Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65.516
Filtrar
1.
Food Chem ; 433: 137311, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37683493

RESUMO

Antimicrobial bacterial cellulose (BC) membranes incorporated with carbon dots (CDs) were developed to improve the shelf life and ensure the safety of minced beef during 9 days of storage at 4 °C. An ex-situ method was used to develop BC-CDs with different CDs loading capacities (16.50, 22.50, and 38.50 mg/cm3). Only BC-CDs38.50 membrane exhibited toxicity in human embryonic kidney cells, and BC-CDs membranes had the slowest release rate of CDs in 95% ethanol. Significant differences were noted in the chemical and sensory attributes of samples packaged with BC-CDs16.50 and BC-CDs22.50, compared to the control. The microbial counts in samples with BC-CDs were significantly lower than those in samples with pristine BC membranes or the control. Notably, the BC-CDs22.50 membrane exhibited a substantial reduction (4.7 log10 CFU/g) in Escherichia coli counts by the end of storage. These findings highlight the potential of BC-CDs membranes as effective antimicrobial materials in meat packaging.


Assuntos
Anti-Infecciosos , Carne Vermelha , Animais , Bovinos , Humanos , Celulose/química , Embalagem de Alimentos/métodos , Carbono/química , Carne Vermelha/microbiologia , Escherichia coli
2.
Food Chem ; 436: 137650, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-37837685

RESUMO

Antimicrobial biodegradable packaging is in high demand as a one-two punch against microbiological and plastic hazards. Two quaternary ammonium salts (QAS) with different N-alkyl chain lengths were used for starch/poly (butylene adipate-co-terephthalate) (PBAT) blown antimicrobial films. Dioctadecyl dimethyl ammonium chloride (D1821) contributed to a homogeneous film morphology at 5% w/w level, while micro-pores occurred with didodecyl dimethyl ammonium chloride (D1221). Increasing QAS content weakened hydrogen bonding interactions. D1821 promoted the formation of intercalated structure of nano-clays, and improved the strength, thermal stability, barrier, and surface hydrophobicity of the films. Conversely, adding D1221 decreased the mechanical properties, and significantly enhanced the surface hydrophilicity. The films with 3% and 5% w/w D1221 obviously inhibited the growth of both Staphylococcus aureus and Escherichia coli, while those with D1821 cannot show clear zone against the Gram-negative. 5% w/w D1221-loaded film delayed the growth of microorganisms in beef, of which the total viable count was 5.75 lg CFU/g after 21-day chilling storage. Findings supported that QAS had the potential for manufacturing starch/PBAT antimicrobial packaging, but the release kinetics and cytotoxicity still need to be systematically explored before application.


Assuntos
Anti-Infecciosos , Poliésteres , Poliésteres/química , Sais , Amido/química , Cloreto de Amônio , Embalagem de Alimentos , Adipatos/química
3.
Food Chem ; 435: 137672, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37820399

RESUMO

Novel p-coumaric acid (pCA)-loaded nanoliposomes were prepared by the thin-film hydration method, assisted with ultrasonic treatment, and optimized by the response surface methodology. The characterization showed that the fabricated pCA-loaded liposomes were nanosized spherical vesicles (83.55 ± 0.34 nm), exhibiting favorable dispersibility and encapsulation efficiency (55.70 ± 0.10 %). Fourier transform infrared spectroscopy analysis indicated that pCA was encapsulated into phospholipid bilayer through hydrophobic interaction and hydrogen bonding. Tests of temperature stability and centrifugal stability suggested that pCA-loaded nanoliposomes were less sensitive to aggregation and fusion during storage. Incubation experiments revealed that pCA-loaded nanoliposomes had a good inhibitory effect on the expansion of disease area on fresh pod pepper fruit caused by Botrytis cinerea. Additionally, pCA-loaded nanoliposomes effectively extended shelf life of fresh pod peppers by reducing weight loss and naturally-infected decays. The findings presented a viable strategy for designing liposomal encapsulation technology to efficiently enhance antimicrobial activity of pCA in food preservation.


Assuntos
Anti-Infecciosos , Frutas , Lipossomos/química , Fosfolipídeos/química , Anti-Infecciosos/farmacologia , Tamanho da Partícula
4.
Curr Med Chem ; 31(5): 515-528, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37170991

RESUMO

Imidazo[4,5-b]pyridines are amongst the oldest known heteroaromatic derivatives. Their structural similarity with purine basis has however aroused the curiosity of biologists and resulted in the developments of innovative bioactive compounds. This review thus firstly describes the main synthetic ways currently used to produce imidazo[ 4,5-b]pyridine derivatives, and secondly gives examples of their potential, especially focusing on protein inhibition abilities, thus opening the way to applications as anti-cancer or antimicrobial agents.


Assuntos
Anti-Infecciosos , Humanos , Anti-Infecciosos/farmacologia , Piridinas/farmacologia , Piridinas/química , Relação Estrutura-Atividade
5.
Spectrochim Acta A Mol Biomol Spectrosc ; 305: 123490, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37816265

RESUMO

In the research presented in this manuscript, an intricate study has been carried out on the interaction of zinc ions with the hen egg white lysozyme (HEWL) protein. Utilizing a spectroscopic technique, the alterations that arise due to the binding of Zn2+ to the HEWL were scrutinized, underscoring the paramount significance of deprotonated carboxyl and thiol groups in the process of binding. The binding phenomena were substantiated using capillary electrophoresis integrated with inductively coupled plasma mass spectrometry (CE-ICP-MS). Further spectrometric assessments (MALDI-TOF MS and FT-ICR-MS) shed light on the direct interaction of zinc ions with the functional groups of the protein. Importantly, high-resolution FT-ICR-MS techniques elucidated the capability of a single protein molecule to bind to multiple zinc ions. The empirically derived spectroscopic data received additional confirmation via a molecular docking study of the Zn2+ binding process, which highlighted a substantial affinity between the predicted 3D model of zinc-lysozyme complexes. Predominantly, the interaction between the bound entities was observed at the cysteine residues. Lastly, the conducted antimicrobial tests revealed that the zinc-lysozyme complexes manifest an inhibitory effect against bacterial (E. coli and S. aureus) and yeast (C. albicans) strains.


Assuntos
Anti-Infecciosos , Muramidase , Animais , Simulação de Acoplamento Molecular , Muramidase/química , Zinco/química , Staphylococcus aureus/metabolismo , Clara de Ovo/química , Escherichia coli/metabolismo , Íons , Galinhas/metabolismo
6.
Methods Mol Biol ; 2721: 103-121, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37819518

RESUMO

The acquisition of an antibiotic resistance phenotype can be due to genetic modifications (heritable) or transient changes in bacterial physiology (non-heritable). Induction of the expression of multidrug efflux pumps by specific compounds/growth conditions is one of the causes of Pseudomonas aeruginosa transient resistance. Biosensor strains have been used for decades to analyze real-time changes in transcription and (less frequently) translation of different genes, in different mutants, growing under several conditions or in the presence of different compounds. Among them, those based on bioluminescence or fluorescence are the most amenable for the real-time analysis of transcription. In this chapter, we describe the methods for constructing fluorescence- and bioluminescence-based biosensors to monitor the P. aeruginosa efflux pumps expression, as well as the use of these biosensors to identify compounds capable of inducing the expression of these antibiotic resistance determinants and, consequently, triggering transient resistance to antimicrobials.


Assuntos
Anti-Infecciosos , Proteínas de Membrana Transportadoras , Proteínas de Membrana Transportadoras/metabolismo , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Resistência Microbiana a Medicamentos , Anti-Infecciosos/farmacologia , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Farmacorresistência Bacteriana Múltipla , Proteínas da Membrana Bacteriana Externa/metabolismo
7.
Food Chem ; 437(Pt 1): 137841, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37918151

RESUMO

The agro-food industries generate significant waste with adverse effects. However, these byproducts are rich in polyphenols with diverse bioactivities. Innovative non-thermal extraction (NTE) technologies (Naviglio extractor®, cold plasma (CP), high hydrostatic pressure (HHP), pulse-electric field (PEF), ultrasound-assisted extraction (UAE), etc.) and their combinative effect (integrated UAE + HPPE, integrated PEF + enzyme-assisted extraction, etc.) could improve polyphenolic extraction. Hence, this article comprehensively reviewed the mechanisms, applications, drawbacks, and safety assessment of emerging NTE technologies and their combinative effects in the last 5 years, emphasizing their efficacy in improving agro-byproduct polyphenols' extraction. According to the review, incorporating cutting-edge NTE might promote the extraction ofmore phenolic extractfrom agro-byproducts due to numerous benefits,such as increased extractability,preserved thermo-sensitive phenolics, and low energy consumption. The next five years should investigate combined novel NTE technologies as they increase extractability. Besides, more research must be done on extracting free and bound phenolics, phenolic acids, flavonoids, and lignans from agro by-products. Finally, the safety of the extraction technology on the polyphenolic extract needs a lot of studies (in vivo and in vitro), and their mechanisms need to be explored.


Assuntos
Anti-Infecciosos , Polifenóis , Polifenóis/análise , Fenóis , Flavonoides , Vitaminas , Penicilinas , Tecnologia
8.
Food Chem ; 437(Pt 1): 137846, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37924760

RESUMO

In this study, the phenolic extracts of Esme quince parts (pulp, peel, seed, juice, and leaf) were obtained under optimized extraction conditions. Then, the total phenolic content (TPC), the quantities of main phenolic compounds, antioxidant, and antimicrobial activity and the change in bioactivity properties (TPC, antioxidant capacity, and antimicrobial activity on the same sixteen microorganisms) after in vitro digestion of each quince part were evaluated. The order of TPC and antioxidant activity was determined as leaf > peel > juice > pulp > seed. After in vitro gastrointestinal digestion, a decrease was observed for the TPC (average 5-fold reduction) and antioxidant activity (more than 2.5-fold reduction) in all quince parts except quince seed than their extract forms. The quince leaf extract exhibited the highest antibacterial activity. Overall, this study exhibited that the quince leaf was considered a promising, cheap, and natural source for nutritional or pharmaceutical applications with biological activity properties.


Assuntos
Anti-Infecciosos , Rosaceae , Antioxidantes/farmacologia , Extratos Vegetais/farmacologia , Fenóis , Digestão
9.
J Ethnopharmacol ; 319(Pt 3): 117315, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37852339

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Maytenus ilicifolia Mart. ex Reissek, a medicinal plant used for treating gastritis, ulcers, and gastric disorders, possesses therapeutic properties attributed to diverse leaf compounds-terpenoids, alkaloids, flavonoids, phenols, and tannins, reflecting the ethnopharmacological knowledge of traditional users. AIMS OF THE STUDY: We aimed to assess the antioxidant and antiglycant capacities of Maytenus ilicifolia's ethanolic extract and organic fractions, identify bioactive compounds through HPLC-MS/MS analysis, and conduct phytochemical assessments. We also assessed their potential to inhibit digestive and cholinesterase enzymes, mitigate oxidation of human LDL and rat hepatic tissue, and examine their antimicrobial and cytotoxic properties. MATERIALS AND METHODS: Organic fractions (hexane - HF-Mi, dichloromethane - DMF-Mi, ethyl acetate - EAF-Mi, n-butanol - BF-Mi, and hydromethanolic - HMF-Mi) were obtained via liquid-liquid partitioning. Antioxidant (DPPH, FRAP, ORAC) and antiglycant (BSA/FRU, BSA/MGO, ARG/MGO/LDL/MGO models) capacities were tested. Phytochemical analysis employed HPLC-MS/MS. We also studied the inhibitory effects on α-amylase, acetylcholinesterase, butyrylcholinesterase, human LDL and rat hepatic tissue oxidation, antimicrobial activity, and cytotoxicity against RAW 264.7 macrophages. RESULTS: HPLC-ESI-MS/MS identified antioxidant compounds such as catechin, quercetin, and kaempferol derivatives. Ethanolic extract (EE-Mi) and organic fractions demonstrated robust antioxidant and antiglycant activity. EAF-Mi and BF-Mi inhibited α-amylase (2.42 µg/mL and 7.95 µg/mL) compared to acarbose (0.144 µg/mL). Most organic fractions exhibited ∼50% inhibition of acetylcholinesterase and butyrylcholinesterase, rivaling galantamine and rivastigmine. EAF-Mi, BF-Mi, and EE-Mi excelled in inhibiting lipid peroxidation. All fractions, except HMF-Mi, effectively countered LDL oxidation, evidenced by the area under the curve. These fractions protected LDL against lipid peroxidation. CONCLUSION: This study unveils Maytenus ilicifolia's ethanolic extract and organic fractions properties. Through rigorous analysis, we identify bioactive compounds and highlight their antioxidant, antiglycant, enzyme inhibition, and protective properties against oxidative damage. These findings underline its significance in modern pharmacology and its potential applications in healthcare.


Assuntos
Anti-Infecciosos , Celastraceae , Maytenus , Humanos , Animais , Ratos , Peroxidação de Lipídeos , Acetilcolinesterase , Butirilcolinesterase , Antioxidantes/farmacologia , Reação de Maillard , Óxido de Magnésio , Espectrometria de Massas em Tandem , Compostos Fitoquímicos , alfa-Amilases , Extratos Vegetais/farmacologia
11.
Int J Food Microbiol ; 408: 110447, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37907022

RESUMO

Radio frequency (RF) heating and antimicrobials are considered to be effective methods for inactivating food pathogens. This study explored the bactericidal effects against Salmonella of RF heating combined with two kinds of natural antimicrobials possessing different hydrophobic properties and their synergistic bactericidal mechanisms. Results showed that RF heating caused sublethal damage to bacterial cells and enhanced the interaction of cells and antimicrobials, leading to synergistic bactericidal effects of the simultaneous combination of RF heating and antimicrobials. The combination of RF heating and ε-polylysine (ε-PL) further promoted cell morphological alteration, raised membrane permeability, intracellular adenosine triphosphate (ATP) leakage and intracellular reactive oxygen species (ROS) accumulation compared to individual treatment. The simultaneous combination of RF heating and cinnamon essential oil nanoemulsion (CEON) also further enhanced membrane permeability and ROS accumulation compared to individual treatment, but impacts were less than those in the combination of RF heating and ε-PL. The major synergistic bactericidal mechanism of RF heating and CEON was significantly inhibiting intracellular ATP synthesis. The untargeted metabolomics analysis revealed that the combined treatments enhanced disturbances to multiple intracellular metabolisms compared to individual treatment, thus leading to synergistic bactericidal effects against Salmonella. These results provide an in-depth understanding of the synergistic bactericidal mechanisms of the combination of RF heating and natural antimicrobials from cellular and metabolic levels.


Assuntos
Anti-Infecciosos , Óleos Voláteis , Polilisina/farmacologia , Cinnamomum zeylanicum , Óleos Voláteis/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Salmonella typhimurium , Trifosfato de Adenosina/farmacologia
12.
Adv Wound Care (New Rochelle) ; 13(1): 1-13, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36855334

RESUMO

Objective: Despite advances in the use of topical and parenteral antimicrobial therapy and the practice of early tangential burn wound excision to manage bacterial load, 60% of the mortality from burns is attributed to bacterial biofilm infection. A low electric field (∼1 V) generated by the novel FDA-cleared wireless electroceutical dressing (WED) was previously shown to significantly prevent and disrupt burn biofilm infection in preclinical studies. Based on this observation, the purpose of this clinical trial was to evaluate the efficacy of the WED dressing powered by a silver-zinc electrocouple in the prevention and disruption of biofilm infection. Approach: A prospective, randomized, controlled, single-center clinical trial was performed to evaluate the efficacy of the WED compared with standard-of-care (SoC) dressing to treat biofilms. Burn wounds were randomized to receive either SoC or WED. Biopsies were collected on days 0 and 7 for histology, scanning electron microscopy (SEM) examination of biofilm, and for quantitative bacteriological analyses. Results: In total, 38 subjects were enrolled in the study. In 52% of the WED-treated wounds, little to no biofilm could be detected by SEM. WED significantly lowered or prevented increase of biofilm in all wounds compared with the pair-matched SoC-treated wounds. Innovation: WED is a simple, easy, and rapid method to protect the wound while also inhibiting infection. It is activated by a moist environment and the electrical field induces transient and micromolar amounts of superoxide anion radicals that will prevent bacterial growth. Conclusion: WED decreased biofilm infection better compared with SoC. The study was registered in clinicaltrials.gov as NCT04079998.


Assuntos
Anti-Infecciosos , Infecções Bacterianas , Queimaduras , Humanos , Estudos Prospectivos , Queimaduras/tratamento farmacológico , Anti-Infecciosos/uso terapêutico , Biofilmes , Bandagens
13.
Sci Total Environ ; 906: 167432, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37777130

RESUMO

The emergence and spread of antimicrobial resistance (AMR) continue on a global scale. The impacts of wastewater on the environment and human health have been identified, and understanding the environmental impacts of hospital wastewater and exploring appropriate forms of treatment are major societal challenges. In the present research, we evaluated the efficacy of ozone (O3)-based advanced wastewater treatment systems (O3, O3/H2O2, O3/UV, and O3/UV/H2O2) for the treatment of antimicrobials, antimicrobial-resistant bacteria (AMRB), and antimicrobial resistance genes (AMRGs) in wastewater from medical facilities. Our results indicated that the O3-based advanced wastewater treatment inactivated multiple antimicrobials (>99.9%) and AMRB after 10-30 min of treatment. Additionally, AMRGs were effectively removed (1.4-6.6 log10) during hospital wastewater treatment. The inactivation and/or removal performances of these pollutants through the O3/UV and O3/UV/H2O2 treatments were significantly (P < 0.05) better than those in the O3 and O3/H2O2 treatments. Altered taxonomic diversity of microorganisms based on 16S rRNA gene sequencing following the O3-based treatment showed that advanced wastewater treatments not only removed viable bacteria but also removed genes constituting microorganisms in the wastewater. Consequently, the objective of this study was to apply advanced wastewater treatments to treat wastewater, mitigate environmental pollution, and alleviate potential threats to environmental and human health associated with AMR. Our findings will contribute to enhancing the effectiveness of advanced wastewater treatment systems through on-site application, not only in wastewater treatment plants (WWTPs) but also in medical facilities. Moreover, our results will help reduce the discharge of AMRB and AMRGs into rivers and maintain the safety of aquatic environments.


Assuntos
Anti-Infecciosos , Ozônio , Poluentes Químicos da Água , Purificação da Água , Humanos , Águas Residuárias , Antibacterianos/farmacologia , Peróxido de Hidrogênio , RNA Ribossômico 16S , Oxirredução , Poluentes Químicos da Água/análise , Bactérias , Hospitais , Purificação da Água/métodos
14.
Bioorg Chem ; 142: 106932, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37913586

RESUMO

The incidence of infections caused by drug-resistant bacteria has been one of the most serious health threats in the past and is substantially increasing in an alarming rate. Therefore, the development of new antimicrobial agents to combat bacterial resistance effectively is urgent. This study focused on the design and synthesis of 40 novel tetrahydrobenzothiophene amide/sulfonamide derivatives and their antibacterial activities were evaluated. Compounds 2p, 6p, and 6 s exhibited significant inhibitory effects on the growth of bacteria. To assess their safety, the cytotoxicity of the compounds was assessed using human normal liver cells, revealing that compound 6p has lower cytotoxicity. A mouse wound healing experiment demonstrated that compound 6p effectively improved wound infection induced by trauma and accelerated the healing process. Compound 6p holds promise as a potential therapeutic agent for combating bacterial infections.


Assuntos
Antibacterianos , Anti-Infecciosos , Humanos , Animais , Camundongos , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Bactérias
15.
Microbiol Res ; 278: 127537, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37922697

RESUMO

Uropathogenic Escherichia coli (UPEC) is a urinary tract pathogen responsible for most nosocomial urinary tract infections and can cause severe conditions like acute cystitis of the bladder or pyelonephritis. UPEC harbors a host of virulence factors like curli, hemolysin, siderophore, and motility factors and can form biofilm-like communities and quiescent reservoirs that aid its survival. This study was performed to investigate the antibiofilm, antimicrobial, and antivirulence potentials of three chromone derivatives, namely, 6-bromo 3-formylchromone, 6-chloro 3-formylchromone, and 3-formyl 6-isopropylchromone. These chromones had MICs against UPEC of 20, 20, and 50 µg/ml, respectively, inhibited biofilm formation by 72-96% at 20 µg/ml, and inhibited UPEC-associated virulence factors, that is, hemolysis, motility, curli, siderophore production, indole production, quiescent colony formation, and cell surface hydrophobicity. Gene expression analysis indicated these three derivatives downregulated virulence genes associated with toxins, biofilm production, and stress regulation and suggested they might target two-component UvrY response regulator. 3D-QSAR analysis showed that substitutions at the third and sixth positions of the chromone scaffold favor antimicrobial activity against UPEC. Furthermore, ADME profiles and C. elegans cytotoxicity assays indicated that these chromone derivatives are potent, safe drug candidates.


Assuntos
Anti-Infecciosos , Infecções por Escherichia coli , Proteínas de Escherichia coli , Infecções Urinárias , Escherichia coli Uropatogênica , Animais , Escherichia coli Uropatogênica/fisiologia , Sideróforos/metabolismo , Caenorhabditis elegans , Infecções Urinárias/patologia , Anti-Infecciosos/metabolismo , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Biofilmes , Cromonas/metabolismo , Infecções por Escherichia coli/tratamento farmacológico , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo
17.
Curr Drug Deliv ; 21(4): 603-622, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37309758

RESUMO

BACKGROUND: Recent studies have shown that nanoemulsions prepared with essential oils have significant antimicrobial potential against multidrug-resistant pathogens due to increased chemical stability. Nanoemulsion also promotes controlled and sustained release, which increases their bioavailability and efficacy against multidrug-resistant bacteria. OBJECTIVE: This study aimed to investigate the antimicrobial, antifungal, antioxidant, and cytotoxicity properties of cinnamon essential oil and peppermint essential oil as nanoemulsions compared to pure forms. For this purpose, analyses of the selected stable nanoemulsions were carried out. METHOD: The droplet sizes and zeta potentials of peppermint essential oil nanoemulsions and cinnamon essential oil nanoemulsions were found to be 154.6±1.42 nm and -17.1±0.68 mV and 200.3±4.71 nm and -20.0±0.81 mV, respectively. Although the amount of essential oil used in nanoemulsions was 25% w/w, antioxidant and antimicrobial activities were found to be more effective compared to pure essential oils. RESULTS: In cytotoxicity studies on the 3T3 cell line, both essential oil nanoemulsions showed higher cell viability than pure essential oils. At the same time, cinnamon essential oil nanoemulsions exhibited a higher antioxidant property than peppermint essential oil nanoemulsions and showed superiority in the antimicrobial susceptibility test conducted against four bacteria and two fungi. Cell viability tests determined that cinnamon essential oil nanoemulsions showed considerably higher cell viability compared to pure cinnamon essential oil. CONCLUSION: These findings indicated that the prepared nanoemulsions in the current study might positively influence the dosing regimen and clinical outcomes of antibiotic therapy.


Assuntos
Anti-Infecciosos , Óleos Voláteis , Antifúngicos/farmacologia , Antifúngicos/química , Antioxidantes/farmacologia , Cinnamomum zeylanicum/química , Emulsões/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Óleos Voláteis/farmacologia , Óleos Voláteis/química
18.
Bioelectrochemistry ; 155: 108587, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37839250

RESUMO

Over the past decades, the misuse or abuse of antimicrobial agents to prevent and/or control infections has led to increased resistance of microbes to treatments, and antimicrobial resistance is now a subject of major global concern. In some cases, microbes possess the capacity to attach to biotic or abiotic surfaces, and to produce a protective polymeric matrix, forming biofilms of higher resistance and virulence compared to planktonic forms. To avoid further excessive and inappropriate use of antimicrobials, and to propose new effective treatments, it is very important to detect planktonic microbes and microbial biofilms in their early growth stage and at the point of need. In this review, we provide an overview of currently available electrochemical techniques, in particular impedimetric and voltamperometric methods, highlighting recent advances in the field and illustrating with examples in antibiotic susceptibility testing and microbial biofilm monitoring.


Assuntos
Anti-Infecciosos , Biofilmes , Plâncton , Virulência , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia
19.
Chemosphere ; 346: 140524, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37923017

RESUMO

Foodborne pathogens can cause food spoilage and lead to food safety issues. In recent years, food packaging has received a lot of attention. Traditional packaging membranes are non-biodegradable and remain in the environment for a long time. In this study, natural antimicrobial substances were extracted from Schisandra chinensis by a green extraction process using distilled water as the solvent, and the effects of different treatment on the antimicrobial activity of the extract were compared. At the same time, four types of Schisandra chinensis antimicrobial membranes were prepared using polyvinyl alcohol (PVA) as the substrate. The whole extraction and membrane preparation process did not involve organic solvents, making the process green and environment friendly. Material characterization included inverted biological microscopy, scanning electron microscopy (SEM), atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FTIR), tensile strength test, pore size measurement, water uptake test, etc. Among them, no extract particles were observed with the naked eye on the surfaces of MⅡ and MⅣ. MⅡ has a uniformly transparent, nearly colorless morphology and is the most tensile. MⅣ surface is flat and smooth, the microstructure is dense and uniform. At the same time, the four types of membranes were tested against common pathogenic bacteria for 12 h, and the OD600 trend revealed the excellent antimicrobial activity of the membranes against S. aureus, MRSA, E. coli, and L. monocytogenes. The membranes could also be reused at least once. This study provides a new idea for preparing natural plant-based antimicrobial membranes.


Assuntos
Anti-Infecciosos , Schisandra , Álcool de Polivinil/química , Staphylococcus aureus , Schisandra/química , Escherichia coli , Antibacterianos/farmacologia , Antibacterianos/química , Anti-Infecciosos/química , Solventes , Água/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier
20.
Int J Food Microbiol ; 409: 110460, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-37925886

RESUMO

Escherichia coli O157:H7 is a notorious foodborne pathogen known to cause severe illnesses such as hemolytic colitis and hemolytic uremic syndrome, with fresh produce consumption being implicated in recent outbreaks. The inappropriate use of antimicrobials to combat pathogens has led to the emergence and rapid dissemination of antimicrobial-resistant microorganisms including pathogenic E. coli, presenting a significant risk to humans. Here, we isolated two E. coli O157:H7 infecting bacteriophages, PECP14 and PECP20, from irrigation water and city sewage, respectively, as alternatives to antimicrobials. Both phages were stable for at least 16 h in a broad range of pH (pH 3-11) and temperature (4-40 °C) conditions and have a double-stranded DNA chromosome. PECP14 and PECP20, classified under the Epseptimavirus and Mosigvirus genera, respectively, exhibit specificity in targeting different host receptors, BtuB protein and lipopolysaccharide. Interestingly, these phages demonstrate the ability to infect not only E. coli O157:H7 but also other foodborne enteric pathogens like Shigella sonnei and S. flexneri. Upon mixing phages with their respective host bacteria, rapid adsorption (at least 68 % adsorption within 10 min) and substantial bacterial lysis were observed. The efficacy of phage treatment was further validated through the reduction of E. coli O157:H7 on radish sprouts. Moreover, purified endolysins, LysPECP14 and LysPECP20, derived from each phage exhibited remarkable bacteriolytic activity against E. coli O157:H7 cells pretreated with EDTA. In particular, the activity of LysPECP20 was also noticeable against Listeria monocytogenes and Bacillus cereus, suggesting its potential for broader antimicrobial applications in food industry. The combined results showed that the phages PECP14, PECP20, and their endolysins could be used for biological control of E. coli O157:H7 in various circumstances, from production, harvesting, and storage stages to processing and distribution steps of agricultural products.


Assuntos
Anti-Infecciosos , Bacteriófagos , Infecções por Escherichia coli , Escherichia coli O157 , Humanos , Escherichia coli O157/genética , Infecções por Escherichia coli/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...