RESUMO
Background: Whether anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibody levels post-third coronavirus disease (COVID-19) vaccination correlate with worse outcomes due to breakthrough infection is unclear. We evaluated the association between anti-SARS-CoV-2 antibody levels and symptomatic breakthrough infection or hospitalization during the Omicron surge in kidney transplant recipients. Methods: In total, 287 kidney transplant recipients expected to receive a third vaccination were enrolled between November 2021 and February 2022. The Abbott SARS-CoV-2 IgG II Quant test (Abbott, Chicago, IL, USA) was performed within three weeks before and four weeks after the third vaccination. The incidence of symptomatic breakthrough infection and hospitalization from two weeks to four months post-third vaccination was recorded. Results: After the third vaccination, the seropositive rate and median antibody titer of the 287 patients increased from 57.1% to 82.2% and from 71.7 (interquartile range [IQR] 7.2-402.8) to 1,612.1 (IQR 153.9-5,489.1) AU/mL, respectively. Sixty-four (22.3%) patients had symptomatic breakthrough infections, of whom 12 required hospitalization. Lower anti-receptor-binding domain (RBD) IgG levels (<400 AU/mL) post-third vaccination were a risk factor for symptomatic breakthrough infection (hazard ratio [HR]=3.46, P<0.001). Anti-RBD IgG levels <200 AU/mL were a critical risk factor for hospitalization (HR=36.4, P=0.007). Conclusions: Low anti-spike IgG levels after third vaccination in kidney transplant recipients were associated with symptomatic breakthrough infection and, particularly, with hospitalization during the Omicron surge. These data can be used to identify patients requiring additional protective measures, such as passive immunization using monoclonal antibodies.
Assuntos
COVID-19 , Transplante de Rim , Humanos , Infecções Irruptivas , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Transplante de Rim/efeitos adversos , SARS-CoV-2 , Hospitalização , Vacinação , Anticorpos Antivirais , Imunoglobulina GRESUMO
We investigated humoral immune responses in 222 unvaccinated Japanese people after recovery from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in 2021. Anti-spike-protein IgG antibody levels and neutralizing antibody titers were measured in serum samples obtained within 20-180 days after diagnosis. The geometric mean of antibody titers was 1555 ELU/mL (95% confidence interval (CI) = 1257-1923), and the neutralizing activity (50% inhibitory dilution) was 253 (95% CI = 204-313). The antibody titer and neutralizing activity both increased with increasing disease severity, and both values were approximately fourfold higher for hospitalized patients than for non-hospitalized patients. However, these differences were smaller in older patients. The humoral immune response, which increased with increasing disease severity, gradually decreased over time after SARS-CoV-2 infection. Most patients with mild or moderate symptoms sustained neutralizing activity for up to 180 days after the infection; the decay of the neutralizing activity in the asymptomatic patients was rather faster than in the other groups. Around 11.7% (26/222) of patients had very low neutralizing activity, and half of these were aged in their 20s. Our study's results show the importance of measuring the neutralizing activity to confirm the immune status and to estimate the timing of vaccines.
Assuntos
COVID-19 , Imunidade Humoral , Idoso , Humanos , COVID-19/imunologia , População do Leste Asiático , Gravidade do Paciente , Japão , Anticorpos Antivirais , Anticorpos NeutralizantesRESUMO
Newcastle disease (ND), caused by the virulent Newcastle disease virus (NDV), is an acute, highly contagious, and economically significant avian disease worldwide. Vaccination is the most effective measure for controlling ND. In recent years, vaccines matched with the prevalent strains of genotype VII have been developed and are now commercially available. These vaccines can provide full protection for chickens against clinical disease and mortality after challenges with genotype VII viruses and significantly decrease virus shedding compared to conventional vaccines belonging to genotypes I and II. Vaccinated hens can transfer antibodies to their offspring through the egg yolk. Maternally derived antibodies can provide passive protection against diseases but can also interfere with vaccination efficacy early in life. This study was conducted on chicks hatched from hens vaccinated with a commercial genotype VII NDV-matched vaccine to investigate the correlation between hemagglutination inhibition (HI) antibody levels in chicks and hens and the decaying pattern of maternally derived HI antibodies, and to evaluate the protective efficacy of different levels of maternally derived HI antibodies against challenge with a virulent NDV strain of genotype VII based on survivability and virus shedding. The HI antibody titers in chicks at hatching were about 1.3 log2 lower than those in hens, indicating an antibody transfer rate of approximately 41.52%. The estimated half-life of these antibodies was about 3.2 days. The protective efficacy of maternally derived HI antibodies was positively correlated with the titer. These antibodies could effectively protect chicks against mortality when the titer was 7 log2 or higher, but they were unable to prevent virus shedding or infection even at a high titer of 11 log2. The obtained results will greatly assist producers in determining the immune status of chicks and formulating appropriate vaccination schedules against ND.
Assuntos
Galinhas , Doença de Newcastle , Animais , Feminino , Vírus da Doença de Newcastle/genética , Hemaglutinação , Anticorpos Antivirais , Genótipo , Doença de Newcastle/prevenção & controleRESUMO
Since its emergence in late 2019, coronavirus disease 2019 (COVID-19) has caused millions of deaths and socioeconomic losses. Although vaccination significantly reduced disease mortality, it has been shown that protection wanes over time, and that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) may escape vaccine-derived immunity. Therefore, serological studies are necessary to assess protection in the population and guide vaccine regimens. A common measure of protective immunity is the presence of neutralizing antibodies (nAbs). However, the gold standard for measuring nAbs (plaque reduction neutralization test, or PRNT) is laborious and time-consuming, limiting its large-scale applicability. We developed a high-throughput fluorescence reduction neutralization assay (FRNA) to detect SARS-CoV-2 nAbs. Because the assay relies on immunostaining, we developed and characterized monoclonal antibodies (mAbs) to lower costs and reduce the assay's vulnerability to reagent shortages. Using samples of individuals vaccinated with COVID-19 and unvaccinated/pre-pandemic samples, we showed that FRNA results using commercial and in-house mAbs strongly correlated with those of the PRNT method while providing results in 70% less time. In addition to providing a fast, reliable, and high-throughput alternative for measuring nAbs, the FRNA can be easily customized to assess SARS-CoV-2 VOCs. Additionally, the mAb we produced was able to detect SARS-CoV-2 in pulmonary tissues by immunohistochemistry assays.
Assuntos
COVID-19 , Humanos , Imuno-Histoquímica , COVID-19/diagnóstico , SARS-CoV-2/genética , Anticorpos Antivirais , Anticorpos Monoclonais , Anticorpos NeutralizantesRESUMO
Peste des petits ruminants virus (PPRV) causes a very devastating disease in sheep and goats. Rapid diagnosis and immunisation have been identified as key strategies for successful prevention of the disease. Therefore, a sensitive fluorescent microsphere immunochromatography test strips (FM-ICTS) was developed for rapid detection of special antibodies of PPRV in goats and sheep serum. The FM-ICTS were successfully prepared by fluorescent microspheres (FM) as tracer, which were covalently coupled to PPRV nucleocapsid protein (NP). The NP and monoclonal antibody of NP were separately dispensed onto a nitrocellulose membrane as test and quality control lines, respectively. The critical threshold for determining negative or positive through the ratio of the fluorescent signal of the test line and the control line (T/C) is 0.050. The repeatability of the FM-ICTS was excellent, with an overall average CV of 3.17 %. The detection limit of this assay was 1:5120. Additionally, the FM-ICTS no cross reaction with the sera of other related diseases was observed, only reacting with anti-PPRV serum. 70 serum samples were tested by FM-ICTS and commercial ELISA kit, and the results showed good agreement. Overall, a promising pen-side diagnostic tool was developed for the rapid qualitatively/semi-quantitatively detection of PPRV antibodies within 15 min.
Assuntos
Elementos da Série dos Lantanídeos , Ruminantes , Ovinos , Animais , Microesferas , Anticorpos Antivirais , Cabras , Corantes , Cromatografia de Afinidade , Proteínas do NucleocapsídeoRESUMO
An HPMC-based nasal spray solution containing human IgG1 antibodies against SARS-CoV-2 (nasal antibody spray or NAS) was developed to strengthen COVID-19 management. NAS exhibited potent broadly neutralizing activities against SARS-CoV-2 with PVNT50 values ranging from 0.0035 to 3.1997 µg/ml for the following variants of concern (ranked from lowest to highest): Alpha, Beta, Gamma, ancestral, Delta, Omicron BA.1, BA.2, BA.4/5, and BA.2.75. Biocompatibility assessment showed no potential biological risks. Intranasal NAS administration in rats showed no circulatory presence of human IgG1 anti-SARS-CoV-2 antibodies within 120 h. A double-blind, randomized, placebo-controlled trial (NCT05358873) was conducted on 36 healthy volunteers who received either NAS or a normal saline nasal spray. Safety of the thrice-daily intranasal administration for 7 days was assessed using nasal sinuscopy, adverse event recording, and self-reporting questionnaires. NAS was well tolerated, with no significant adverse effects during the 14 days of the study. The SARS-CoV-2 neutralizing antibodies were detected based on the signal inhibition percent (SIP) in nasal fluids pre- and post-administration using a SARS-CoV-2 surrogate virus neutralization test. SIP values in nasal fluids collected immediately or 6 h after NAS application were significantly increased from baseline for all three variants tested, including ancestral, Delta, and Omicron BA.2. In conclusion, NAS was safe for intranasal use in humans to increase neutralizing antibodies in nasal fluids that lasted at least 6 h.
Assuntos
COVID-19 , Sprays Nasais , Humanos , Animais , Ratos , Administração Intranasal , Imunoglobulina G , Anticorpos Neutralizantes , SARS-CoV-2 , Voluntários Saudáveis , Anticorpos AntiviraisRESUMO
SARS-CoV-2 anti-spike IgG production and protection from severe respiratory illness should be explored in greater depth after COVID-19 booster vaccination. This longitudinal observational retrospective study investigated the anti-spike IgG response elicited by the first, second and booster doses of BNT162b2 mRNA vaccine in healthcare workers (HCW) at San Martino IRCCS Policlinico Hospital (Genoa) up to the 12th month. Sequential blood sampling was performed at T0 (prior to vaccination), T1 (21 days after the 1st dose of vaccine), T2, T3, T4, T5, T6 (7 days and 1, 3, 6 and 9 months after the 2nd dose, respectively), T7 and T8 (1 and 3 months after a booster dose). A SARS-CoV-2 IgG panel (Bio-Rad, Marnes-la-Coquette, France) was used to determine levels of receptor-binding domain (RBD), spike-1 (S1), spike-2 and nucleocapsid structural proteins of SARS-CoV-2. In the 51 HCWs evaluated, seroprevalence was 96% (49/51) at T1 and 100% (51/51) from T2 to T5 for RBD and S1. At T6, only one HCW was negative. T2 [RBD = 2945 (IQR:1693-5364); S1 = 1574 (IQR:833-3256) U/mL], and T7 [RBD = 8204 (IQR:4129-11,912); S1 = 4124 (IQR:2124-6326) U/mL] were characterized by the highest antibody values. Significant humoral increases in RBD and S1 were documented at T7 and T8 compared to T2 and T4, respectively (p-value < .001). Following vaccination with BNT162b2 and a booster dose in the 9th month, naïve and healthy subjects show high antibody titers up to 12 months and a protective humoral response against COVID-19 disease lasting up to 20 months after the last booster.
Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Estudos Retrospectivos , Vacina BNT162 , COVID-19/prevenção & controle , Seguimentos , Estudos Soroepidemiológicos , Anticorpos Antivirais , Pessoal de Saúde , Imunoglobulina GRESUMO
The COVID-19 antibody test was developed to investigate the humoral immune response to SARS-CoV-2 infection. In this study, we examined whether S antibody titers measured using the anti-SARS-CoV-2 IgG II Quant assay (S-IgG), a high-throughput test method, reflects the neutralizing capacity acquired after SARS-CoV-2 infection or vaccination. To assess the antibody dynamics and neutralizing potency, we utilized a total of 457 serum samples from 253 individuals: 325 samples from 128 COVID-19 patients including 136 samples from 29 severe/critical cases (Group S), 155 samples from 71 mild/moderate cases (Group M), and 132 samples from 132 health care workers (HCWs) who have received 2 doses of the BNT162b2 vaccinations. The authentic virus neutralization assay, the surrogate virus neutralizing antibody test (sVNT), and the Anti-N SARS-CoV-2 IgG assay (N-IgG) have been performed along with the S-IgG. The S-IgG correlated well with the neutralizing activity detected by the authentic virus neutralization assay (0.8904. of Spearman's rho value, p < 0.0001) and sVNT (0.9206. of Spearman's rho value, p < 0.0001). However, 4 samples (2.3%) of S-IgG and 8 samples (4.5%) of sVNT were inconsistent with negative results for neutralizing activity of the authentic virus neutralization assay. The kinetics of the SARS-CoV-2 neutralizing antibodies and anti-S IgG in severe cases were faster than the mild cases. All the HCWs elicited anti-S IgG titer after the second vaccination. However, the HCWs with history of COVID-19 or positive N-IgG elicited higher anti-S IgG titers than those who did not have it previously. Furthermore, it is difficult to predict the risk of breakthrough infection from anti-S IgG or sVNT antibody titers in HCWs after the second vaccination. Our data shows that the use of anti-S IgG titers as direct quantitative markers of neutralizing capacity is limited. Thus, antibody tests should be carefully interpreted when used as serological markers for diagnosis, treatment, and prophylaxis of COVID-19.
Assuntos
Vacina BNT162 , COVID-19 , Humanos , COVID-19/diagnóstico , COVID-19/prevenção & controle , SARS-CoV-2 , Anticorpos Bloqueadores , Anticorpos Antivirais , Imunoglobulina GRESUMO
Despite development of effective SARS-CoV-2 vaccines, a sub-group of vaccine non-responders depends on therapeutic antibodies or small-molecule drugs in cases of severe disease. However, perpetual viral evolution has required continuous efficacy monitoring as well as exploration of new therapeutic antibodies, to circumvent resistance mutations arising in the viral population. We performed SARS-CoV-2-specific B cell sorting and subsequent single-cell sequencing on material from 15 SARS-CoV-2 convalescent participants. Through screening of 455 monoclonal antibodies for SARS-CoV-2 variant binding and virus neutralization, we identified a cluster of activated B cells highly enriched for SARS-CoV-2 neutralizing antibodies. Epitope binning and Cryo-EM structure analysis identified the majority of neutralizing antibodies having epitopes overlapping with the ACE2 receptor binding motif (class 1 binders). Extensive functional antibody characterization identified two potent neutralizing antibodies, one retaining SARS-CoV-1 neutralizing capability, while both bind major common variants of concern and display prophylactic efficacy in vivo. The transcriptomic signature of activated B cells harboring broadly binding neutralizing antibodies with therapeutic potential identified here, may be a guide in future efforts of rapid therapeutic antibody discovery.
Assuntos
Antígenos de Grupos Sanguíneos , COVID-19 , Humanos , SARS-CoV-2 , Vacinas contra COVID-19 , Anticorpos Antivirais , Anticorpos Neutralizantes , EpitoposRESUMO
Introduction: At present, there is an urgent need for the rapid and accurate detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) neutralizing antibodies (NAbs) to evaluate the ability of the human body to resist coronavirus disease 2019 (COVID-19) after infection or vaccination. The current gold standard for neutralizing antibody detection is the conventional virus neutralization test (cVNT), which requires live pathogens and biosafety level-3 (BSL-3) laboratories, making it difficult for this method to meet the requirements of large-scale routine detection. Therefore, this study established a time-resolved fluorescence-blocking lateral flow immunochromatographic assay (TRF-BLFIA) that enables accurate, rapid quantification of NAbs in subjects. Methods: This assay utilizes the characteristic that SARS-CoV-2 neutralizing antibody can specifically block the binding of the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein and angiotensin-converting enzyme 2 (ACE2) to rapidly detect the content of neutralizing antibody in COVID-19-infected patients and vaccine recipients. Results: When 356 samples of vaccine recipients were measured, the coincidence rate between this method and cVNT was 88.76%, which was higher than the coincidence rate of 76.97% between cVNT and a conventional chemiluminescence immunoassay detecting overall binding anti-Spike-IgG. More importantly, this assay does not need to be carried out in BSL-2 or 3 laboratories. Discussion: Therefore, this product can detect NAbs in COVID-19 patients and provide a reference for the prognosis and outcome of patients. Simultaneously, it can also be applied to large-scale detection to better meet the needs of neutralizing antibody detection after vaccination, making it an effective tool to evaluate the immunoprotective effect of COVID-19 vaccines.
Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Vacinas contra COVID-19 , COVID-19/diagnóstico , Anticorpos Antivirais , Imunoensaio , Anticorpos NeutralizantesRESUMO
Importance: The incidence of diabetes in childhood has increased during the COVID-19 pandemic. Elucidating whether SARS-CoV-2 infection is associated with islet autoimmunity, which precedes type 1 diabetes onset, is relevant to disease etiology and future childhood diabetes trends. Objective: To determine whether there is a temporal relationship between SARS-CoV-2 infection and the development of islet autoimmunity in early childhood. Design, Setting, and Participants: Between February 2018 and March 2021, the Primary Oral Insulin Trial, a European multicenter study, enrolled 1050 infants (517 girls) aged 4 to 7 months with a more than 10% genetically defined risk of type 1 diabetes. Children were followed up through September 2022. Exposure: SARS-CoV-2 infection identified by SARS-CoV-2 antibody development in follow-up visits conducted at 2- to 6-month intervals until age 2 years from April 2018 through June 2022. Main Outcomes and Measures: The development of multiple (≥2) islet autoantibodies in follow-up in consecutive samples or single islet antibodies and type 1 diabetes. Antibody incidence rates and risk of developing islet autoantibodies were analyzed. Results: Consent was obtained for 885 (441 girls) children who were included in follow-up antibody measurements from age 6 months. SARS-CoV-2 antibodies developed in 170 children at a median age of 18 months (range, 6-25 months). Islet autoantibodies developed in 60 children. Six of these children tested positive for islet autoantibodies at the same time as they tested positive for SARS-CoV-2 antibodies and 6 at the visit after having tested positive for SARS-CoV-2 antibodies. The sex-, age-, and country-adjusted hazard ratio for developing islet autoantibodies when the children tested positive for SARS-CoV-2 antibodies was 3.5 (95% CI, 1.6-7.7; P = .002). The incidence rate of islet autoantibodies was 3.5 (95% CI, 2.2-5.1) per 100 person-years in children without SARS-CoV-2 antibodies and 7.8 (95% CI, 5.3-19.0) per 100 person-years in children with SARS-CoV-2 antibodies (P = .02). Islet autoantibody risk in children with SARS-CoV-2 antibodies was associated with younger age (<18 months) of SARS-CoV-2 antibody development (HR, 5.3; 95% CI, 1.5-18.3; P = .009). Conclusion and relevance: In young children with high genetic risk of type 1 diabetes, SARS-CoV-2 infection was temporally associated with the development of islet autoantibodies.
Assuntos
COVID-19 , Diabetes Mellitus Tipo 1 , Ilhotas Pancreáticas , Pré-Escolar , Feminino , Humanos , Lactente , Anticorpos Antivirais/imunologia , Autoanticorpos/imunologia , Autoimunidade/imunologia , COVID-19/complicações , COVID-19/imunologia , Diabetes Mellitus Tipo 1/etiologia , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/imunologia , Pandemias , SARS-CoV-2 , Ilhotas Pancreáticas/imunologia , Masculino , Predisposição Genética para DoençaRESUMO
Porcine deltacoronavirus (PDCoV) is a novel coronavirus that causes enteric diseases in pigs leading to substantial financial losses within the industry. The absence of commercial vaccines and limited research on PDCoV vaccines presents significant challenges. Therefore, we evaluated the safety and immunogenicity of recombinant pseudorabies virus (PRV) rPRVXJ-delgE/gI/TK-S through intranasal mucosal immunization in weaned piglets and SPF mice. Results indicated that rPRVXJ-delgE/gI/TK-S safely induced PDCoV S-specific and PRV gB-specific antibodies in piglets, with levels increasing 7 days after immunization. Virus challenge tests demonstrated that rPRVXJ-delgE/gI/TK-S effectively improved piglet survival rates, reduced virus shedding, and alleviated clinical symptoms and pathological damage. Notably, the recombinant virus reduced anti-inflammatory and pro-inflammatory responses by regulating IFN-γ, TNF-α, and IL-1ß secretion after infection. Additionally, rPRVXJ-delgE/gI/TK-S colonized target intestinal segments infected with PDCoV, stimulated the secretion of cytokines by MLVS in mice, stimulated sIgA secretion in different intestinal segments of mice, and improved mucosal immune function. HE and AB/PAS staining confirmed a more complete intestinal mucosal barrier and a significant increase in goblet cell numbers after immunization. In conclusion, rPRVXJ-delgE/gI/TK-S exhibits good immunogenicity and safety in mice and piglets, making it a promising candidate vaccine for PDCoV.
Assuntos
COVID-19 , Doenças dos Roedores , Doenças dos Suínos , Animais , Camundongos , Suínos , Imunidade nas Mucosas , Administração Intranasal/veterinária , COVID-19/veterinária , Vacinas Sintéticas , Intestinos , Anticorpos Antivirais , Doenças dos Suínos/prevenção & controleRESUMO
Despite global efforts to assess the early response and persistence of SARS-CoV-2 antibodies in patients infected with or recovered from COVID-19, our understanding of the factors affecting its dynamics remains limited. This work aimed to evaluate the early and convalescent immunity of outpatients infected with SARS-CoV-2 and to determine the factors that affect the dynamics and persistence of the IgM and IgG antibody response. Seropositivity of volunteers from Mexico City and the State of Mexico, Mexico, was evaluated by ELISA using the recombinant receptor-binding domain (RBD) of the SARS-CoV-2 Spike protein for 90 days, at different time points (1, 15, 45, 60, and 90 days) after molecular diagnosis (RT-qPCR). Gender, age range, body mass index (BMI), comorbidities, and clinical spectrum of disease were analyzed to determine associations with the dynamics of anti-SARS-CoV-2 antibodies. On 90 days post-infection, individuals with moderate and asymptomatic disease presented the lowest levels of IgM, while for IgG, at the same time, the highest levels occurred with mild and moderate disease. The IgM and IgG levels were related to the clinical spectrum of disease, BMI, and the presence/absence of comorbidities through regression trees. The results suggest that the dynamics of anti-SARS-CoV-2 IgM and IgG antibodies in outpatients could be influenced by the clinical spectrum of the disease. In addition, the persistence of antibodies against SARS-CoV-2 could be related to the clinical spectrum of the disease, BMI, and the presence/absence of comorbidities.
Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Anticorpos Antivirais , Imunoglobulina G , Imunoglobulina M , ImunidadeRESUMO
BACKGROUND: Trichomonas vaginalis (TV) is a sexually transmitted pathogen. The study was conducted to determine its prevalence among 300 adult patients in 4 public health facilities in the Nsukka District of Enugu State, Nigeria. METHOD: The researchers collected high vagina swabs and urine samples were collected from 150 men and 150 women, respectively. The specimens were scrutinized for color, odor of discharge and urine, and motile trichomoniasis. RESULTS: The prevalence of the TV was 45.0% (135/300) with women showing the highest prevalence (63.7%). Among the patients attending the University of Nigeria, Nsukka Medical Center, the prevalence was the highest at 31.9%. TV infection was more common among older adults aged 38 to 47 years (39.3%), married adults (76.3%), and those with secondary education (68.9%). Urogenital analysis reported that males with pains during urination were 51.0% and males with penile tingling were 12.2%. The highest vaginal Hydrogen ion concentration level of 6.8 was observed in women aged 38 to 47 years. Additionally, the results reported that Vaginal candidiasis, Bacterial vaginosis, and Herpes simplex virus type 2 antibodies were not independently associated with TV infection. In the unadjusted analysis, the odds of TV infection were higher in men (8.1), while Chlamydia trachomatis infection was higher in women (8.8). Among the adults diagnosed with herpes simplex virus type 2 antibodies, the odds of TV infection were 3.9 for both men and women. Men with penile human papillomavirus infection had lower odds of TV infection (1.9), while women with vaginal human papillomavirus infection had higher odds of TV infection (2.2). CONCLUSION: The prevalence of TV infection is high among sexually active adults in the Nigerian community. It is therefore crucial to implement the increased public health actions such as regular and early diagnosis to reduce its prevalence.
Assuntos
Tricomoníase , Feminino , Humanos , Masculino , Anticorpos Antivirais , População Negra , Nigéria/epidemiologia , Prevalência , Tricomoníase/epidemiologia , Adulto , Pessoa de Meia-Idade , Coinfecção/epidemiologiaRESUMO
Understanding mucosal antibody responses from SARS-CoV-2 infection and/or vaccination is crucial to develop strategies for longer term immunity, especially against emerging viral variants. We profiled serial paired mucosal and plasma antibodies from COVID-19 vaccinated only vaccinees (vaccinated, uninfected), COVID-19-recovered vaccinees (recovered, vaccinated), and individuals with breakthrough Delta or Omicron BA.2 infections (vaccinated, infected). Saliva from COVID-19-recovered vaccinees displayed improved antibody-neutralizing activity, Fcγ receptor (FcγR) engagement, and IgA levels compared with COVID-19-uninfected vaccinees. Furthermore, repeated mRNA vaccination boosted SARS-CoV-2-specific IgG2 and IgG4 responses in both mucosa biofluids (saliva and tears) and plasma; however, these rises only negatively correlated with FcγR engagement in plasma. IgG and FcγR engagement, but not IgA, responses to breakthrough COVID-19 variants were dampened and narrowed by increased preexisting vaccine-induced immunity against the ancestral strain. Salivary antibodies delayed initiation following breakthrough COVID-19 infection, especially Omicron BA.2, but rose rapidly thereafter. Importantly, salivary antibody FcγR engagements were enhanced following breakthrough infections. Our data highlight how preexisting immunity shapes mucosal SARS-CoV-2-specific antibody responses and has implications for long-term protection from COVID-19.
Assuntos
COVID-19 , Humanos , Infecções Irruptivas , SARS-CoV-2 , Receptores de IgG , Imunoglobulina G , Anticorpos Antivirais , MucosaRESUMO
In recent years, reoviruses have been of major interest in immunotherapy because of their oncolytic properties. Preclinical and clinical trials, in which reovirus was used for the treatment of melanoma and glioblastoma, have paved the way for future clinical use of reovirus. However, little is known about how reovirus infection affects the tumor microenvironment and immune response towards infected tumor cells. Studies have shown that reovirus can directly stimulate natural killer (NK) cells, but how reovirus affects cellular ligands on tumor cells, which are ultimately key to tumor recognition and elimination by NK cells, has not been investigated. We tested how reovirus infection affects the binding of the NK Group-2 member D (NKG2D) receptor, which is a dominant mediator of NK cell anti-tumor activity. Using models of human-derived melanoma and glioblastoma tumors, we demonstrated that NKG2D ligands are downregulated in tumor cells post-reovirus-infection due to the impaired translation of these ligands in reovirus-infected cells. Moreover, we showed that downregulation of NKG2D ligands significantly impaired the binding of NKG2D to infected tumor cells. We further demonstrated that reduced recognition of NKG2D ligands significantly alters NK cell anti-tumor cytotoxicity in human primary NK cells and in the NK cell line NK-92. Thus, this study provides novel insights into reovirus-host interactions and could lead to the development of novel reovirus-based therapeutics that enhance the anti-tumor immune response.
Assuntos
Glioblastoma , Melanoma , Orthoreovirus , Infecções por Reoviridae , Reoviridae , Humanos , Anticorpos Antivirais , Glioblastoma/terapia , Ligantes , Melanoma/terapia , Subfamília K de Receptores Semelhantes a Lectina de Células NK , Microambiente TumoralRESUMO
The RBD, S, and N proteins, the three main antigens of the SARS-CoV-2 virus, activate the host immune system and cause the formation of IgM and IgG antibodies. While IgM indicates an early, acute infection stage, IgG shows a past infection or persistent sickness. This study used an indirect ELISA assay that targets the S1 subunit of the SARS-CoV-2 S protein to create an in-house, qualitative serological test specific to COVID-19. A total of 60 serum samples were examined using ELISA for anti-SARS-CoV-2 IgG, and 50 of those results were positive. An additional 20 samples were taken from cases that occurred before the pandemic. For the in-house ELISA assay, a plasmid containing the gene coding for the S1 subunit was transformed into E. coli DH5É bacterial cells and the protein was synthesized and purified. The purified protein was utilized to coat the ELISA plate, which was subsequently used to assess the levels of IgG among individuals with SARS-CoV-2 infection. The study found a significant association (p-value=0.01) between the in-house and the commercial anti-S1 subunit IgG antibodies kits. The in-house ELISA responded well, with a sensitivity and specificity of 75.0% and 88.89%, respectively. Furthermore, a library of SARS-CoV-2 recombinant S1 subunits was created by competent bacteria and may be employed for various tasks, such as creating diagnostic tools and scientific investigation. Overall, the in-house anti-SARS-CoV-2 human IgG-ELISA proved to be sensitive and specific for identifying IgG antibodies in patients exposed to SARS-CoV-2.
Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Análise Custo-Benefício , Escherichia coli , COVID-19/diagnóstico , Ensaio de Imunoadsorção Enzimática , Imunoglobulina G , Anticorpos Antivirais , Imunoglobulina MRESUMO
BACKGROUND: Measuring specific anti-SARS-CoV-2 antibodies has become one of the main epidemiological tools to survey the ongoing SARS-CoV-2 pandemic, but also vaccination response. The WHO made available a set of well-characterized samples derived from recovered individuals to allow normalization between different quantitative anti-Spike assays to defined Binding Antibody Units (BAU). METHODS: To assess sero-responses longitudinally, a cohort of ninety-nine SARS-CoV-2 RT-PCR positive subjects was followed up together with forty-five vaccinees without previous infection but with two vaccinations. Sero-responses were evaluated using a total of six different assays: four measuring anti-Spike proteins (converted to BAU), one measuring anti-Nucleocapsid proteins and one SARS-CoV-2 surrogate virus neutralization. Both cohorts were evaluated using the Euroimmun Anti-SARS-CoV-2-ELISA anti-S1 IgG and the Roche Elecsys Anti-SARS-CoV-2 anti-S1 assay. RESULTS: In SARS-CoV-2-convalesce subjects, the BAU-sero-responses of Euroimmun Anti-SARS-CoV-2-ELISA anti-S1 IgG and Roche Elecsys Anti-SARS-CoV-2 anti-S1 peaked both at 47 (43-51) days, the first assay followed by a slow decay thereafter (> 208 days), while the second assay not presenting any decay within one year. Both assay values in BAUs are only equivalent a few months after infection, elsewhere correction factors up to 10 are necessary. In contrast, in infection-naive vaccinees the assays perform similarly. CONCLUSION: The results of our study suggest that the establishment of a protective correlate or vaccination booster recommendation based on different assays, although BAU-standardised, is still challenging. At the moment the characteristics of the available assays used are not related, and the BAU-standardisation is unable to correct for that.
Assuntos
COVID-19 , Humanos , COVID-19/diagnóstico , SARS-CoV-2/genética , Anticorpos Antivirais , Bioensaio , Imunoglobulina GRESUMO
We aimed to evaluate the humoral response after the second and third doses of SARS-CoV-2 mRNA vaccine in ABO blood type incompatible kidney transplant (KT) recipients treated with rituximab. This retrospective study conducted between June 2021 and June 2022 included 131 KT recipients and 154 nontransplant controls who had received mRNA vaccines. We compared the seropositivity (anti-SARS-CoV-2 spike IgG antibody titer ≥ 0.8 U/mL) after the second and third vaccinations. Furthermore, we evaluated the impact of pretransplant vaccination for seropositivity. Of the 131 KT recipients, 50 had received the third dose of mRNA vaccine. The antibody titer was significantly increased after the third dose of mRNA vaccine. The seropositivity rate after the third dose of mRNA vaccine increased from 36 to 70%. We observed no significant difference in seropositivity after the third dose of mRNA vaccine in ABO incompatibility, rituximab use, mycophenolate mofetil use, and age at KT. Of the nine recipients who had received the second or third dose of the mRNA vaccine prior to the KT, eight of the recipients were seropositive both before and after the KT. Our results suggest that ABO incompatibility or rituximab use was not significantly associated with seropositivity.
Assuntos
COVID-19 , Transplante de Rim , Humanos , Rituximab/uso terapêutico , Vacinas contra COVID-19 , Estudos Retrospectivos , COVID-19/prevenção & controle , SARS-CoV-2 , Vacinas de mRNA , Anticorpos Antivirais , Incompatibilidade de Grupos SanguíneosRESUMO
Objectives: There is substantial immunological evidence that vaccination following natural infection increases protection. We compare the humoral immune response developed in initially seropositive individuals (naturally infected) to humoral hybrid immune response (developed after infection and vaccination) in the same population group after one year. Methods: The study included 197 male individuals who were naturally infected with SARS-CoV-2 and then vaccinated with SARS-CoV-2 vaccine. Trimeric spike, nucleocapsid, and ACE2-RBD blocking antibodies for SARS-CoV-2 were measured. Nasal swabs were collected for SARS-CoV-2 PCR testing. Information on vaccination against SARS-CoV-2 and PCR verified infection was retrieved from official databases (Abu Dhabi Health Data Services- SP LLC. ("Malaffi"), including number of vaccine doses received, date of vaccination, and type of the received vaccine. Results: All the study population were tested PCR-Negative at the time of sample collection. Our results showed that there was a significant rise in the mean (SD) and median (IQR) titers of trimeric spike, nucleocapsid and ACE2-RBD blocking antibodies in the post-vaccination stage. The mean (± SD) and median (IQR) concentration of the anti-S antibody rose by 3.3-fold (+230% ± 197% SD) and 2.8-fold (+185%, 220-390%, p<0.001), respectively. There was an observed positive dose-response relationship between number of the received vaccine doses and having higher proportion of study participants with higher than median concentration in the difference between the measured anti-S and ACE2-RBD blocking antibodies in the post-vaccination compared to pre-vaccination. Conclusion: Our study demonstrates that COVID-19 vaccination post natural infection elicits a robust immunological response with an impressive rise of SARS-CoV-2 antibodies, especially the ACE2-RBD blocking antibodies.