Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23.280
Filtrar
1.
J Assoc Physicians India ; 67(9): 42-45, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31561688

RESUMO

Introduction: The incidence of the urinary tract infections caused by Candida species, are becoming more common. Recently, an increase in the incidence of infection caused by fungi especially non albicans candida species (NAC) has been reported. Several virulence factors like biofilm formation, toxin production and presence of adhesins contribute to its pathogenesis. Objectives: This study was undertaken to determine species distribution, biofilm formation and in-vitro antifungal susceptibility of candida isolated in our tertiary care hospital. Method: Eighty seven clinical isolates obtained from urine specimens were subjected to wet mount, Gram's stain and cultured on Sabouraud's Dextrose agar (SDA) medium. Conventional method for yeast identification was done. Biofilm forming ability of each isolate was detected using microtitre plate method. Antifungal susceptibility against posaconazole, amphotericin-B, fluconazole, itraconazole, ketoconazole, 5-flucytosine, voriconazole, and caspofungin was tested using Sensititre® Yeastone® (Trek diagnostic systems). Results and Discussion: Out of 87 candida isolates, 31.03% (n=27) were C. albicans and 68.97% (n=60) were non albicans candida species (NAC). Among 60 NAC, C. kruseii 29.89% (n=26), C. glabrata 24.14% (n=21), C. tropicalis 14.94% (n=13). Among all isolates, 36.78% (n=32) were biofilm producers and biofilm positivity more among C. albicans 55.56% (n=15) as compared to NAC 28.33% (n=17) (Pvalue<0.002). The maximum positivity was observed with isolates from plastic devices (61.8%). The minimum inhibitory concentrations of all antifungal drugs against all isolates were within susceptible range except for fluconazole which was resistant to C. kruseii. Conclusion: C. albicans remains the major isolate from urine samples and also biofilm formation as a virulence factor might have a higher significance for C. albicans than for NAC and its ability to form biofilm is intricately linked with ability of organisms to adhere, colonize and subsequently cause infection.


Assuntos
Antifúngicos/uso terapêutico , Biofilmes/crescimento & desenvolvimento , Candida/efeitos dos fármacos , Infecções Urinárias/tratamento farmacológico , Antifúngicos/farmacologia , Candida/isolamento & purificação , Humanos , Testes de Sensibilidade Microbiana , Centros de Atenção Terciária , Infecções Urinárias/microbiologia
2.
World J Microbiol Biotechnol ; 35(8): 128, 2019 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-31375920

RESUMO

Large patch disease, caused by Rhizoctonia solani AG2-2, is the most devastating disease in Zoysiagrass (Zoysia japonica). Current large patch disease control strategies rely primarily upon the use of chemical pesticides. Streptomyces sp. S8 is known to possess exceptional antagonistic properties that could potentially suppress the large patch pathogen found at turfgrass plantations. This study aims to demonstrate the feasibility of using the strain as a biological control mechanism. Sequencing of the S8 strain genome revealed a valinomycin biosynthesis gene cluster. This cluster is composed of the vlm1 and vlm2 genes, which are known to produce antifungal compounds. In order to verify this finding for the large patch pathogen, a valinomycin biosynthesis knockout mutant was created via the CRISPR/Cas9 system. The mutant lost antifungal activity against the large patch pathogen. Consequently, it is anticipated that eco-friendly microbial preparations derived from the S8 strain can be utilized to biologically control large patch disease.


Assuntos
Antifúngicos/metabolismo , Antifúngicos/farmacologia , Rhizoctonia/efeitos dos fármacos , Streptomyces/metabolismo , Valinomicina/metabolismo , Valinomicina/farmacologia , Vias Biossintéticas/genética , Técnicas de Inativação de Genes , Genoma Bacteriano , Família Multigênica , Controle Biológico de Vetores/métodos , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Poaceae/microbiologia , Rhizoctonia/crescimento & desenvolvimento , Análise de Sequência de DNA , Streptomyces/genética
3.
An Acad Bras Cienc ; 91(3): e20180621, 2019 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-31411258

RESUMO

Aristolochia triangularis Cham., is one of the most frequently used medicinal plant in Southern Brazil. Preparations containing the leaves and/or stems are traditionally used as anti-inflammatory, diuretic, as well as antidote against snakebites. This study screened A. triangularis extracts, fractions and isolated compounds for different bioactivities. A weak antiproliferative activity against human lung cancer cell line (A549) was observed only for chloroform fraction obtained from stems (CFstems - CC50: 2.93 µg/mL). Also, a moderate antimicrobial activity against Staphylococcus aureus was detected just for chloroform fraction obtained from leaves (CFleaves -13-16 mm inhibition zone). Additionally, two semi-purified fractions (CFstems-4 and CFleaves-4) selectively inhibited HSV-1 replication (IC50 values of 0.40 and 2.61 µg/mL, respectively), while only CFleaves showed promising results against Leishmania amazonensis. Fractionation of extracts resulted in the isolation of one neolignan (-) cubebin and one lignan (+) galbacin. However, these compounds are not responsible for the in vitro bioactivities herein detected. The presence of aristolochic acid I and aristolochic acid II in the crude ethanol extract of stems (CEEstems) and leaves (CEEleaves) was also investigated. The HPLC analysis of these extracts did not display any peak with retention time or UV spectra comparable to aristolochic acids I and II.


Assuntos
Aristolochia/química , Compostos Fitoquímicos/química , Antibacterianos/farmacologia , Antifúngicos/farmacologia , Antiprotozoários/farmacologia , Antivirais/farmacologia , Ácidos Aristolóquicos/química , Brasil , Fracionamento Químico , Cromatografia Líquida de Alta Pressão/métodos , Humanos , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia
4.
Pestic Biochem Physiol ; 159: 51-58, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31400784

RESUMO

Isoquinoline alkaloids possess broad pharmacological activities. In this study, the antifungal activity of twelve isoquinoline alkaloids, including berberine (1), jatrorrhizine (2), coptisine (3), corydaline (4), tetrahydroberberine (5), chelidonine (6), dihydrosanguinarine (7), chelerythrine (8), sanguinarine (9), palmatine (10), tetrahydropalmatine (11) and columbamine (12) were evaluated against eight plant pathogenic fungi in vitro. All the tested compounds showed varying degrees of inhibition against the eight tested plant fungi. Among them, sanguinarine exhibited high antifungal activity (EC50 ranging from 6.96-59.36 µg/mL). It displayed the best inhibitory activity against Magnaporthe oryzae (EC50 = 6.96 µg/mL), compared with azoxystrobin (EC50 = 12.04 µg/mL), and significantly suppressed spore germination of M. oryzae with the inhibition rate reaching 100% (50 µg/mL). The optical microscopy and scanning electron microscopy observations revealed that after treating M. oryzae mycelia with sanguinarine at 10 µg/mL, the mycelia appeared curved, collapsed and the cell membrane integrity was eventually damaged. Furthermore, the reactive oxygen species production, mitochondrial membrane potential and nuclear morphometry of mycelia had been changed, and the membrane function and cell proliferation of mycelia were destroyed. These results will enrich our insights into action mechanisms of antifungal activity of sanguinarine against M. oryzae.


Assuntos
Alcaloides/farmacologia , Antifúngicos/farmacologia , Benzofenantridinas/farmacologia , Isoquinolinas/farmacologia , Berberina/análogos & derivados , Berberina/farmacologia , Alcaloides de Berberina/farmacologia , Magnaporthe/metabolismo , Magnaporthe/patogenicidade , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Testes de Sensibilidade Parasitária , Espécies Reativas de Oxigênio/metabolismo
5.
Pestic Biochem Physiol ; 159: 59-67, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31400785

RESUMO

Phytophthora capsici is a plant oomycete pathogen, which causes many devastating diseases on a broad range of hosts. Zedoary turmeric oil (ZTO) is a kind of natural plant essential oil that has been widely used in pharmaceutical applications. However, the antifungal activity of ZTO against phytopathogens remains unknown. In this study, we found ZTO could inhibit P. capsici growth and development in vitro and in detached cucumber and Nicotiana benthamiana leaves. Besides, ZTO treatment resulted in severe damage to the cell membrane of P. capsici, leading to the leakage of intracellular contents. ZTO also induced a significant increase in relative conductivity, malondialdehyde concentration and glycerol content. Furthermore, we identified 50 volatile organic compounds from ZTO, and uncovered Curcumol, ß-elemene, curdione and curcumenol with strong inhibitory activities against mycelial growth of P. capsici. Overall, our results not only shed new light on the antifungal mechanism of ZTO, but also imply a promising alternative for the control of phytophthora blight caused by P. capsici.


Assuntos
Antifúngicos/farmacologia , Membrana Celular/efeitos dos fármacos , Óleos Voláteis/farmacologia , Phytophthora/efeitos dos fármacos , Extratos Vegetais/farmacologia , Óleos Vegetais/farmacologia , Curcuma , Phytophthora/metabolismo , Sesquiterpenos/farmacologia , Sesquiterpenos de Germacrano/farmacologia
6.
J Enzyme Inhib Med Chem ; 34(1): 1388-1399, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31392901

RESUMO

Fourteen novel dipeptide carboxamide derivatives bearing benzensulphonamoyl propanamide were synthesized and characterized using 1H NMR, 13C NMR, FTIR and MS spectroscopic techniques. In vivo antimalarial and in vitro antimicrobial studies were carried out on these synthesized compounds. Molecular docking, haematological analysis, liver and kidney function tests were also evaluated to assess the effect of the compounds on the organs. At 200 mg/kg body weight, 7i inhibited the multiplication of the parasite by 81.38% on day 12 of post-treatment exposure. This was comparable to the 82.34% reduction with artemisinin. The minimum inhibitory concentration (MIC) in µM ranged from 0.03 to 2.34 with 7h having MIC of 0.03 µM against Plasmodium falciparium. The in vitro antibacterial activity of the compounds against some clinically isolated bacteria strains showed varied activities with some of the new compounds showing better activities against the bacteria and the fungi more than the reference drug ciprofloxacin and fluconazole.


Assuntos
Antibacterianos/farmacologia , Antifúngicos/farmacologia , Antimaláricos/química , Antimaláricos/farmacologia , Dipeptídeos/química , Dipeptídeos/farmacologia , Sulfonamidas/farmacologia , Animais , Antibacterianos/síntese química , Antibacterianos/química , Antifúngicos/síntese química , Antifúngicos/química , Antimaláricos/síntese química , Bactérias/efeitos dos fármacos , Dipeptídeos/síntese química , Fungos/efeitos dos fármacos , Camundongos , Testes de Sensibilidade Microbiana , Testes de Sensibilidade Parasitária , Plasmodium falciparum/efeitos dos fármacos , Ratos , Sulfonamidas/química
7.
Pestic Biochem Physiol ; 158: 175-184, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31378354

RESUMO

Succinate dehydrogenase (SDH), an essential component of cellular respiratory chain and tricarboxylic acid (or Krebs) cycle, has been identified as one of the most significant targets for pharmaceutical and agrochemical. Herein, with the aim of discovery of new antifungal lead structures, a class of novel N-(4-fluoro-2-(phenylamino)phenyl)-pyrazole-4-carboxamides were designed, synthesized and evaluated for their biological activities. They were bioassayed against seven phytopathogenic fungi, Rhizoctonia solani, Phytophthora infestans, Fusarium oxysporum f. sp. vasinfectum, Botryosphaeria dothidea, Gibberella zeae, Alternaria alternate and Fusarium oxysporum f. sp. niveum. The results indicated that most of the compounds displayed good antifungal activities, especially against R. solani. Among them, compounds 7 and 12 exhibited higher antifungal activities against R. solani in vitro with EC50 value of 0.034 mg/L and 0.021 mg/L, being superior to the commercially available fungicide bixafen (EC50 = 0.043 mg/L). Pot tests against R. solani showed that in vivo EC50 values of compounds 7 (2.694 mg/L) and 12 (2.331 mg/L) were higher than that of bixafen (3.724 mg/L). In addition, inhibitory activity of compound 12 against SDH indicated compound 12 (IC50 = 1.836 mg/L) showed good inhibitory activity against SDH, being close to bixafen's inhibitory activity (IC50 = 1.222 mg/L). And, molecular modeling of the SDH-compound 12 complex suggested that compound 12 could strongly bind to and interact with the binding site of the SDH. The results of the present work showed that N-(4-fluoro-2-(phenylamino)phenyl)-pyrazole-4-carboxamides were a new fungicides for discovery of SDH inhibitors and worth further study.


Assuntos
Antifúngicos/química , Antifúngicos/farmacologia , Succinato Desidrogenase/metabolismo , Alternaria/efeitos dos fármacos , Alternaria/enzimologia , Ascomicetos/efeitos dos fármacos , Ascomicetos/enzimologia , Fusarium/efeitos dos fármacos , Fusarium/enzimologia , Phytophthora infestans/efeitos dos fármacos , Phytophthora infestans/enzimologia , Rhizoctonia/efeitos dos fármacos , Rhizoctonia/enzimologia , Relação Estrutura-Atividade
8.
Pestic Biochem Physiol ; 158: 25-31, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31378357

RESUMO

Sodium pheophorbide a (SPA) is a natural photosensitizer. To explore its antifungal activity and mechanism, we studied its inhibitory effects on spore germination and mycelial growth of Pestalotiopsis neglecta. We used sorbitol, 2-thiobarbituric acid (TBA) and electron microscopy to determine its effects on cell wall integrity, cell membrane lipid peroxidation and mycelial morphology. Finally, the effects of SPA on enzyme activity in mycelia were determined. The results showed that SPA effectively inhibited spore germination and mycelial growth of P. neglecta under light conditions (4000 lx, 24 h). Scanning electron microscopy (SEM) revealed that SPA treatment resulted in a roughened, twisted and knotted mycelial surface and abnormal mycelial growth. SPA influenced cell wall integrity, and the content of MDA, a cell membrane lipid peroxidation product was significantly increased (P < 0.05). SPA also significantly inhibited SOD, POD and PG activity, but enhanced PPO activity (P < 0.05). In conclusion, SPA may have potential to become a biological pesticide.


Assuntos
Antifúngicos/farmacologia , Clorofila/análogos & derivados , Micélio/efeitos dos fármacos , Radiossensibilizantes/farmacologia , Clorofila/farmacologia , Peroxidação de Lipídeos/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Varredura , Micélio/ultraestrutura
9.
An Acad Bras Cienc ; 91(3): e20180654, 2019 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-31365653

RESUMO

Candida albicans is the most frequent fungal species that causes infections in humans. Fluconazole is the main antifungal used to treat Candida infections, and its prolonged and indiscriminate use for the last decades are the most established causes which originated resistant strains. Fungal drug resistance is associated to alterations in ERG11 gene and overexpression of multidrug resistance (MDR) transporters belonging to two families: ATP-binding cassette (ABC) and Major Facilitator Superfamily (MFS). To evaluate the role of MFS transporters in azoles resistance of C. albicans clinical strains, this study aimed to analyze four Candida albicans clinical isolates from the University Hospital in Juiz de Fora (Minas Gerais/Brazil), selected in our previous study as they were unaffected by FK506, an ABC pumps inhibitor. In a primary investigation on MFS proteins overexpression, the extrusion of fluorescent substrates (rhodamine 6G and nile red) was analyzed by fluorescence microscopy and flow cytometry. Results suggest participation of MFS transporters in azole resistance of C. albicans isolates and indicate the existence of secondary resistance mechanisms. Therefore, this study contributes to the information about Candida albicans infections in Brazil and reinforces the importance of epidemiological studies focusing on an improved understanding of the disease and further resistance reversion.


Assuntos
Antifúngicos/farmacologia , Azóis/farmacologia , Candida albicans/efeitos dos fármacos , Proteínas de Membrana Transportadoras/metabolismo , Azóis/classificação , Transporte Biológico/efeitos dos fármacos , Citometria de Fluxo , Humanos , Proteínas de Membrana Transportadoras/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Microscopia de Fluorescência , Centros de Atenção Terciária
10.
J Enzyme Inhib Med Chem ; 34(1): 1259-1270, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31287341

RESUMO

Pyrazolylphthalimide derivative 4 was synthesized and reacted with different reagents to afford the target compounds imidazopyrazoles 5-7, pyrazolopyrimidines 9, 12, 14 and pyrazolotriazines 16, 17 containing phthalimide moiety. The prepared compounds were established by different spectral data and elemental analyses. Additionally, all synthesized derivatives were screened for their antibacterial activity against four types of Gram + ve and Gram-ve strains, and for antifungal activity against two fungi micro-organisms by well diffusion method. Moreover, the antiproliferative activity was tested for all compounds against human liver (HepG-2) cell line in comparison with the reference vinblastine. Moreover, drug-likeness and toxicity risk parameters of the newly synthesized compounds were calculated using in silico studies. The data from structure-actvity relationship (SAR) analysis suggested that phthalimide derivative bearing 3-aminopyrazolone moiety, 4 illustrated the best antimicrobial and antitumor activities and might be considered as a lead for further optimization. To investigate the mechanism of the antimicrobial and anticancer activities, enzymatic assay and molecular docking studies were carried out on E. coli topoisomerase II DNA gyrase B and VEGFR-2 enzymes.


Assuntos
Ftalimidas/química , Ftalimidas/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Antibacterianos/farmacologia , Antifúngicos/síntese química , Antifúngicos/química , Antifúngicos/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Células Hep G2 , Humanos , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Ftalimidas/síntese química , Análise Espectral/métodos , Relação Estrutura-Atividade
11.
J Enzyme Inhib Med Chem ; 34(1): 1226-1232, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31307248

RESUMO

Allosamidins come from the secondary metabolites of Streptomyces species, and they have the pseudotrisaccharide structures. Allosamidins are chitinase inhibitors that can be used to study the physiological effects of chitinases in a variety of organisms. They have the novel antiasthmatic activity and insecticidal/antifungal activities. Herein, the synthesis and activities of allosamidins were summarized and analyzed.


Assuntos
Acetilglucosamina/análogos & derivados , Antiasmáticos/farmacologia , Antifúngicos/farmacologia , Inseticidas/farmacologia , Trissacarídeos/farmacologia , Acetilglucosamina/química , Acetilglucosamina/isolamento & purificação , Acetilglucosamina/farmacologia , Animais , Antiasmáticos/química , Antiasmáticos/isolamento & purificação , Antifúngicos/química , Antifúngicos/isolamento & purificação , Asma/tratamento farmacológico , Fungos/efeitos dos fármacos , Humanos , Inseticidas/química , Inseticidas/isolamento & purificação , Conformação Molecular , Mariposas/efeitos dos fármacos , Streptomyces/química , Trissacarídeos/química , Trissacarídeos/isolamento & purificação
12.
J Med Microbiol ; 68(9): 1353-1358, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31271350

RESUMO

Introduction. Candida auris is a pathogenic yeast that mainly affects immunosuppressed patients and those with implanted medical devices. This pathogen also displays elevated resistance to common antifungals and high survival and spreading capacities. Since no antifungal breakpoints have yet been defined for this pathogen, the data obtained here can be useful for further research concerning treatment or implementation of a prevention and disinfection protocol. Our aim was to study the antifungal resistance of C. auris to current antifungals in planktonic and sessile states. Using confocal laser scanning microscopy and viable biomass production, we demonstrated the ability of C. auris to develop a mature biofilm. We compared the minimal inhibitory concentration (MIC) and the minimal biofilm eradication concentration (MBEC) for the C. auris DSM 21092 strain plus two clinical isolates, and the results were compared with those obtained for Candida albicans and Candida parapsilosis, two species strongly linked to bloodstream infections and infections associated with biomaterials. We found that the clinical isolates of C. auris were resistant to fluconazole and sensitive to echinocandins and polyenes. The C. auris biofilms did not show susceptibility to any antifungal agent, showing MBECs that were up to 512-fold higher than the MICs. These findings highlight the importance of biofilm formation as a key factor underlying the resistance of this species to antifungals and suggest that the presence of implantable medical devices is one of the major risk factors in immunocompromised patients.


Assuntos
Antifúngicos/farmacologia , Biofilmes/efeitos dos fármacos , Candida/efeitos dos fármacos , Candida/isolamento & purificação , Candida albicans/efeitos dos fármacos , Candida parapsilosis/efeitos dos fármacos , Candidíase/microbiologia , Contagem de Colônia Microbiana , Farmacorresistência Fúngica , Equinocandinas/farmacologia , Fluconazol/farmacologia , Humanos , Testes de Sensibilidade Microbiana , Microscopia Confocal , Polienos/farmacologia
13.
An Acad Bras Cienc ; 91(2): e20180598, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31271566

RESUMO

We have established how natural compounds from green propolis collected by the species Apis mellifera act against the growth of Pythium aphanidermatum. On the basis of mass spectrometry (Q-ToF MS), we determined that Artepillin C, the major constituent of green propolis, underlies the effect and displays activity against P. aphanidermatum at a minimal inhibitory concentration of 750 µg.mL-1. Biophysical studies based on model membranes showed that this inhibitory effect may be linked with a membrane-related phenomenon: Artepillin C increases the permeability of membranes with relatively high fluidity in their lateral structure, a feature that is in line with the lipid composition reported for the cytoplasmic membrane of P. aphanidermatum. Therefore, the present study supports the use of the effective and inexpensive green propolis to control the impact of the dangerous phytopathogen P. aphanidermatum on agriculture.


Assuntos
Antifúngicos/farmacologia , Fenilpropionatos/farmacologia , Própole/química , Pythium/efeitos dos fármacos , Animais , Antifúngicos/isolamento & purificação , Abelhas , Espectrometria de Massas , Testes de Sensibilidade Microbiana , Fenilpropionatos/isolamento & purificação
14.
Cell Physiol Biochem ; 53(2): 285-300, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31334617

RESUMO

BACKGROUND/AIMS: Although naturally-derived antifungals have been investigated for their ability to inactivate Candida albicans, which is a major cause of candidiasis, they have shown a less than 3 log reduction in C. albicans or required treatment times of longer than 3 h. Thus, the naturally-derived antifungals used in previous studies could not substantially eradicate C. albicans within a short period of time. METHODS: To improve the fungicidal effects of naturallyderived antifungals against C. albicans within short time periods, we developed composites showing antifungal synergism using caprylic acid (CA), carvacrol (CAR) and thymol (THM) for 1-10 min at 22/37°C. Using flow cytometry, we examined the mode of action for the synergism of these compounds on membrane integrity and efflux pump activity. RESULTS: Whereas the maximum reduction by individual treatments was 0.6 log CFU/ml, CA + CAR/THM (all 1.5 mM) eliminated all pathogens (> 6.8 log reduction) after 1 min at 37°C and after 10 min at 22°C. The flow cytometry results showed that exposure to CA damaged the membranes in 15.7-36.5% of cells and inhibited efflux pumps in 15.4-31.3% of cells. Treatments with CAR/THM slightly affected cell membranes (in 1.8-6.9% of cells) but damaged efflux pumps in 14.4-29.6% of cells. However, the combined treatments clearly disrupted membranes (> 83.1% of cells) and pumps (> 95.0% of cells). The mechanism of this synergism may involve membrane damage by CA, which facilitates the entry of antifungals into the cytoplasm, and the inhibition of efflux pumps by CA, CAR or THM, causing their accumulation within cells and, leading to cell death. CONCLUSION: Antifungal composites (CA + CAR/THM) showing synergism (i.e., an additional 6 log reduction) within minutes at room/body temperature can be used to treat candidiasis and improve the microbiological safety of facilities contaminated with fungi as a novel alternative to synthetic antifungals.


Assuntos
Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Caprilatos/farmacologia , Proteínas Fúngicas/metabolismo , Monoterpenos/farmacologia , Timol/farmacologia , Candida albicans/metabolismo , Parede Celular/efeitos dos fármacos , Parede Celular/metabolismo , Sinergismo Farmacológico , Concentração de Íons de Hidrogênio , Testes de Sensibilidade Microbiana , Temperatura Ambiente
15.
J Photochem Photobiol B ; 197: 111556, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31326842

RESUMO

Facile green synthesis of copper nanoparticles from different biological procedures has been indicated, but among all, biosynthesis of copper nanoparticles from medicinal plants is considered as the most suitable method. The use of medicinal plant material increases the therapeutical effects of copper nanoparticles. The aim of this study was green synthesis of copper nanoparticles from aqueous extract of Falcaria vulgaris leaf (CuNPs) and assessment of their cytotoxicity, antioxidant, antifungal, antibacterial, and cutaneous wound healing properties. These nanoparticles were characterized by X-ray diffraction (XRD), fourier-transform infrared spectroscopy (FT-IR), ultraviolet-visible spectroscopy (UV), transmission electron microscopy (TEM), and field emission scanning electron microscopy (FE-SEM) analysis. The synthesized CuNPs had great cell viability dose-dependently (Investigating the effect of the CuNPs on human umbilical vein endothelial cell (HUVEC) line) and indicated this method was nontoxic. Also, 2,2-diphenyl-1-picrylhydrazyl (DPPH) test was done to assess the antioxidant activities, which indicated similar antioxidant potentials for CuNPs and butylated hydroxytoluene. In part of cutaneous wound healing property of CuNPs, after creating the cutaneous wound, the rats were randomly divided into six groups: treatment with 0.2% CuNPs ointment, treatment with 0.2% CuSO4 ointment, treatment with 0.2% F. vulgaris ointment, treatment with 3% tetracycline ointment, treatment with Eucerin basal ointment, and untreated control. These groups were treated for 10 days. Treatment with CuNPs ointment remarkably increased (p ≤ .01) the wound contracture, vessel, hexosamine, hydroxyl proline, hexuronic acid, fibrocyte, and fibrocytes/fibroblast rate and substantially reduced (p ≤ .01) the wound area, total cells, neutrophil, and lymphocyte compared to other groups. In antibacterial and antifungal parts of this research, the concentration of CuNPs with minimum dilution and no turbidity was considered minimum inhibitory concentration (MIC). To determine minimum fungicidal concentration (MFC) and minimum bactericidal concentration (MBC), 60 µL MIC and three preceding chambers were cultured on Sabouraud Dextrose Agar and Muller Hinton Agar, respectively. The minimum concentration with no fungal and bacterial growth were considered MFC and MBC, respectively. CuNPs inhibited the growth of all fungi at 2-4 mg/mL concentrations and removed them at 4-8 mg/mL concentrations (p ≤ .01). In case of antibacterial effects of CuNPs, they inhibited the growth of all bacteria at 2-8 mg/mL concentrations and removed them at 4-16 mg/mL concentrations (p ≤ .01). The results of XRD, FT-IR, UV, TEM, and FE-SEM confirm that the aqueous extract of F. vulgaris leaf can be used to yield copper nanoparticles with notable amount of antioxidant, antifungal, antibacterial, and cutaneous wound healing potentials without any cytotoxicity. Further clinical trials are necessary for confirmation these therapeutical effects of CuNPs in human.


Assuntos
Apiaceae/química , Cobre/química , Nanopartículas Metálicas/química , Extratos Vegetais/química , Animais , Antibacterianos/síntese química , Antibacterianos/química , Antibacterianos/farmacologia , Antifúngicos/síntese química , Antifúngicos/química , Antifúngicos/farmacologia , Antioxidantes/química , Apiaceae/metabolismo , Candida/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Química Verde , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Nanopartículas Metálicas/toxicidade , Testes de Sensibilidade Microbiana , Folhas de Planta/química , Folhas de Planta/metabolismo , Ratos , Pele/efeitos dos fármacos , Pele/patologia , Cicatrização/efeitos dos fármacos
16.
Planta Med ; 85(13): 1054-1072, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31261421

RESUMO

The Lauraceae family is predominantly found in Asia and in the rainforests of the Americas, and consists mostly of aromatic trees. Being an essential oil producer, this family is used in the food, pharmaceutical, and cosmetic industries. This work presents a systematic review of the chemical composition and bioactivity of the essential oils from the Lauraceae family. Medline, Scielo, Web of Science, Lilacs, and Scopus were employed to identify articles published between 2000 and 2018, using "Lauraceae", "essential oil", and "biological activity" as key words. From 177 studies identified, 53 met the inclusion criteria. These studies indicated a predominance of the compounds ß-caryophyllene and 1,8-cineole in Lauraceae species, and highlighted the antioxidant, antifungal, antibacterial, and anti-inflammatory activities. Essential oils extracted from this family thus have high potential for pharmacological applications.


Assuntos
Lauraceae/química , Óleos Vegetais/farmacologia , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Antifúngicos/química , Antifúngicos/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Óleos Vegetais/química
17.
Chem Biodivers ; 16(8): e1900204, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31298500

RESUMO

The purpose of this work was to determine the chemical composition and evaluate the antichemotactic, antioxidant, and antifungal activities of the essential oil obtained from the species Cryptocarya aschersoniana Mez, Cinnamomum amoenum (Ness & Mart.) Kosterm., and Schinus terebinthifolia Raddi, as well as the combination of C. aschersoniana essential oil and terbinafine against isolates of dermatophytes. Allo-aromadendrene, bicyclogermacrene, and germacrene B were identified as major compounds in essential oils. The essential oil of C. aschersoniana shown 100 % inhibitory effect on leukocyte migration at the concentration of 10 µg/mL while S. terebinthifolia oil presented 80.1 % inhibitory effect at the same concentration. Only S. terebinthifolia oil possessed free-radical-scavenging activity which indicates its antioxidant capacity. The essential oils were also tested against fungal isolates of dermatophyte species (Trichophyton rubrum, Trichophyton mentagrophytes, Microsporum canis and Microsporum gypseum), resulting in MIC ranging from 125 µg/mL to over 500 µg/mL. C. aschersoniana oil combined with terbinafine resulted in an additive interaction effect. In this case, the essential oil may act as a complement to conventional therapy for the topical treatment of superficial fungal infections, mainly because it is associated with an anti-inflammatory effect.


Assuntos
Anacardiaceae/química , Antifúngicos/química , Cinnamomum/química , Cryptocarya/química , Óleos Voláteis/química , Anacardiaceae/metabolismo , Antifúngicos/farmacologia , Antioxidantes/química , Candida/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Cinnamomum/metabolismo , Cryptocarya/metabolismo , Testes de Sensibilidade Microbiana , Microsporum/efeitos dos fármacos , Neutrófilos/citologia , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Óleos Voláteis/farmacologia , Extratos Vegetais/química , Trichophyton/efeitos dos fármacos
18.
Vet Microbiol ; 235: 43-52, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31282378

RESUMO

Even though it is widely known that Cryptococcus spp. may transmit cryptococcosis trough aerosol formed when dried birds (mainly pigeons) droppings are dispersed and become airborne, little is known about the role of these birds in harboring other pathogenic yeasts in their gastrointestinal tract, feathers and beaks, specifically because these animals often stay and reproduce close or even above air conditioner units. Here we evaluated the prevalence of pathogenic yeasts isolated from pigeon droppings collected in the outside area of a University Hospital in Brazil. We also aimed to investigate the pathogenic potential and antifungal susceptibility of Candida species of medical interest isolated from these samples. Therefore, we performed the evaluation of virulence factors attributes expression in vitro, including the ability to adhere to human buccal epithelial cells and biofilm formation and to produce lytic enzymes, such as phospholipases, proteinases and hemolysins. Antifungal susceptibility testing against fluconazole, itraconazole, amphotericin and micafungin was also performed. The Candida genus was the most prevalent in our study, with several medically important species being isolated. Of note, these strains were able to express several virulence factors in vitro, clearly showing their pathogenic potential. Our study was able to demonstrate that Candida spp. isolated from pigeon droppings may express virulence factors in the same manner of clinical isolates, suggesting a pathogenic potential for these yeasts. The fact these strains were collected from the outside area of a tertiary hospital may be of interest, because they may be a source of infection, specifically to immunocompromised hosts.


Assuntos
Antifúngicos/farmacologia , Azóis/farmacologia , Candida/efeitos dos fármacos , Columbidae/microbiologia , Farmacorresistência Fúngica , Fatores de Virulência/genética , Anfotericina B/farmacologia , Animais , Brasil , Candida/genética , Candida/isolamento & purificação , Criptococose/veterinária , Fezes/microbiologia , Fluconazol/farmacologia , Itraconazol/farmacologia , Testes de Sensibilidade Microbiana
19.
Int J Nanomedicine ; 14: 4667-4679, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31308652

RESUMO

Purpose: The pathogenicity in Candida spp was attributed by several virulence factors such as production of tissue damaging extracellular enzymes, germ tube formation, hyphal morphogenesis and establishment of drug resistant biofilm. The objective of present study was to investigate the effects of silver nanoparticles (AgNPs) on growth, cell morphology and key virulence attributes of Candida species. Methods: AgNPs were synthesized by the using seed extract of Syzygium cumini (Sc), and were characterized by UV-Vis spectrophotometer, Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), and transmission electron microscopy (TEM). ScAgNPs were used to evaluate their antifungal and antibacterial activity as well as their potent inhibitory effects on germ tube and biofilm formation and extracellular enzymes viz. phospholipases, proteinases, lipases and hemolysin secreted by Candida spp. Results: The MICs values of ScAgNPs were ranged from 0.125-0.250 mg/ml, whereas the MBCs and MFCs were 0.250 and 0.500 mg/ml, respectively. ScAgNPs significantly inhibit the production of phospholipases by 82.2, 75.7, 78.7, 62.5, and 65.8%; proteinases by 82.0, 72.0, 77.5, 67.0, and 83.7%; lipase by 69.4, 58.8, 60.0, 42.9, and 65.0%; and hemolysin by 62.8, 69.7, 67.2, 73.1, and 70.2% in C. albicans, C. tropicalis, C. dubliniensis, C. parapsilosis and C. krusei, respectively, at 500 µg/ml. ScAgNPs inhibit germ tube formation in C. albicans up to 97.1% at 0.25 mg/ml. LIVE/DEAD staining results showed that ScAgNPs almost completely inhibit biofilm formation in C. albicans. TEM analysis shows that ScAgNPs not only anchored onto the cell surface but also penetrated and accumulated in the cytoplasm that causes severe damage to the cell wall and cytoplasmic membrane. Conclusion: To summarize, the biosynthesized ScAgNPs strongly suppressed the multiplication, germ tube and biofilm formation and most importantly secretion of hydrolytic enzymes (viz. phospholipases, proteinases, lipases and hemolysin) by Candia spp. The present research work open several avenues of further study, such as to explore the molecular mechanism of inhibition of germ tubes and biofilm formation and suppression of production of various hydrolytic enzymes by Candida spp.


Assuntos
Antifúngicos/farmacologia , Candida/crescimento & desenvolvimento , Candida/patogenicidade , Nanopartículas Metálicas/química , Prata/farmacologia , Antifúngicos/química , Biofilmes/efeitos dos fármacos , Candida/citologia , Candida/efeitos dos fármacos , Parede Celular/efeitos dos fármacos , Proteínas Hemolisinas/metabolismo , Humanos , Hidrólise , Nanopartículas Metálicas/ultraestrutura , Testes de Sensibilidade Microbiana , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier , Syzygium/química , Virulência/efeitos dos fármacos , Fatores de Virulência
20.
Int J Nanomedicine ; 14: 4801-4816, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31308659

RESUMO

Background: Silver nanoparticles (AgNPs) inhibit the proliferation of various fungi; however, their mechanisms of action remain poorly understood. To better understand the inhibitory mechanisms, we focused on the early events elicited by 5 nm AgNPs in pathogenic Candida albicans and non-pathogenic Saccharomyces cerevisiae. Methods: The effect of 5 nm and 100 nm AgNPs on fungus cell proliferation was analyzed by growth kinetics monitoring and spot assay. We examined cell cycle progression, reactive oxygen species (ROS) production, and cell death using flow cytometry. Glucose uptake was assessed using tritium-labeled 2-deoxyglucose. Results: The growth of both C. albicans and S. cerevisiae was suppressed by treatment with 5 nm AgNPs but not with 100 nm AgNPs. In addition, 5 nm AgNPs induced cell cycle arrest and a reduction in glucose uptake in both fungi after 30 minutes of culture in a dose-dependent manner (P<0.05). However, in C. albicans only, an increase in ROS production was detected after exposure to 5 nm AgNPs. Concordantly, an ROS scavenger blocked the effect of 5 nm AgNPs on the cell cycle and glucose uptake in C. albicans only. Furthermore, the growth-inhibition effect of 5 nm AgNPs was not greater in S. cerevisiae mutant strains deficient in oxidative stress response genes than it was in wild type. Finally, 5 nm AgNPs together with a glycolysis inhibitor, 3-bromopyruvate, synergistically enhanced cell death in C. albicans (P<0.05) but not in S. cerevisiae. Conclusion: AgNPs exhibit antifungal activity in a manner that may or may not be ROS dependent, according to the fungal species. The combination of AgNPs with 3-bromopyruvate may be more useful against infection with C. albicans.


Assuntos
Candida albicans/citologia , Ciclo Celular/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Piruvatos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Saccharomyces cerevisiae/citologia , Prata/farmacologia , Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Candida albicans/crescimento & desenvolvimento , Morte Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Parede Celular/efeitos dos fármacos , Parede Celular/genética , Depuradores de Radicais Livres/farmacologia , Fase G1/efeitos dos fármacos , Genes Fúngicos , Glucose/metabolismo , Glicólise/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA