunologia , Folículo Piloso/patologia , Humanos , Integrinas/imunologia , Queratinócitos , Líquen Plano/imunologia , Masculino , Pessoa de Meia-Idade
8.
Cancer Immunol Immunother ; 68(7): 1039-1058, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31165204

RESUMO

The emergence of immunotherapy has revolutionized medical oncology with unprecedented advances in cancer treatment over the past two decades. However, a major obstacle in cancer immunotherapy is identifying appropriate tumor-specific antigens to make targeted therapy achievable with fewer normal cells being impaired. The similarity between placentation and tumor development and growth has inspired many investigators to discover antigens for effective immunotherapy of cancers. Placenta-specific 1 (PLAC1) is one of the recently discovered placental antigens with limited normal tissue expression and fundamental roles in placental function and development. There is a growing body of evidence showing that PLAC1 is frequently activated in a wide variety of cancer types and promotes cancer progression. Based on the restricted expression of PLAC1 in testis, placenta and a wide variety of cancers, we have designated this molecule with new terminology, cancer-testis-placenta (CTP) antigen, a feature that PLAC1 shares with many other cancer testis antigens. Recent reports from our lab provide compelling evidence on the preferential expression of PLAC1 in prostate cancer and its potential utility in prostate cancer immunotherapy. PLAC1 may be regarded as a potential CTP antigen for targeted cancer immunotherapy based on the available data on its promoting function in cancer development and also its expression in cancers of different histological origin. In this review, we will summarize current data on PLAC1 with emphasis on its association with cancer development and immunotherapy.


Assuntos
Antígenos de Neoplasias/imunologia , Antineoplásicos Imunológicos/uso terapêutico , Biomarcadores Tumorais/antagonistas & inibidores , Neoplasias/terapia , Proteínas da Gravidez/antagonistas & inibidores , Antígenos de Neoplasias/metabolismo , Antineoplásicos Imunológicos/farmacologia , Biomarcadores Tumorais/imunologia , Biomarcadores Tumorais/metabolismo , Progressão da Doença , Feminino , Humanos , Imunoterapia/métodos , Masculino , Terapia de Alvo Molecular/métodos , Neoplasias/imunologia , Neoplasias/patologia , Placenta/patologia , Gravidez , Proteínas da Gravidez/imunologia , Proteínas da Gravidez/metabolismo , Testículo/patologia
9.
Cancer Immunol Immunother ; 68(7): 1143-1155, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31177328

RESUMO

Enhancement of endogenous immunity to tumor-associated self-antigens and neoantigens is the goal of preventive vaccination. Toward this goal, we compared the efficacy of the following HER2 DNA vaccine constructs: vaccines encoding wild-type HER2, hybrid HER2 vaccines consisting of human HER2 and rat Neu, HER2 vaccines with single residue substitutions and a novel human HER2 DNA vaccine, ph(es)E2TM. ph(es)E2TM was designed to contain five evolution-selected substitutions: M198V, Q398R, F425L, H473R and A622T that occur frequently in 12 primate HER2 sequences. These ph(es)E2TM substitutions score 0 to 1 in blocks substitutions matrix (BLOSUM), indicating minimal biochemical alterations. h(es)E2TM recombinant protein is recognized by a panel of anti-HER2 mAbs, demonstrating the preservation of HER2 protein structure. Compared to native human HER2, electrovaccination of HER2 transgenic mice with ph(es)E2TM induced a threefold increase in HER2-binding antibody (Ab) and elevated levels of IFNγ-producing T cells. ph(es)E2TM, but not pE2TM immune serum, recognized HER2 peptide p95 355LPESFDGDPASNTAP369, suggesting a broadening of epitope recognition induced by the minimally modified HER2 vaccine. ph(es)E2TM vaccination reduced tumor growth more effectively than wild-type HER2 or HER2 vaccines with more extensive modifications. The elevation of tumor immunity by ph(es)E2TM vaccination would create a favorable tumor microenvironment for neoantigen priming, further enhancing the protective immunity. The fundamental principle of exploiting evolution-selected amino acid substitutions is novel, effective and applicable to vaccine development in general.


Assuntos
Antígenos de Neoplasias/imunologia , Vacinas Anticâncer/imunologia , Imunoterapia/métodos , Neoplasias Mamárias Experimentais/terapia , Receptor ErbB-2/imunologia , Substituição de Aminoácidos/genética , Substituição de Aminoácidos/imunologia , Animais , Antígenos de Neoplasias/genética , Vacinas Anticâncer/genética , Vacinas Anticâncer/uso terapêutico , Linhagem Celular Tumoral/transplante , Células Dendríticas/imunologia , Evolução Molecular , Feminino , Imunogenicidade da Vacina/genética , Neoplasias Mamárias Experimentais/genética , Neoplasias Mamárias Experimentais/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Receptor ErbB-2/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Tolerância a Antígenos Próprios/genética , Microambiente Tumoral/imunologia , Vacinas de DNA/genética , Vacinas de DNA/imunologia , Vacinas de DNA/uso terapêutico
10.
Cancer Immunol Immunother ; 68(7): 1195-1209, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31177329

RESUMO

The anti-tumor efficacy of TCR-engineered T cells in vivo depends largely on less-differentiated subsets such as T cells with naïve-like T cell (TN) phenotypes with greater expansion and long-term persistence. To increase these subsets, we compared the generation of New York esophageal squamous cell carcinoma-1 (NY-ESO-1)-specific T cells under supplementation with either IL-2 or IL-7/IL-15. PBMCs were transduced with MS3II-NY-ESO-1-siTCR retroviral vector. T cell generation was adapted from a CD19-specific CART cell production protocol. Comparable results in viability, expansion and transduction efficiency of T cells under stimulation with either IL-2 or IL-7/IL-15 were observed. IL-7/IL-15 led to an increase of CD4+ T cells and a decrease of CD8+ T cells, enriched the amount of TN among CD4+ T cells but not among CD8+ T cells. In a 51Cr release assay, similar specific lysis of NY-ESO-1-positive SW982 sarcoma cells was achieved. However, intracellular cytokine staining revealed a significantly increased production of IFN-γ and TNF-α in T cells generated by IL-2 stimulation. To validate these unexpected findings, NY-ESO-1-specific T cell production was evaluated in another protocol originally established for TCR-engineered T cells. IL-7/IL-15 increased the proportion of TN. However, the absolute number of TN did not increase due to a significantly slower expansion of T cells with IL-7/IL-15. In conclusion, IL-7/IL-15 does not seem to be superior to IL-2 for the generation of NY-ESO-1-specific T cells. This is in sharp contrast to the observations in CD19-specific CART cells. Changes of cytokine cocktails should be carefully evaluated for individual vector systems.


Assuntos
Antígenos de Neoplasias/metabolismo , Engenharia Celular/métodos , Imunoterapia Adotiva/métodos , Proteínas de Membrana/metabolismo , Neoplasias/terapia , Receptores de Antígenos Quiméricos/imunologia , Antígenos CD19/metabolismo , Antígenos de Neoplasias/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/transplante , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/transplante , Técnicas de Cultura de Células/métodos , Linhagem Celular Tumoral , Meios de Cultura , Humanos , Interleucina-15/imunologia , Interleucina-2/imunologia , Interleucina-7/imunologia , Proteínas de Membrana/imunologia , Neoplasias/imunologia , Receptores de Antígenos Quiméricos/genética
11.
Hematol Oncol ; 37 Suppl 1: 95-100, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31187533

RESUMO

Chimeric antigen receptor (CAR) T-cell therapy has dramatically shifted the landscape of treatment for lymphoid malignancies, especially diffuse large B-cell lymphoma (DLBCL) and acute lymphoblastic leukemia (ALL). However, there continue to be significant limitations of this therapy, such as incomplete or nonsustained responses and severe toxicities in a subset of patients. Furthermore, expanding the role of CAR T-cell therapy to new disease types is an important next step. In this review, we will highlight landmark trials for anti-CD19 CAR T cells and first-in-human trials of novel CARs, as well as discuss promising innovative CAR designs that are still undergoing preclinical development. Lastly, we will discuss toxicity and mechanisms of CAR T-cell resistance and failure, as well as potential future treatment approaches to these common issues.


Assuntos
Imunoterapia Adotiva , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Animais , Antígenos CD19 , Antígenos de Neoplasias/imunologia , Ensaios Clínicos como Assunto , Engenharia Genética , Humanos , Imunoterapia Adotiva/efeitos adversos , Imunoterapia Adotiva/métodos , Neoplasias/diagnóstico , Neoplasias/imunologia , Neoplasias/terapia , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos Quiméricos/genética , Pesquisa , Resultado do Tratamento
12.
Hematol Oncol ; 37 Suppl 1: 48-52, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31187535

RESUMO

Chimeric antigen receptor (CAR) T-cell therapy has the potential to revolutionize the management of B-cell lymphomas and possibly other cancers. Two anti-CD19 CAR T-cell products, axicabtagene ciloleucel and tisagenlecleucel, have been approved for the management of relapsed/refractory large B-cell lymphoma after two lines of systemic therapy. Additional trials are ongoing to evaluate these and other CAR T products at earlier stages of the disease course as well as in other lymphomas. While the potential to induce durable remissions with a single CAR T-cell infusion even in patients who are chemorefractory has generated much enthusiasm in the field, practitioners need to familiarize themselves with the unique toxicities associated with these therapies. This review will discuss the grading and management of the two most common toxicities, cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS), observed acutely after this therapy. In addition, late toxicities including prolonged cytopenias and on-target off-tumor effects will be reviewed.


Assuntos
Imunoterapia Adotiva/efeitos adversos , Neoplasias/imunologia , Neoplasias/terapia , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Animais , Antígenos CD19/imunologia , Antígenos de Neoplasias/imunologia , Biomarcadores , Ensaios Clínicos como Assunto , Citocinas/metabolismo , Gerenciamento Clínico , Humanos , Imunoterapia Adotiva/métodos , Linfoma/imunologia , Linfoma/patologia , Linfoma/terapia , Neoplasias/mortalidade , Neoplasias/patologia , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos Quiméricos/genética , Resultado do Tratamento
13.
Nat Commun ; 10(1): 2688, 2019 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-31217437

RESUMO

Neoantigens (nAgs) are promising tumor antigens for cancer vaccination with the potential of inducing robust and selective T cell responses. Genetic vaccines based on Adenoviruses derived from non-human Great Apes (GAd) elicit strong and effective T cell-mediated immunity in humans. Here, we investigate for the first time the potency and efficacy of a novel GAd encoding multiple neoantigens. Prophylactic or early therapeutic vaccination with GAd efficiently control tumor growth in mice. In contrast, combination of the vaccine with checkpoint inhibitors is required to eradicate large tumors. Gene expression profile of tumors in regression shows abundance of activated tumor infiltrating T cells with a more diversified TCR repertoire in animals treated with GAd and anti-PD1 compared to anti-PD1. Data suggest that effectiveness of vaccination in the presence of high tumor burden correlates with the breadth of nAgs-specific T cells and requires concomitant reversal of tumor suppression by checkpoint blockade.


Assuntos
Adenoviridae/imunologia , Antineoplásicos Imunológicos/uso terapêutico , Vacinas Anticâncer/uso terapêutico , Neoplasias/terapia , Vacinas Virais/uso terapêutico , Adenoviridae/genética , Animais , Antígenos de Neoplasias/imunologia , Antineoplásicos Imunológicos/farmacologia , Vacinas Anticâncer/genética , Vacinas Anticâncer/imunologia , Linhagem Celular Tumoral/transplante , Terapia Combinada/métodos , Modelos Animais de Doenças , Feminino , Humanos , Imunoterapia/métodos , Ativação Linfocitária/efeitos dos fármacos , Ativação Linfocitária/imunologia , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Linfócitos do Interstício Tumoral/imunologia , Camundongos , Neoplasias/imunologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/imunologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Resultado do Tratamento , Carga Tumoral/efeitos dos fármacos , Carga Tumoral/imunologia , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Vacinas Sintéticas/uso terapêutico , Vacinas Virais/genética , Vacinas Virais/imunologia
14.
Cancer Treat Rev ; 77: 35-43, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31207478

RESUMO

Immunotherapeutic strategies have revolutionised cancer therapy in recent years, bringing meaningful improvements in outcomes for patients with previously intractable conditions. These successes have, however, been largely limited to certain types of liquid tumours and a small subset of solid tumours that are known to be particularly immunogenic. Broadening these advances across the majority of tumour indications, which are characterised by an immune-excluded, immune-deserted or immune-suppressed ('cold') phenotype, will require alternative approaches that are able to specifically address this unique biological environment. Several newer therapeutic modalities, including adoptive cell therapy and T cell redirecting bispecific molecules, are considered to hold particular promise and are being investigated in early phase clinical trials across various solid tumour indications. ImmTAC molecules are a novel class of T cell redirecting bispecific biologics that exploit TCR-based targeting of tumour cells; providing potent and highly specific access to the vast landscape of intracellular targets. The first of these reagents to reach the clinic, tebentafusp (IMCgp100), has generated demonstrable clinical efficacy in an immunologically cold solid tumour with a high unmet need. Here, we highlight the key elements of the ImmTAC platform that make it ideally positioned to overcome the cold tumour microenvironment in an off-the-shelf format.


Assuntos
Imunoterapia/métodos , Neoplasias/imunologia , Neoplasias/terapia , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T/imunologia , Antígenos de Neoplasias/imunologia , Produtos Biológicos/administração & dosagem , Humanos , Imunoterapia Adotiva/métodos , Proteínas/imunologia , Anticorpos de Cadeia Única/imunologia , Antígeno gp100 de Melanoma/imunologia
16.
Cancer Sci ; 110(8): 2386-2395, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31206934

RESUMO

Immune checkpoint inhibitors (ICIs) have revolutionized the treatment of cancer by providing new options in addition to existing therapies. However, peptide vaccination therapies still represent an attractive approach, because of the antigen specificity. We identified survivin 2B peptide (SVN-2B), a 9-mer antigenic peptide encoded by survivin, and an SVN-2B peptide vaccine-based phase II randomized clinical trial targeting unresectable and refractory pancreatic carcinoma was undertaken. The SVN-2B peptide vaccine did not have any statistically significant clinical benefits in that study. Therefore, we undertook an autopsy study to analyze the immune status of the pancreatic cancer lesions at the histological level. Autopsies were carried out in 13 patients who had died of pancreatic cancer, including 7 who had received SVN-2B peptide vaccination and 6 who had not, as negative controls. The expression of immune-related molecules was analyzed by immunohistochemical staining. Cytotoxic T lymphocytes were analyzed by tetramer staining and enzyme-linked immunospot assay. Histological analysis revealed dense infiltration of CD8+ T cells in some lesions in patients who had received the SVN-2B peptide vaccine. A high rate of programmed cell death ligand 1 expression in cancer cells was observed in these cases, indicating that CTLs were induced by SVN-2B peptide vaccination and had infiltrated the lesions. The lack of a significant antitumor effect was most likely attributable to the expression of immune checkpoint molecules. These findings suggest that the combination of a tumor-specific peptide vaccine and an ICI might be a promising approach to the treatment of pancreatic carcinoma in the future.


Assuntos
Vacinas Anticâncer/imunologia , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/terapia , Peptídeos/imunologia , Survivina/imunologia , Adulto , Idoso , Antígenos de Neoplasias/imunologia , Autopsia/métodos , Linfócitos T CD8-Positivos/imunologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Linfócitos T Citotóxicos/imunologia , Vacinação/métodos
17.
Cancer Immunol Immunother ; 68(8): 1287-1301, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31253998

RESUMO

Patchy infiltration of tumors by cytotoxic T cells (CTLs) predicts poorer prognosis for cancer patients. The factors limiting intratumoral CTL dissemination, though, are poorly understood. To study CTL dissemination in tumors, we histologically examined human melanoma samples and used mice to image B16-OVA tumors infiltrated by OT-I CTLs using intravital two-photon microscopy. In patients, most CTLs concentrated around peripheral blood vessels, especially in poorly infiltrated tumors. In mice, OT-I CTLs had to cluster around tumor cells to efficiently kill them in a contact-and perforin-dependent manner and cytotoxicity was strictly antigen-specific. OT-I CTLs as well as non-specific CTLs concentrated around peripheral vessels, and cleared the tumor cells around them. This was also the case when CTLs were injected directly into the tumors. CTLs crawled rapidly only in areas within 50 µm of flowing blood vessels and transient occlusion of vessels immediately, though reversibly, stopped their migration. In vitro, oxygen depletion and blockade of oxidative phosphorylation also reduced CTL motility. Taken together, these results suggest that hypoxia limits CTL migration away from blood vessels, providing immune-privileged niches for tumor cells to survive. Normalizing intratumoral vasculature may thus synergize with tumor immunotherapy.


Assuntos
Vasos Sanguíneos/imunologia , Linfócitos do Interstício Tumoral/imunologia , Melanoma/imunologia , Neoplasias Cutâneas/imunologia , Linfócitos T Citotóxicos/imunologia , Animais , Antígenos de Neoplasias/imunologia , Movimento Celular , Citotoxicidade Imunológica , Humanos , Melanoma/irrigação sanguínea , Melanoma Experimental , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias Experimentais , Neovascularização Patológica , Fosforilação Oxidativa , Perforina/metabolismo , Neoplasias Cutâneas/irrigação sanguínea
18.
Nat Commun ; 10(1): 2087, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-31064990

RESUMO

T cells expressing CD19-targeting chimeric antigen receptors (CARs) reveal high efficacy in the treatment of B cell malignancies. Here, we report that T cell receptor fusion constructs (TRuCs) comprising an antibody-based binding domain fused to T cell receptor (TCR) subunits can effectively reprogram an intact TCR complex to recognize tumor surface antigens. Unlike CARs, TRuCs become a functional component of the TCR complex. TRuC-T cells kill tumor cells as potently as second-generation CAR-T cells, but at significant lower cytokine release and despite the absence of an extra co-stimulatory domain. TRuC-T cells demonstrate potent anti-tumor activity in both liquid and solid tumor xenograft models. In several models, TRuC-T cells are more efficacious than respective CAR-T cells. TRuC-T cells are shown to engage the signaling capacity of the entire TCR complex in an HLA-independent manner.


Assuntos
Imunoterapia Adotiva/métodos , Neoplasias/terapia , Receptores de Antígenos de Linfócitos T/imunologia , Receptores Artificiais/imunologia , Anticorpos de Cadeia Única/imunologia , Linfócitos T/imunologia , Animais , Antígenos CD19/imunologia , Antígenos de Neoplasias/imunologia , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Camundongos Endogâmicos NOD , Neoplasias/imunologia , Cultura Primária de Células , Domínios Proteicos , Receptores de Antígenos de Linfócitos T/genética , Receptores Artificiais/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Anticorpos de Cadeia Única/genética , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Anal Chim Acta ; 1071: 59-69, 2019 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-31128756

RESUMO

Early diagnosis of cancer by biomarker detection has been widely studied since it can lead to an increase in patient survival rates. Magnetic nanoparticles (MNPs) play an important role in this field acting as a valuable tool in the biomarker immunocapture and detection. In this work, Co0.25Zn0.75Fe2O4 (CoZnFeONPs) nanoparticles were synthesized and applied as enzyme mimics of peroxidase-like catalysis in a disposable enzyme-free microfluidic immunoarray device (µID). The catalytic activity of CoZnFeONPs was evaluated by hydrogen peroxide detection using cyclic voltammetry and the apparent Michaelis-Menten constant was estimated by Lineweaver-Burk equation showing good Km values. In µID, the immunosensors were assembled with monoclonal antibody against CYFRA 21-1 covalently immobilized on graphene oxide previously deposited on the screen-printed carbon-based electrodes. Under optimized conditions, the method presented a good linear response for CYFRA 21-1 in the range of 3.9-1000 fg mL-1 achieving an ultralow limit of detection (LOD) of 0.19 fg mL-1. For comparison, Fe3O4 nanoparticles (FeONPs) was also synthetized and presented results slight inferior to that obtained with CoZnFeONPs. The methods developed using both MNPs exhibited countless advantages when compared with the immunosensors developed for CYFRA-21-1, previously reported in the literature. The methods were successful applied for the detection of CYFRA 21-1 in real serum samples of healthy and prostate cancer patients and showed good correlation with results obtained with the enzyme-linked immunosorbent assay (ELISA). The CoZnFeONPs associated with the disposable microfluidic immunoarray device provides a simple and effective method for biomarker detection that could satisfy the need for a low-cost and rapid test for early diagnosis of cancer.


Assuntos
Antígenos de Neoplasias/sangue , Biomarcadores Tumorais/sangue , Queratina-19/sangue , Dispositivos Lab-On-A-Chip , Nanopartículas Metálicas/química , Técnicas Analíticas Microfluídicas/métodos , Anticorpos/imunologia , Antígenos de Neoplasias/imunologia , Biomarcadores Tumorais/imunologia , Cobalto/química , Eletrodos , Grafite/química , Humanos , Imunoensaio/instrumentação , Imunoensaio/métodos , Ferro/química , Queratina-19/imunologia , Limite de Detecção , Masculino , Técnicas Analíticas Microfluídicas/instrumentação , Neoplasias da Próstata/sangue , Reprodutibilidade dos Testes , Zinco/química
20.
Medicine (Baltimore) ; 98(21): e15774, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31124967

RESUMO

BACKGROUND: Melanoma-associated antigen-A (MAGE-A) was recognized as high-expressed in many solid tumors including esophageal carcinoma (EC), nevertheless, was reported to be low/not-expressed in normal tissues. Thus, it was considered as an extraordinary appropriate target for treatment especially in immunotherapy. Therefore, it demanded more detail knowledge on the precise function of MAGE-A. METHODS: In this study, we used the data from the Cancer Genome Atlas dataset (TCGA-ESCA) to analyze the expression and survival for MAGE A3/4/11 (the subtype of MAGE-A) using the online tool of UALCAN. Furthermore, the high-throughput sequencing data of the patients with esophageal squamous-cell carcinoma (ESCC) from TCGA dataset were performed to analyze the correlation test, gene ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment of MAGE A3/4/9/11 using LinkeDomics (online tool) and ClueGO (inner software of Cytoscape). Finally, relative gene expressions of MAGE A3/4/9/11 were verified by quantitative real-time PCR (q-PCR) in the patients with EC. RESULTS: MAGE A3/4/11 was high-expressed in tissues of patients with ESCC, and there was no difference in survival time for patients between the high-expressed with the low/medium-expressed. The Go enrichment analysis showed that the 4 MAGE-A subtypes (MAGE-A3/4/9/11) were enriched in the regulation of the adaptive immune response, translational initiation, interleukin-4 production, response to type I interferon, and skin development, respectively. The KEGG results showed that they were enriched in T cell receptor signaling pathway (MAGE-A3), Th1 and Th2 differentiation, antigen processing and presentation (MAGE-A4), cytokine-cytokine receptor interaction (MAGE-A9), and chemokine signaling pathway (MAGE-A11). CONCLUSION: MAGE A3/4/9/11 was high-expressed in EC, and were enrolled in the regulation of immune response. They may consider as candidate immune target for EC treatment and provided the messages for further research in the function of MAGE-A.


Assuntos
Antígenos de Neoplasias/genética , Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas do Esôfago/genética , Proteínas de Neoplasias/genética , Imunidade Adaptativa/genética , Idoso , Antígenos de Neoplasias/imunologia , Biologia Computacional , Neoplasias Esofágicas/imunologia , Neoplasias Esofágicas/mortalidade , Carcinoma de Células Escamosas do Esôfago/imunologia , Carcinoma de Células Escamosas do Esôfago/mortalidade , Esôfago/imunologia , Feminino , Regulação Neoplásica da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas de Neoplasias/imunologia , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/genética , Células Th1/imunologia , Células Th2/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA