Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.486
Filtrar
1.
Int J Mol Sci ; 24(5)2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36902261

RESUMO

Oxytocin is a peptide neurophysin hormone made up of nine amino acids and is used in induction of one in four births worldwide (more than 13 percent in the United States). Herein, we have developed an antibody alternative aptamer-based electrochemical assay for real-time and point-of-care detection of oxytocin in non-invasive saliva samples. This assay approach is rapid, highly sensitive, specific, and cost-effective. Our aptamer-based electrochemical assay can detect as little as 1 pg/mL of oxytocin in less than 2 min in commercially available pooled saliva samples. Additionally, we did not observe any false positive or false negative signals. This electrochemical assay has the potential to be utilized as a point-of-care monitor for rapid and real-time oxytocin detection in various biological samples such as saliva, blood, and hair extracts.


Assuntos
Ocitocina , Saliva , Gravidez , Feminino , Humanos , Ocitocina/metabolismo , Saliva/metabolismo , Parto , Anticorpos/metabolismo
2.
Eur J Pharmacol ; 945: 175612, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36822455

RESUMO

Dysregulated epigenetic modifications are common in lung cancer but have been reversed using demethylating agent like 5-Aza-CdR. 5-Aza-CdR induces/upregulates the NY-ESO-1 antigen in lung cancer. Therefore, we investigated the molecular mechanisms accompanied with the epigenetic regulation of NY-ESO-1 in 5-Aza-CdR-treated NCI-H1975 cell line. We showed significant induction of the NY-ESO-1 protein (**p < 0.0097) using Cellular ELISA. Bisulfite-sequencing demonstrated 45.6% demethylation efficiency at the NY-ESO-1 gene promoter region and RT-qPCR analysis confirmed the significant induction of NY-ESO-1 at mRNA level (128-fold increase, *p < 0.050). We then investigated the mechanism by which 5-Aza-CdR inhibits cell proliferation in the NCI-H1975 cell line. Upregulation of the death receptors TRAIL (2.04-fold *p < 0.011) and FAS (2.1-fold *p < 0.011) indicate activation of the extrinsic apoptotic pathway. The upregulation of Voltage-dependent anion-selective channel protein 1 (1.9-fold), Major vault protein (1.8-fold), Bax (1.16-fold), and Cytochrome C (1.39-fold) indicate the activation of the intrinsic pathway. We also observed the differential expression of protein Complement C3 (3.3-fold), Destrin (-5.1-fold), Vimentin (-1.7-fold), Peroxiredoxin 4 (-1.6-fold), Fascin (-1.8-fold), Heme oxygenase-2 (-0.67-fold**p < 0.0055), Hsp27 (-0.57-fold**p < 0.004), and Hsp70 (-0.39-fold **p < 0.001), indicating reduced cell growth, cell migration, and metastasis. The upregulation of 40S ribosomal protein S9 (3-fold), 40S ribosomal protein S15 (4.2-fold), 40S ribosomal protein S18 (2.5-fold), and 60S ribosomal protein L22 (4.4-fold) implied the induction of translation machinery. These results reiterate the decisive role of 5-Aza-CdR in lung cancer treatment since it induces the epigenetic regulation of NY-ESO-1 antigen, inhibits cell proliferation, increases apoptosis, and decreases invasiveness.


Assuntos
Epigênese Genética , Neoplasias Pulmonares , Humanos , Decitabina/farmacologia , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Proteínas de Membrana/metabolismo , Azacitidina/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Apoptose , Anticorpos/metabolismo , Linhagem Celular Tumoral
3.
mBio ; 14(1): e0339322, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36728420

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection alters the immunological profiles of natural killer (NK) cells. However, whether NK antiviral functions are impaired during severe coronavirus disease 2019 (COVID-19) and what host factors modulate these functions remain unclear. We found that NK cells from hospitalized COVID-19 patients degranulate less against SARS-CoV-2 antigen-expressing cells (in direct cytolytic and antibody-dependent cell cytotoxicity [ADCC] assays) than NK cells from mild COVID-19 patients or negative controls. The lower NK degranulation was associated with higher plasma levels of SARS-CoV-2 nucleocapsid antigen. Phenotypic and functional analyses showed that NK cells expressing the glyco-immune checkpoint Siglec-9 elicited higher ADCC than Siglec-9- NK cells. Consistently, Siglec-9+ NK cells exhibit an activated and mature phenotype with higher expression of CD16 (FcγRIII; mediator of ADCC), CD57 (maturation marker), and NKG2C (activating receptor), along with lower expression of the inhibitory receptor NKG2A, than Siglec-9- CD56dim NK cells. These data are consistent with the concept that the NK cell subpopulation expressing Siglec-9 is highly activated and cytotoxic. However, the Siglec-9 molecule itself is an inhibitory receptor that restrains NK cytotoxicity during cancer and other viral infections. Indeed, blocking Siglec-9 significantly enhanced the ADCC-mediated NK degranulation and lysis of SARS-CoV-2-antigen-positive target cells. These data support a model in which the Siglec-9+ CD56dim NK subpopulation is cytotoxic even while it is restrained by the inhibitory effects of Siglec-9. Alleviating the Siglec-9-mediated restriction on NK cytotoxicity may further improve NK immune surveillance and presents an opportunity to develop novel immunotherapeutic tools against SARS-CoV-2 infected cells. IMPORTANCE One mechanism that cancer cells use to evade natural killer cell immune surveillance is by expressing high levels of sialoglycans, which bind to Siglec-9, a glyco-immune checkpoint molecule on NK cells. This binding inhibits NK cell cytotoxicity. Several viruses, such as hepatitis B virus (HBV) and HIV, also use a similar mechanism to evade NK surveillance. We found that NK cells from SARS-CoV-2-hospitalized patients are less able to function against cells expressing SARS-CoV-2 Spike protein than NK cells from SARS-CoV-2 mild patients or uninfected controls. We also found that the cytotoxicity of the Siglec-9+ NK subpopulation is indeed restrained by the inhibitory nature of the Siglec-9 molecule and that blocking Siglec-9 can enhance the ability of NK cells to target cells expressing SARS-CoV-2 antigens. Our results suggest that a targetable glyco-immune checkpoint mechanism, Siglec-9/sialoglycan interaction, may contribute to the ability of SARS-CoV-2 to evade NK immune surveillance.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Anticorpos/metabolismo , Citotoxicidade Celular Dependente de Anticorpos , COVID-19/metabolismo , Células Matadoras Naturais , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo
4.
Methods Mol Biol ; 2612: 129-139, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36795364

RESUMO

Carbohydrates have a great potential in generating structural and immunological diversities. Microbial pathogens often decorate their outmost surfaces with specific carbohydrate signatures. Carbohydrate antigens also differ significantly from protein antigens in physiochemical properties, especially in surface display of antigenic determinants in aqueous solutions. Technical optimization or modifications are often needed when we apply standard procedures for protein-based enzyme-linked immunosorbent assay (ELISA) to assess immunologically potent carbohydrates. We present here our laboratory protocols for performing carbohydrate ELISA and discuss several assay platforms that may be applied complementarily to explore the carbohydrate moieties that are critical for host immune recognition and induction of glycan-specific antibody responses.


Assuntos
Carboidratos , Polissacarídeos , Carboidratos/química , Polissacarídeos/química , Anticorpos/metabolismo , Antígenos , Proteínas , Ensaio de Imunoadsorção Enzimática
5.
Proc Natl Acad Sci U S A ; 120(8): e2219833120, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36787365

RESUMO

Lipoprotein lipase (LPL) is secreted into the interstitial spaces by parenchymal cells and then transported into capillaries by GPIHBP1. LPL carries out the lipolytic processing of triglyceride (TG)-rich lipoproteins (TRLs), but the tissue-specific regulation of LPL is incompletely understood. Plasma levels of TG hydrolase activity after heparin injection are often used to draw inferences about intravascular LPL levels, but the validity of these inferences is unclear. Moreover, plasma TG hydrolase activity levels are not helpful for understanding LPL regulation in specific tissues. Here, we sought to elucidate LPL regulation under thermoneutral conditions (30 °C). To pursue this objective, we developed an antibody-based method to quantify (in a direct fashion) LPL levels inside capillaries. At 30 °C, intracapillary LPL levels fell sharply in brown adipose tissue (BAT) but not heart. The reduced intracapillary LPL levels were accompanied by reduced margination of TRLs along capillaries. ANGPTL4 expression in BAT increased fourfold at 30 °C, suggesting a potential explanation for the lower intracapillary LPL levels. Consistent with that idea, Angptl4 deficiency normalized both LPL levels and TRL margination in BAT at 30 °C. In Gpihbp1-/- mice housed at 30 °C, we observed an ANGPTL4-dependent decrease in LPL levels within the interstitial spaces of BAT, providing in vivo proof that ANGPTL4 regulates LPL levels before LPL transport into capillaries. In conclusion, our studies have illuminated intracapillary LPL regulation under thermoneutral conditions. Our approaches will be useful for defining the impact of genetic variation and metabolic disease on intracapillary LPL levels and TRL processing.


Assuntos
Tecido Adiposo Marrom , Receptores de Lipoproteínas , Animais , Camundongos , Tecido Adiposo/metabolismo , Tecido Adiposo Marrom/metabolismo , Anticorpos/metabolismo , Lipase Lipoproteica/metabolismo , Receptores de Lipoproteínas/metabolismo , Temperatura , Triglicerídeos/metabolismo
6.
Anal Chim Acta ; 1246: 340877, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36764771

RESUMO

Ubiquitination is a reversible post-translational modification that plays a pivotal role in numerous biological processes. Antibody-based approaches, as the most used methods for identifying ubiquitination sites, exist sequence recognition bias, high cost, and ubiquitin-like protein modification interference, limiting their widespread application. Here, we proposed an Antibody-Free approach for Ubiquitination Profiling, termed AFUP, by selectively clicking the ubiquitinated lysine to enrich and profile endogenous ubiquitinated peptides using mass spectrometry. Briefly, protein amines were blocked with formaldehyde, and then the ubiquitin molecules were hydrolyzed from the ubiquitinated proteins by non-specific deubiquitinases USP2 and USP21 to release the free ε-amine of lysine. Peptides containing free ε-amines were selectively enriched with streptavidin beads upon NHS-SS-biotin labeling. Finally, the enriched peptides were eluted by DTT and analyzed by LC-MS/MS, resulting in ubiquitination profiling. Preliminary experiment showed that 349 ± 7 ubiquitination sites were identified in 0.8 mg HeLa lysates with excellent reproducibility (CV = 2%) and high quantitative stability (Pearson, r ≥ 0.91) using our method. With the combination of AFUP and simple basic C18 pre-fractionation, approximately 4000 ubiquitination sites were identified in a single run of 293T cells. In addition, we showed that 209 ubiquitination sites were significantly regulated in UBE2O knockdown cells after normalized to protein abundance. In conclusion, our results demonstrated that AFUP is a robust alternative strategy for ubiquitomics research.


Assuntos
Lisina , Espectrometria de Massas em Tandem , Humanos , Lisina/metabolismo , Cromatografia Líquida , Reprodutibilidade dos Testes , Ubiquitinação , Ubiquitina , Proteínas Ubiquitinadas/análise , Proteínas Ubiquitinadas/química , Proteínas Ubiquitinadas/metabolismo , Peptídeos/química , Anticorpos/metabolismo , Aminas , Ubiquitina Tiolesterase/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo
7.
J Leukoc Biol ; 113(1): 27-40, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36822164

RESUMO

Natural killer (NK) cells are innate lymphocytes capable of mediating immune responses without prior sensitization. NK cells express Fc-gamma receptors (FcγRs) that engage the Fc region of IgG. Studies investigating the role of FcγRs on mouse NK cells have been limited due to lack specific reagents. In this study, we characterize the expression and biological consequences of activating mouse NK cells through their FcγRs. We demonstrate that most NK cells express the activating CD16 receptor, and a subset of NK cells also expresses the inhibitory CD32b receptor. Critically, these FcγRs are functional on mouse NK cells and can modulate antibody-mediated responses. We also characterized mice with conditional knockout alleles of Fcgr3 (CD16) or Fcgr2b (CD32b) in the NK and innate lymphoid cell (ILC) lineage. NK cells in these mice did not reveal any developmental defects and were responsive to cross-linking activating NK receptors, cytokine stimulation, and killing of YAC-1 targets. Importantly, CD16-deficient NK cells failed to induce antibody-directed cellular cytotoxicity of antibody-coated B-cell lymphomas in in vitro assays. In addition, we demonstrate the important role of CD16 on NK cells using an in vivo model of cancer immunotherapy using anti-CD20 antibody treatment of B-cell lymphomas.


Assuntos
Imunidade Inata , Linfoma de Células B , Camundongos , Animais , Receptores de IgG/metabolismo , Citotoxicidade Imunológica , Células Matadoras Naturais , Anticorpos/metabolismo
8.
Transfusion ; 63(3): 463-469, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36597800

RESUMO

BACKGROUND: Flow cytometry (FC) has proven its utility in scrutinizing AB antigen expression in red blood cells (RBCs), cooperating with serological tests for accurate blood group typing. However, technical difficulties may impair the characterization of weak ABO subtypes when background noises appear at non-negligible levels. STUDY DESIGN AND METHODS: We sought to establish an FC method that could prevent antibody-induced hemagglutination and an increase in cellular autofluorescence, two major issues inherent to RBC-FC analysis of AB expression. We optimized fixatives, multicolor-staining protocols, and sequential gating strategies. Blood samples from weak ABO subtype cases, Bm and Ael , were analyzed with the established protocol. RESULTS: The optimized mixture of glutaraldehyde and formaldehyde successfully generated fixed RBCs resistant to agglutination while maintaining low autofluorescence. These features allowed co-staining of leukocyte- and erythrocyte-markers, which enabled sequential gating strategies facilitating the precise AB antigen analysis in purely single RBCs with minimum background noises. By the established FC analysis, we could detect in the Bm sample a small RBC population exhibiting weak B antigen expression. The assay also proved it feasible to identify a small population (0.04%) of RBCs weakly expressing the A antigen in the Ael sample confirmed as harboring a rare c.816dupG ABO variant allele. CONCLUSION: The RBC-FC analysis described here allows the detection of AB antigens weakly expressed in RBCs while achieving minimum background noise levels in negative control samples. Overall, the modified protocol provides a quick and reliable assay valuable in transfusion medicine and is potentially applicable to the characterization of rare weak ABO variants.


Assuntos
Sistema ABO de Grupos Sanguíneos , Eritrócitos , Humanos , Citometria de Fluxo/métodos , Eritrócitos/metabolismo , Anticorpos/metabolismo , Tipagem e Reações Cruzadas Sanguíneas , Antígenos/metabolismo
9.
J Control Release ; 354: 109-119, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36596341

RESUMO

Neutrophil extracellular traps (NETs) are structures consisting of decondensed chromatin with associated proteins, including histones and antimicrobial peptides, released from activated neutrophils. They are believed to be one of the body's first lines of defense against infectious agents. Despite their beneficial effect on the immune response process, some studies indicate that their excessive formation and the associated accumulation of extracellular DNA (eDNA) together with other polyelectrolytes (F-actin) plays an important role in the pathogenesis of many diseases. Thus NETs formation and removal are clinically significant. The monoclonal antibody 2C5 has strong specificity for intact nucleohistones (NS) and targets NS in NETs as we previously confirmed. Creation of a nano preparation that can specifically recognize and destroy NETs represents the aim for treatment many diseases. 2C5 antibody functionalized micelles coated with DNase I were created to achieve this aim.


Assuntos
Armadilhas Extracelulares , Armadilhas Extracelulares/metabolismo , Micelas , Desoxirribonuclease I/metabolismo , Neutrófilos , Anticorpos/metabolismo
10.
Sci Rep ; 13(1): 377, 2023 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-36611042

RESUMO

Lysine methylation modulates the function of histone and non-histone proteins, and the enzymes that add or remove lysine methylation-lysine methyltransferases (KMTs) and lysine demethylases (KDMs), respectively-are frequently mutated and dysregulated in human diseases. Identification of lysine methylation sites proteome-wide has been a critical barrier to identifying the non-histone substrates of KMTs and KDMs and for studying functions of non-histone lysine methylation. Detection of lysine methylation by mass spectrometry (MS) typically relies on the enrichment of methylated peptides by pan-methyllysine antibodies. In this study, we use peptide microarrays to show that pan-methyllysine antibodies have sequence bias, and we evaluate how the differential selectivity of these reagents impacts the detection of methylated peptides in MS-based workflows. We discovered that most commercially available pan-Kme antibodies have an in vitro sequence bias, and multiple enrichment approaches provide the most comprehensive coverage of the lysine methylome. Overall, global lysine methylation proteomics with multiple characterized pan-methyllysine antibodies resulted in the detection of 5089 lysine methylation sites on 2751 proteins from two human cell lines, nearly doubling the number of reported lysine methylation sites in the human proteome.


Assuntos
Lisina , Proteoma , Humanos , Lisina/metabolismo , Proteoma/metabolismo , Epigenoma , Metilação , Peptídeos/metabolismo , Anticorpos/metabolismo
11.
Vox Sang ; 118(3): 207-216, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36633967

RESUMO

BACKGROUND AND OBJECTIVES: Current manual and automated phenotyping methods are based on visual detection of the antigen-antibody interaction. This approach has several limitations including the use of large volumes of patient and reagent red blood cells (RBCs) and antisera to produce a visually detectable reaction. We sought to determine whether the flow cytometry could be developed and validated to perform RBC phenotyping to enable a high-throughput method of phenotyping using comparatively miniscule reagent volumes via fluorescence-based detection of antibody binding. MATERIALS AND METHODS: RBC phenotyping by flow cytometry was performed using monoclonal direct typing antisera (human IgM): anti-C, -E, -c, -e, -K, -Jka , -Jkb and indirect typing antisera (human IgG): anti-k, -Fya , -Fyb , -S, -s that are commercially available and currently utilized in our blood transfusion services (BTS) for agglutination-based phenotyping assays. RESULTS: Seventy samples were tested using both flow-cytometry-based-phenotyping and a manual tube standard agglutination assay. For all the antigens tested, 100% concordance was achieved. The flow-cytometry-based method used minimal reagent volume (0.5-1 µl per antigen) compared with the volumes required for manual tube standard agglutination (50 µl per antigen) CONCLUSION: This study demonstrates the successful validation of flow-cytometry-based RBC phenotyping. Flow cytometry offers many benefits compared to common conventional RBC phenotyping methods including high degrees of automation, quantitative assessment with automated interpretation of results and extremely low volumes of reagents. This method could be used for high-throughput, low-cost phenotyping for both blood suppliers and hospital BTS.


Assuntos
Antígenos de Grupos Sanguíneos , Humanos , Citometria de Fluxo , Eritrócitos , Anticorpos/metabolismo , Soros Imunes/metabolismo
12.
Mol Metab ; 69: 101680, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36696925

RESUMO

OBJECTIVE: Renal fibrosis is a hallmark for chronic kidney disease (CKD), and often leads to end stage renal disease (ESRD). However, limited interventions are available clinically to ameliorate or reverse renal fibrosis. METHODS: Herein, we evaluated whether blockade of endotrophin through neutralizing antibodies protects from renal fibrosis in the podocyte insult model (the "POD-ATTAC" mouse). We determined the therapeutic effects of endotrophin targeted antibody through assessing renal function, renal inflammation and fibrosis at histological and transcriptional levels, and podocyte regeneration. RESULTS: We demonstrated that neutralizing endotrophin antibody treatment significantly ameliorates renal fibrosis at the transcriptional, morphological, and functional levels. In the antibody treatment group, expression of pro-inflammatory and pro-fibrotic genes was significantly reduced, normal renal structures were restored, collagen deposition was decreased, and proteinuria and renal function were improved. We further performed a lineage tracing study confirming that podocytes regenerate as de novo podocytes upon injury and loss, and blockade of endotrophin efficiently enhances podocyte-specific marker expressions. CONCLUSION: Combined, we provide pre-clinical evidence supporting neutralizing endotrophin as a promising therapy for intervening with renal fibrosis in CKD, and potentially in other chronic fibro-inflammatory diseases.


Assuntos
Podócitos , Insuficiência Renal Crônica , Camundongos , Animais , Podócitos/patologia , Fragmentos de Peptídeos/metabolismo , Fibrose , Insuficiência Renal Crônica/metabolismo , Anticorpos/metabolismo
13.
Nanotechnology ; 34(15)2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36638529

RESUMO

Here, we prepared a magnetic nanocomposite system composed of a cluster of magnetite nanoparticles coated with silica shell (MSNPs) with an average diameter of 140 ± 20 nm and conjugated with CD9 antibody (AntiCD9) using different strategies including adsorption or chemical conjugation of antibody molecules to either aminated MSNPs (AMSNPs) or carboxylated MSNPs (CMSNPs). Then, MSNPs were employed to isolate exosomes from ultracentrifuge-enriched solution, PC3 cell-culture medium, or exosome-spiked simulated plasma samples. Quantitative tests using nanoparticle-tracking analysis confirmed antibody-covalently conjugated MSNPs, i.e. the AntiCD9-AMSNPs and AntiCD9-CMSNPs enabled >90% recovery of exosomes. Additionally, the exosomes isolated with AntiCD9-CMSNPs showed higher recovery efficiency compared to the AntiCD9-AMSNPs. For both nanoadsorbents, lower protein impurities amounts were obtained as compared to that of exosomes isolated by ultracentrifugation and Exocib kit. The mean diameter assessment of the isolated exosomes indicates that particles isolated by using AntiCD9-AMSNPs and AntiCD9-CMSNPs have smaller sizes (136 ± 2.64 nm and 113 ± 11.53 nm, respectively) than those obtained by UC-enriched exosomes (140.9 ± 1.6 nm) and Exocib kit (167 ± 10.53 nm). Such promising results obtained in the isolation of exosomes recommend magnetic nanocomposite as an efficient tool for the simple and fast isolation of exosomes for diagnosis applications.


Assuntos
Exossomos , Anticorpos/metabolismo , Exossomos/química , Fenômenos Magnéticos , Proteínas/análise , Ultracentrifugação/métodos , Nanocompostos/química
14.
Biomolecules ; 13(1)2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36671549

RESUMO

Immuno-positron emission tomography (immunoPET) is a non-invasive in vivo imaging method based on tracking and quantifying radiolabeled monoclonal antibodies (mAbs) and other related molecules, such as antibody fragments, nanobodies, or affibodies. However, the success of immunoPET in neuroimaging is limited because intact antibodies cannot penetrate the blood-brain barrier (BBB). In neuro-oncology, immunoPET has been successfully applied to brain tumors because of the compromised BBB. Different strategies, such as changes in antibody properties, use of physiological mechanisms in the BBB, or induced changes to BBB permeability, have been developed to deliver antibodies to the brain. These approaches have recently started to be applied in preclinical central nervous system PET studies. Therefore, immunoPET could be a new approach for developing more specific PET probes directed to different brain targets.


Assuntos
Neoplasias Encefálicas , Imunoconjugados , Humanos , Anticorpos/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Neoplasias Encefálicas/diagnóstico por imagem
15.
Protein Eng Des Sel ; 362023 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-36648434

RESUMO

Display technologies are powerful tools for discovering binding proteins against a broad range of biological targets. However, it remains challenging to adapt display technologies for the discovery of proteins that inhibit the enzymatic activities of targets. Here, we investigate approaches for discovering and characterizing inhibitory antibodies in yeast display format using a well-defined series of constructs and the target matrix metalloproteinase-9. Three previously reported antibodies were used to create model libraries consisting of inhibitory, non-inhibitory, and non-binding constructs. Conditions that preferentially enrich for inhibitory clones were identified for both magnetic bead-based enrichments and fluorescence-activated cell sorting. Half maximal inhibitory concentration (IC50) was obtained through yeast titration assays. The IC50 of the inhibitory antibody obtained in yeast display format falls within the confidence interval of the IC50 value determined in soluble form. Overall, this study identifies strategies for the discovery and characterization of inhibitory clones directly in yeast display format.


Assuntos
Biblioteca de Peptídeos , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Anticorpos/metabolismo , Citometria de Fluxo
16.
Sci Rep ; 13(1): 567, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36631484

RESUMO

The majority of mammalian proteins are glycosylated, with the glycans serving to modulate a wide range of biological activities. Variations in protein glycosylation can have dramatic effects on protein stability, immunogenicity, antibody effector function, pharmacological safety and potency, as well as serum half-life. The glycosylation of therapeutic biologicals is a critical quality attribute (CQA) that must be carefully monitored to ensure batch-to-batch consistency. Notably, many factors can affect the composition of the glycans during glycoprotein production, and variations in glycosylation are among the leading causes of pharmaceutical batch rejection. Currently, the characterization of protein glycosylation relies heavily on methods that employ chromatography and/or mass spectrometry, which require a high level of expertise, are time-consuming and costly and, because they are challenging to implement during in-process biologics production or during in vitro glycan modification, are generally performed only post-production. Here we report a simplified approach to assist in monitoring glycosylation features during glycoprotein engineering, that employs flow cytometry using fluorescent microspheres chemically coupled to high-specificity glycan binding reagents. In our GlycoSense method, a range of carbohydrate-sensing microspheres with distinct optical properties may be combined into a multiplex suspension array capable of detecting multiple orthogonal glycosylation features simultaneously, using commonplace instrumentation, without the need for glycan release. The GlycoSense method is not intended to replace more detailed post-production glycan profiling, but instead, to complement them by potentially providing a cost-effective, rapid, yet robust method for use at-line as a process analytic technology (PAT) in a biopharmaceutical workflow or at the research bench. The growing interest in using in vitro glycoengineering to generate glycoproteins with well-defined glycosylation, provides motivation to demonstrate the capabilities of the GlycoSense method, which we apply here to monitor changes in the protein glycosylation pattern (GlycoPrint) during the in vitro enzymatic modification of the glycans in model glycoproteins.


Assuntos
Anticorpos , Glicoproteínas , Animais , Glicosilação , Glicoproteínas/metabolismo , Anticorpos/metabolismo , Espectrometria de Massas , Mamíferos/metabolismo , Polissacarídeos/metabolismo
17.
Methods Mol Biol ; 2593: 113-126, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36513927

RESUMO

Spatial proteomics has recently garnered significant interest, as it offers to provide unprecedented insight into biological processes in both health and disease, by connecting protein expression patterns from the subcellular level to the tissue or even organism level. These high-content approaches generally rely on a high degree of multiplexing, whereby multiple proteins can be detected simultaneously. The most versatile multiplexing approaches utilize antibodies to confer specificity for various intracellular proteins of interest. Therefore, these methods must be able to differentiate many antibodies at once. In this chapter, we describe a simple and rapid approach to labeling antibodies with distinct epitope tags in a site-specific manner. This allows multiple antibodies, even from the same host species, to be uniquely identified and detected and offers a simple approach for spatial proteomic applications.


Assuntos
Anticorpos , Proteômica , Epitopos/metabolismo , Anticorpos Fosfo-Específicos , Anticorpos/metabolismo , Proteínas
18.
Methods Mol Biol ; 2609: 135-146, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36515834

RESUMO

Immunoprecipitation is an essential methodology for enriching and purifying targeted proteins and peptides for in-depth analysis by any number of further techniques, from Western blotting to mass spectrometry (MS). Historically, the posttranslational modification ADP-ribosylation (ADPr) has been studied mainly in its polymerized form (poly-ADPr), but recent studies support the abundance and physiological relevance of mono-ADPr. Here, we describe several approaches to enrich mono-ADP-ribosylated proteins and peptides using mono-ADPr-specific antibodies, which can be tailored to a desired target and mode of downstream analysis.


Assuntos
ADP-Ribosilação , Processamento de Proteína Pós-Traducional , Imunoprecipitação , Proteínas/metabolismo , Peptídeos/química , Anticorpos/metabolismo
19.
Methods Mol Biol ; 2557: 101-111, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36512212

RESUMO

Immunofluorescence is a technique that uses antibodies and fluorophores to label structures inside cells. The cells are normally fixed and permeabilized, and then structures are labelled using primary antibodies directly conjugated to fluorophores, or, more commonly, first with an antibody against an antigen of interest followed by a secondary antibody conjugated to a fluorophore that binds to the primary antibody. Fluorescence can be visualized using widefield, confocal, or super-resolution microscopy. Here we focus on labelling of the Golgi apparatus and show that different fixation and permeabilization conditions can significantly affect labelling of Golgi proteins and describe how to optimize fluorescent detection of Golgi proteins.


Assuntos
Corantes Fluorescentes , Complexo de Golgi , Animais , Complexo de Golgi/metabolismo , Microscopia de Fluorescência/métodos , Imunofluorescência , Corantes Fluorescentes/metabolismo , Anticorpos/metabolismo , Microscopia Confocal , Mamíferos
20.
Biosens Bioelectron ; 222: 115015, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36529055

RESUMO

Taking advantages of the catalytic activity of METTL3/METTL14 protein towards adenine methylation in RNA sequence and the specific digestion activity of MazF protein towards unmethylated RNA sequence containing ACA bases, a novel photoelectrochemical biosensor was constructed for simultaneous detection of RNA methylation, METTL3/METTL14 protein and MazF protein. MoSe2-BiOI nanocomposite was prepared and considered as photoactive material, catalytic hairpin assembly strategy and in situ generation of electron donors catalyzed by polyaspartic acid-loaded alkaline phosphatase technique were employed as signal amplification. Under the optimum conditions, the detection ranges of methylated RNA, METTL3/METTL14 protein and MazF protein were 0.001-50 nM, 0.001-25 ng/µL, and 0.001-10 U/mL, respectively. The corresponding detection limits were 0.46 pM, 0.51 pg/µL and 0.42 U/µL with S/N = 3. In addition, the effect of drugs and composite pollutants on the activities of MazF proteins was assessed, proving the applicability of the developed method in the field of drug screening for MazF-related diseases. Moreover, the effects of pollutants on the activity of METTL3/METTL14 were also preliminarily explored, providing new information on pathogenic mechanism of pollutants.


Assuntos
Técnicas Biossensoriais , RNA , RNA/genética , Adenosina , Metiltransferases/genética , Metiltransferases/metabolismo , Metilação , Anticorpos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...