Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20.000
Filtrar
1.
Anticancer Res ; 40(9): 5015-5024, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32878789

RESUMO

BACKGROUND/AIM: Despite being a rare disease, melanoma is considered the most dangerous skin cancer due to its highly invasive and aggressive nature, and still requires for more effective treatments. The aim of this study was to evaluate the in vitro anti-melanoma potential of Ephedranthus pisocarpus R.E.Fr. (Annonaceae), a popular Brazilian plant with medicinal properties. MATERIALS AND METHODS: Initially, the ethanolic extract (EtOH) was obtained from E. pisocarpus leaves and later partitioned using increasing polarity solvents. The anti-melanoma potential of E. pisocarpus was assessed by spectrophotometry and its cytotoxicity determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and confocal microscopy. RESULTS: We demonstrated that the EtOH extract and fractions from E. pisocarpus had a moderate photoprotective action (FPS 3.0-5.0) against UVA radiation. Interestingly, the dichloromethane fraction presented higher anti-melanoma activity against B16-F10 (IC50=46.8 µg/ml) and SK-MEL-28 cells (IC50=40.1 µg/ml) and lesser toxicity on normal cells. Additionally, our study reported that spathulenol, one of the major constituents from E. pisocarpus, acts through an apoptosis-dependent mechanism in SK-MEL-28 cells. CONCLUSION: The present study demonstrated, for the first time, the in vitro anti-melanoma potential of E. pisocarpus against melanoma cells.


Assuntos
Annonaceae/química , Antineoplásicos Fitogênicos/farmacologia , Extratos Vegetais/farmacologia , Animais , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Apoptose/efeitos dos fármacos , Brasil , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Citotoxicidade Imunológica , Relação Dose-Resposta a Droga , Hemólise , Humanos , Melanoma Experimental , Camundongos , Estrutura Molecular , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação
2.
Anticancer Res ; 40(9): 5097-5106, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32878798

RESUMO

BACKGROUND/AIM: Accumulating evidence has shown therapeutic effects of herbals on breast cancer, a commonly diagnosed malignancy in women worldwide. However, their underlying mechanisms remain unclear. We aimed to explore the mode of action of a recently developed herbal combination at system-level. MATERIALS AND METHODS: We employed network pharmacological approaches to study the mechanism of a combination of three herbals, Astragalus membranaceus, Angelica gigas and Trichosanthes kirilowii by investigating active compounds and performing functional enrichment analysis for the interacting targets. RESULTS: For in silico pharmacokinetic evaluation, ten active ingredients interacted with fifty-six breast cancer-associated therapeutic targets. Functional enrichment analysis revealed that TNF, estrogen, PI3K-Akt and MAPK signaling pathways were involved in tumorigenesis and development of breast cancer. The pharmacological mechanisms might be associated with cellular effects on proliferation, cell cycle process and apoptosis. CONCLUSION: The present study provides novel insights into the system-level pharmacological mechanisms underlying a herbal combination used for breast cancer therapies.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Redes Neurais de Computação , Biologia de Sistemas/métodos , Tecnologia Farmacêutica/métodos , Antineoplásicos Fitogênicos/química , Astragalus propinquus , Neoplasias da Mama , Linhagem Celular Tumoral , Biologia Computacional/métodos , Ensaios de Seleção de Medicamentos Antitumorais , Medicamentos de Ervas Chinesas/química , Feminino , Humanos , Medicina Tradicional Chinesa , Fluxo de Trabalho
3.
Anticancer Res ; 40(9): 5159-5170, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32878804

RESUMO

BACKGROUND/AIM: The aim of this study was to elucidate the possibility of sensitizing colon cancer cells to the chemotherapeutic drug SN38 and investigate its mechanism of action after combined treatment with electroporation (EP). MATERIALS AND METHODS: Cells were treated with SN38, EP and their combination for 24/48 h. The cell viability, actin cytoskeleton integrity, mitochondrial superoxide, hydroperoxides, total glutathione, phosphatidyl serine expression, DNA damages and expression of membrane ABC transporters were analyzed using conventional analytical tests. RESULTS: The combination of EP and SN38 affected cell viability and cytoskeleton integrity. This effect was accompanied by: (i) high production of intracellular superoxide and hydroperoxides and depletion of glutathione; (ii) increased DNA damage and apoptotic/ferroptotic cell death; (iii) changes in the expression of membrane ABC transporters - up-regulation of SLCO1B1 and retention of SN38 in the cells. CONCLUSION: The anticancer effect of the combined treatment of SN38 and EP is related to changes in the redox-homeostasis of cancer cells, leading to cell death via apoptosis and/or ferroptosis. Thus, electroporation has a potential to increase the sensitivity of cancer cells to conventional anticancer therapy with SN38.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Camptotecina/análogos & derivados , Camptotecina/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Oxirredução , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Dano ao DNA/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Sinergismo Farmacológico , Imunofluorescência , Glutationa/metabolismo , Humanos , Modelos Biológicos , Espécies Reativas de Oxigênio/metabolismo
4.
Anticancer Res ; 40(9): 5201-5210, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32878808

RESUMO

BACKGROUND/AIM: Persimmon (Diospyros kaki L.) leaves are popular as a tea infusion in Asia and their main active ingredients are flavonoids. The present study aimed to explore the anticancer properties of flavonoids isolated from persimmon leaves (PLF). MATERIALS AND METHODS: We investigated the in vitro anti-proliferative activity of PLF against several human cancer cell lines. Apoptosis and intracellular reactive oxygen species (ROS) induced by PLF were accessed using high-content analysis with florescent staining. The ability of PLF to scavenge free radicals was evaluated by 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. RESULTS: PLF demonstrated significant inhibition of proliferation of liver, breast, and colorectal cancer cells in vitro. PLF induced apoptosis and increased intracellular ROS levels in HCT116 (colorectal cancer) and HepG2 (liver cancer) cells. In addition, PLF showed strong free radical scavenging ability. CONCLUSION: The anti-proliferation activity of PLF against cancer cells was related to the induction of apoptosis and oxidative stress.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Diospyros/química , Flavonoides/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Folhas de Planta/química , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Antioxidantes/química , Antioxidantes/farmacologia , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Flavonoides/química , Flavonoides/isolamento & purificação , Humanos , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Espécies Reativas de Oxigênio/metabolismo
5.
Anticancer Res ; 40(9): 4947-4960, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32878783

RESUMO

BACKGROUND/AIM: This study aimed to investigate the anticancer effects and potential mechanisms of sclareol in a human small cell lung carcinoma (SCLC) cell line. MATERIALS AND METHODS: Cell viability was determined by the MTT assay. Cell cycle, apoptosis and caspase activity were evaluated by flow cytometry. Cell cycle and DNA damage related protein expression was determined by western blotting. In vivo evaluation of sclareol was carried out in xenografted tumor mice models. RESULTS: Sclareol significantly reduced cell viability, induced G1 phase arrest and subsequently triggered apoptosis in H1688 cells. In addition, this sclareol-induced growth arrest was associated with DNA damage as indicated by phosphorylation of H2AX, activation of ATR and Chk1. Moreover, in vivo evaluation of sclareol showed that it could inhibit tumor weight and volume in a H1688 xenograft model. CONCLUSION: Sclareol might be a novel and effective therapeutic agent for the treatment of SCLC patients.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Diterpenos/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Animais , Antineoplásicos Fitogênicos/uso terapêutico , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Dano ao DNA , Diterpenos/uso terapêutico , Feminino , Humanos , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Transdução de Sinais/efeitos dos fármacos , Carcinoma de Pequenas Células do Pulmão/patologia , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Tumour Biol ; 42(9): 1010428320957506, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32914709

RESUMO

The development of the multidrug resistance phenotype is one of the major challenges faced in the treatment of cancer. The multidrug resistance phenotype is characterized by cross-resistance to drugs with different chemical structures and mechanisms of action. In this work, we hypothesized that the acquisition of resistance in cancer is accompanied by activation of the epithelial-to-mesenchymal transition process, where the tumor cell acquires a more mobile and invasive phenotype; a fundamental step in tumor progression and in promoting the invasion of other organs and tissues. In addition, it is known that atypical glycosylations are characteristic of tumor cells, being used as biomarkers. We believe that the acquisition of the multidrug resistance phenotype and the activation of epithelial-to-mesenchymal transition provoke alterations in the cell glycophenotype, which can be used as glycomarkers for chemoresistance and epithelial-to-mesenchymal transition processes. Herein, we induced the multidrug resistance phenotype in the PC-3 human prostate adenocarcinoma line through the continuous treatment with the drug paclitaxel. Our results showed that the induced cell multidrug resistance phenotype (1) acquired a mixed profile between epithelial and mesenchymal phenotypes and (2) modified the glycophenotype, showing an increase in the level of sialylation and in the number of branched glycans. Both mechanisms are described as indicators of poor prognosis.


Assuntos
Adenocarcinoma/patologia , Antineoplásicos Fitogênicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/fisiologia , Transição Epitelial-Mesenquimal/fisiologia , Paclitaxel/farmacologia , Adenocarcinoma/metabolismo , Resistência a Múltiplos Medicamentos/fisiologia , Glicosilação , Humanos , Células PC-3 , Fenótipo
7.
Life Sci ; 259: 118183, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32781058

RESUMO

Cancer, being a multifactorial disease has diverse presentation in different subgroups which is mainly attributed to heterogenous presentation of tumor cells. This cancer cell heterogeneity is the major reason for variable response to standard chemotherapeutic regimes owing to which high relapse rate and multi-drug resistance has increasingly been reported over the past decade. Interestingly, the research on natural compounds in combination with standard therapies have reported with interesting and promising results from the pre-clinical trials and few of which have also been tested in other phases of clinical trials. This review focusses on baicalein, an emerging anti-cancerous natural compound, its chemistry and mechanism of action. In view of promising pre-clinical this review is mainly motivated by the results observed from baicalein treatment of different cancer cell population. With the advancing scientific evidence on the anti-malignant potential of baicalein with respect to its pharmacological activities encompassing from anti-inflammatory to anti-angiogenic/anti-metastatic effects, the focus is mainly directed to understanding the precise mechanism of action of baicalein. In the process of understanding the underlying signaling cascades, the role of mitogen activated protein kinase (MAPK), mammalian target of rapamycin (mTOR), AKT serine/threonine protein kinase B (AKT), poly(ADP-ribose) polymerase (PARP), matrix metalloproteinases-2 (MMP-2), matrix metalloproteinases-9 (MMP-9) and caspase-3/-8,-9 have been highlighted as the major players for baicalein anti-malignant potential. This is also supported by the interesting pre-clinical findings which cumulatively pave the way ahead for development of baicalein as an adjunct anti-cancer treatment with chemotherapeutic agents.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/uso terapêutico , Flavanonas/farmacologia , Flavanonas/uso terapêutico , Neoplasias/tratamento farmacológico , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêutico , Apoptose/efeitos dos fármacos , Humanos , Metástase Neoplásica/prevenção & controle , Neoplasias/patologia
8.
J Environ Pathol Toxicol Oncol ; 39(2): 113-123, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32749121

RESUMO

Liver cancer or hepatocellular carcinoma is considered to be the third leading cause of death among all other cancers. The rate of liver cancer occurrence is high, and the rate of recovery is low. In this study, we investigated the therapeutic efficacy of vicenin-2 against the diethylnitrosamine-induced liver carcinoma in experimental rats. Diethylnitrosamine was widely employed as a carcinogenic agent to stimulate the cancer in animal models. Our results indicated that vicenin-2 administration effectively attenuates the diethylnitrosamine-induced physiological and pharmacological alterations in the experimental rats. Vicenin-2 treatment significantly enhanced the pathological lesions and decreased the levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), and α-fetoprotein (AFP) in serum. We also observed that vicenin-2 reduced the production of reactive oxygen species, decreased the liver weight, upregulated expression of apoptotic proteins, and decreased the histological changes in the liver, which are induced by the diethylnitrosamine in rats. Moreover, vicenin-2 downregulates antiapoptotic Bcl-2 and Bcl-xL, and upregulates the proapoptotic Bax and caspase. Hence, our results suggested that vicenin-2 had a highly therapeutic effect in reversing diethylnitrosamine-induced liver carcinoma in rats, which might be related to the apoptosis induced by vicenin-2. Therefore vicenin-2 could be a good candidate for future therapeutic use to inhibit chemically induced liver cancer.


Assuntos
Apigenina/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Glucosídeos/farmacologia , Neoplasias Hepáticas Experimentais/tratamento farmacológico , 8-Hidroxi-2'-Desoxiguanosina/metabolismo , Animais , Antineoplásicos Fitogênicos/farmacologia , Antioxidantes/metabolismo , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Biomarcadores Tumorais/sangue , Proteínas Sanguíneas/análise , Peso Corporal/efeitos dos fármacos , Carcinoma Hepatocelular/induzido quimicamente , Carcinoma Hepatocelular/patologia , Dietilnitrosamina/toxicidade , Enzimas/sangue , Neoplasias Hepáticas Experimentais/induzido quimicamente , Neoplasias Hepáticas Experimentais/patologia , Masculino , Estresse Oxidativo/efeitos dos fármacos , Ratos Wistar , Soroglobulinas/análise
9.
J Environ Pathol Toxicol Oncol ; 39(2): 179-189, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32749126

RESUMO

Ginkgo biloba extract EGb761 conveys an anticancer effect, but little is known regarding its role in hepatocellular carcinoma (HCC). Our study aims to determine the anticancer effect of EGb761 on HCC cell lines and clarify the underlying molecular mechanism. We explore biological functions of EGb761 in HCC using morphological observation, the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, and cytotoxic analysis. We investigate the effects of EGb761 on proliferation and apoptosis of HCC cells using plate clone formation, proliferating cell nuclear antigen, and terminal deoxynucleotidyl transferase d-untranslated protein nick end labeling assays. Protein expressions of the NF-κB/p53 signal pathway were detected and identified using immunohistochemistry. The effect of EGb761 on the p53 signaling pathway was further confirmed by adding pifithrin (PFT)-α, an inhibitor of p53. We determine that EGb761 inhibits cell growth, reduces cell viability, and promotes apoptosis of HCC cells. In addition, EGb761 reduces proliferation and increases apoptosis of human hepatocellular carcinomas (HepG2) cells in a dose-dependent manner. We also find that EGb761 exerts an anticancer effect on HepG2 cells by activating p53 and inhibiting nuclear factor (NF)-κB signaling pathways. This study confirms that EGb761 inhibits proliferation and triggers apoptosis of HCC cells through the NF-κB/p53 signaling pathway.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Extratos Vegetais/farmacologia , Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Proliferação de Células/efeitos dos fármacos , Células Hep G2 , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo
10.
Arch Biochem Biophys ; 690: 108479, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32679194

RESUMO

The upregulation of checkpoint inhibitor PD-L1 expression has recently been associated with nasopharyngeal carcinoma (NPC) resistance to therapy. The mechanism of induction of PD-L1 has also been linked to enhanced aerobic glycolysis promoted by HIF1-α dysregulation and LDH-A activity in cancer. Here, we investigated the effect of the anti-tumoral compound Silibinin on HIF-1α/LDH-A mediated cancer cell metabolism and PD-L1 expression in NPC. Our results demonstrate that exposure to Silibinin potently inhibits tumor growth and promotes a shift from aerobic glycolysis toward oxidative phosphorylation. The EBV + NPC cell line C666-1 and glycolytic human tumor explants treated with Silibinin displayed a reduction in LDH-A activity which consistently associated with a reduction in lactate levels. This effect was accompanied by an increase in intracellular citrate levels in C666-1 cells. Accordingly, expression of HIF-1α, a critical regulator of glycolysis, was down-regulated after treatment. This event associated with a down-regulation in PD-L1. Altogether, our results provide evidence that silibinin can alter PD-L1 expression by interfering with HIF-1α/LDH-A mediated cell metabolism in NPC. These results provide a new perspective for Silibinin use to overcome PD-L1 mediated NPC resistance to therapy.


Assuntos
Antineoplásicos Fitogênicos/metabolismo , Antígeno B7-H1/genética , Glicólise/efeitos dos fármacos , Carcinoma Nasofaríngeo/tratamento farmacológico , Neoplasias Nasofaríngeas/tratamento farmacológico , Silibina/metabolismo , Adolescente , Adulto , Antineoplásicos Fitogênicos/farmacologia , Antígeno B7-H1/metabolismo , Biópsia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ciclo do Ácido Cítrico , Regulação para Baixo/efeitos dos fármacos , Descoberta de Drogas , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Lactato Desidrogenase 5/metabolismo , Pessoa de Meia-Idade , Fosforilação Oxidativa , Transdução de Sinais , Silibina/farmacologia
11.
Life Sci ; 256: 117977, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32603822

RESUMO

AIMS: Silibinin is the major component of flavonolignans complex mixture (Silymarin), which is obtained from Silybum marianum (L.) Gaertn. Despite several reports about silibinin, little is known about its effects on gastric diseases. Then, the present study aims to evaluate the silibinin effect against Helicobacter pylori infection, gastric tumor cells and immunomodulation. MAIN METHODS: The anti-H. pylori effect was performed on 43504 and 43629 strains by minimum inhibitory concentration (MIC) determination, observing morphological alterations by scanning electron microscopy and in silico evaluation by molecular docking. Immunomodulatory activity (Interleukins-6 and 10, TNF-α and NO inhibition) was determined in H. pylori-stimulated macrophages and the cytotoxic activity on gastric adenocarcinoma cells prior and after metabolization by S9 fraction. KEY FINDINGS: Silibinin showed anti-H. pylori activity with MIC of 256 µg/mL, promoted important morphological changes in the bacterial cell wall, as blebs and clusters, suggesting interaction with Penicillin Binding Protein (PBP) subunits. Immunomodulatory potential was observed at 50 µg/mL with the inhibition of produced cytokines and NO by H. pylori-stimulated macrophages of 100% for TNF-ɑ, 56.83% for IL-6, and 70.29% for IL-10 and 73.33% for NO. Moreover, silibinin demonstrated significant cytotoxic activity on adenocarcinoma cells (CI50: 60.17 ± 0.95 µg/mL) with a higher selectivity index (SI: 1.52) compared to cisplatin. After metabolization silibinin showed an increase of cytotoxicity with a CI50 six-fold decrease (10.46 ± 0.25). SIGNIFICANCE: The use of silibinin may become an important alternative tool in the prevention and treatment of H. pylori infection and, consequently, in gastric cancer.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Infecções por Helicobacter/prevenção & controle , Helicobacter pylori/efeitos dos fármacos , Simulação de Acoplamento Molecular/métodos , Silibina/farmacologia , Neoplasias Gástricas/prevenção & controle , Animais , Antineoplásicos Fitogênicos/uso terapêutico , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Mucosa Gástrica/efeitos dos fármacos , Mucosa Gástrica/microbiologia , Mucosa Gástrica/patologia , Infecções por Helicobacter/patologia , Helicobacter pylori/fisiologia , Camundongos , Testes de Sensibilidade Microbiana/métodos , Células RAW 264.7 , Silibina/química , Silibina/uso terapêutico , Neoplasias Gástricas/patologia
12.
PLoS One ; 15(7): e0236101, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32678829

RESUMO

Dysregulation of histone demethylase Jumonji-C domain-containing protein 5 (JMJD5) has been identified as a great effect on tumorigenesis. Silibinin is a commonly used anti-hepatotoxic drug and exhibits anticancer effect in various cancers. However, the antitumor mechanism between silibinin and JMJD5 in oral squamous cell carcinoma (OSCC) remains unclear. In this study, the clinical significance of JMJD5 on OSCC patients was assessed through tissue microarray. Furthermore, mice bearing patient-derived tumor xenografts (PDTXs) and tongue cancer cell lines were treated with silibinin and evaluated for tumor growth and JMJD5 expression. High expression of JMJD5 in oral cancer was significantly associated with tumor size (P = 0.0241), cervical node metastasis (P = 0.0001) and clinical stage (P = 0.0002), was associated with worse survival rate compared with that of the total cohort (P = 0.0002). Collectively the data indicate that JMJD5 expression may be suitable for detection of unfavorable prognosis in OSCC patients, based in part on its apparent role as a marker of metastasis. In addition, silibinin inhibits cancer growth in vitro and in PDTX models. Furthermore, metastasis-associated protein 1 (MTA1) could regulate the expression for JMJD5 and had a positive correlation with JMJD5. Moreover, silibinin could downregulate JMJD5 and MTA1 in oral cancer. Present study thus identifies that JMJD5 might be an essential prognostic indicator and therapeutic target against OSCC progression. In addition, silibinin is a potential candidate among novel chemotherapeutic agents or adjuvants for modulating JMJD5 in OSCC, through a mechanism likely involving MTA1/JMJD5 axis.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma de Células Escamosas/patologia , Proliferação de Células , Histona Desmetilases/metabolismo , Neoplasias Bucais/patologia , Proteínas Repressoras/metabolismo , Silibina/farmacologia , Transativadores/metabolismo , Animais , Antineoplásicos Fitogênicos/farmacologia , Apoptose , Biomarcadores Tumorais/genética , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Histona Desmetilases/genética , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/metabolismo , Prognóstico , Proteínas Repressoras/genética , Taxa de Sobrevida , Transativadores/genética , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Life Sci ; 257: 118100, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32679149

RESUMO

AIM: Nexrutine, an herbal extract of Phellodendron amurense, has been found to play a tumor-suppressive role in many cancers. However, its role in the pathogenesis of gastric cancer remains unclear. MATERIALS AND METHODS: Gastric cancer cells (SGC-7901 and MGC-803) were treated with nexrutine, and cell proliferation, invasion and apoptosis were analyzed. And the MGC-803 cells-derived xenograft mouse models were fed pelleted diet containing 600 mg/kg nexrutine for 21 days after inoculation. Mechanically, we focused on the influences of nexrutine on the levels and activation of STAT3 and NF-κB as well as their upstream regulator FAK. Additionally, we further verified whether nexrutine affected the proliferation, invasion and apoptosis of gastric cancer cells via FAK by upregulating FAK expression before nexrutine treatment. KEY FINDINGS: We found nexrutine inhibited the viability, invasion, and expression levels of PCNA, CyclinD1 and Bcl-2, promoted the apoptosis and Bax expression, decreased levels of STAT3, phospho-STAT3, NF-κB p65, phospho-p65, FAK and phospho-FAK in gastric cancer cells. Overexpression of FAK reversed the impacts of nexrutine on the levels of STAT3, phospho-STAT3, NF-κB p65, phospho-p65, as well as the malignant characteristics of gastric cancer cells. Moreover, nexrutine suppressed tumor volumes and weights, and decreased expression and phosphorylation of FAK, STAT3 and NF-κB p65 in vivo. SIGNIFICANCE: Nexrutine inhibited the malignant progression of gastric cancer via negatively regulating STAT3/NF-κB signaling pathway by suppressing FAK expression and activation.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Quinase 1 de Adesão Focal/genética , Extratos Vegetais/farmacologia , Neoplasias Gástricas/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Progressão da Doença , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , NF-kappa B/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Neoplasias Gástricas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Int J Nanomedicine ; 15: 4639-4657, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32636623

RESUMO

Background: ß-Glucosidase (ß-Glu) can activate amygdalin to kill prostate cancer cells, but the poor specificity of this killing effect may cause severe general toxicity in vivo, limiting the practical clinical application of this approach. Materials and Methods: In this study, starch-coated magnetic nanoparticles (MNPs) were successively conjugated with ß-Glu and polyethylene glycol (PEG) by chemical coupling methods. Cell experiments were used to confirm the effects of immobilized ß-Glu on amygdalin-mediated prostate cancer cell death in vitro. Subcutaneous xenograft models were used to carry out the targeting experiment and magnetically directed enzyme/prodrug therapy (MDEPT) experiment in vivo. Results: Immobilized ß-Glu activated amygdalin-mediated prostate cancer cell death. Tumor-targeting studies showed that PEG modification increased the accumulation of ß-Glu-loaded nanoparticles in targeted tumor tissue subjected to an external magnetic field and decreased the accumulation of the nanoparticles in the liver and spleen. Based on an enzyme activity of up to 134.89 ± 14.18mU/g tissue in the targeted tumor tissue, PEG-ß-Glu-MNP/amygdalin combination therapy achieved targeted activation of amygdalin and tumor growth inhibition in C57BL/6 mice bearing RM1 xenografts. Safety evaluations showed that this strategy had some impact on liver and heart function but did not cause obvious organ damage. Conclusion: All findings indicate that this magnetically directed enzyme/prodrug therapy strategy has the potential to become a promising new approach for targeted therapy of prostate cancer.


Assuntos
Amigdalina/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Nanopartículas/química , Neoplasias da Próstata/tratamento farmacológico , beta-Glucosidase/metabolismo , Animais , Linhagem Celular Tumoral , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Humanos , Campos Magnéticos , Fenômenos Magnéticos , Masculino , Camundongos Endogâmicos C57BL , Nanopartículas/uso terapêutico , Polietilenoglicóis/química , Pró-Fármacos/farmacologia , Neoplasias da Próstata/patologia , Amido/química , beta-Glucosidase/química
15.
Anticancer Res ; 40(7): 3819-3830, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32620621

RESUMO

BACKGROUND: Picrasma quassioides (PQ) is a traditional Asian herbal medicine with anti-tumor properties that can inhibit the viability of HepG2 liver cancer cells. H-Ras is often mutated in liver cancer, however, the effect of PQ treatment on H-Ras mutated liver cancer is unclear. This study aimed to investigate the role of PQ on ROS accumulation and mitochondrial dysfunction in H-ras mutated HepG2 (HepG2G12V) cells. MATERIALS AND METHODS: PQ ethanol extract-induced HepG2G12V apoptosis was analyzed by the MTT assay, fluorescence microscopy, flow cytometry and western blotting. RESULTS: PQ treatment affected cell migration and colony formation in HepG2G12V cells. Cleaved-caspase-3, cleaved-caspase-9 and BCL2 associated agonist of cell death (BAD) expression levels were increased, while the levels of B-cell lymphoma-extra large (Bcl-xL) were decreased with PQ treatment. PQ treatment led to a reduction of H-Ras expression levels in liver cancer cells, thus reducing their abnormal proliferation. Furthermore, it led to increased expression levels of Peroxiredoxin VI, which regulates the redox signal in cells. CONCLUSION: Taken together these results provide a new functional significance for the role of PQ in treating HepG2G12V liver cancer.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Mitocôndrias Hepáticas/efeitos dos fármacos , Extratos Vegetais/farmacologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Espécies Reativas de Oxigênio/metabolismo , Apoptose/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Genes ras , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias Hepáticas/metabolismo , Picrasma/química , Proteínas Proto-Oncogênicas p21(ras)/biossíntese
16.
Am J Chin Med ; 48(5): 1203-1220, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32668971

RESUMO

Lymph node migration results in poor prognoses for nasopharyngeal carcinoma (NPC) patients. Tricetin, a flavonoid derivative, regulates tumorigenesis activity through its antiproliferative and antimetastatic properties. However, the molecular mechanism of tricetin affecting the migration and invasion of NPC cells remains poorly understood. In this paper, we examined the antimetastatic properties of tricetin in human NPC cells. Our results demonstrated that tricetin at noncytotoxic concentrations (0-80 3M) noticeably reduced the migration and invasion of NPC cells (HONE-1, NPC-39, and NPC-BM). Moreover, tricetin suppressed the indicative protease, presenilin-1 (PS-1), as indicated by protease array. PS-1 was transcriptionally inhibited via the Akt signaling pathway but not mitogen-activated protein kinase pathways, such as the JNK, p38, and ERK1/2 pathways. In addition to upregulating GSK-3[Formula: see text] phosphorylation through Akt suppression, tricetin may downregulate the activity of PS-1. Overall, our study provides new insight into the role of tricetin-induced molecular regulation in the suppression of NPC metastasis and suggests that tricetin has prospective therapeutic applications for patients with NPC.


Assuntos
Movimento Celular/efeitos dos fármacos , Cromonas/farmacologia , Neoplasias Nasofaríngeas/genética , Presenilina-1/genética , Presenilina-1/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Antineoplásicos Fitogênicos/farmacologia , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Expressão Gênica , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Neoplasias Nasofaríngeas/patologia , Invasividade Neoplásica/genética
17.
PLoS One ; 15(7): e0236315, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32706791

RESUMO

The natural product nobiletin is a small molecule, widely studied with regard to its therapeutic effects, including in cancer cell lines and tumors. Recently, nobiletin has also been shown to affect circadian rhythms via their enhancement, resulting in protection against metabolic syndrome. We hypothesized that nobiletin's anti-oncogenic effects, such as prevention of cell migration and formation of anchorage independent colonies, are correspondingly accompanied by modulation of circadian rhythms. Concurrently, we wished to determine whether the circadian and anti-oncogenic effects of nobiletin differed across cancer cell lines. In this study, we assessed nobiletin's circadian and therapeutic characteristics to ascertain whether these effects depend on cell line, which here also varied in terms of baseline circadian rhythmicity. Three cell culture models where nobiletin's effects on cell proliferation and migration have been studied previously were evaluated: U2OS (bone osteosarcoma), which possesses robust circadian rhythms; MCF7 (breast adenocarcinoma), which has weak circadian rhythms; and MDA-MB-231 (breast adenocarcinoma), which is arrhythmic. We found that circadian, migration, and proliferative effects following nobiletin treatment were subtle in the U2OS and MCF7 cells. On the other hand, changes were clear in MDA-MB-231s, where nobiletin rescued rhythmicity and substantially reduced oncogenic features, specifically two-dimensional cell motility and anchorage-independent growth. Based on these results and those previously described, we posit that the effects of nobiletin are indeed cell-type dependent, and that a positive correlation may exist between nobiletin's circadian and therapeutic effects.


Assuntos
Antineoplásicos Fitogênicos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ritmo Circadiano/efeitos dos fármacos , Flavonas , Adenocarcinoma/tratamento farmacológico , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/uso terapêutico , Neoplasias Ósseas/tratamento farmacológico , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Flavonas/farmacologia , Flavonas/uso terapêutico , Humanos , Osteossarcoma/tratamento farmacológico
18.
Cell Prolif ; 53(8): e12869, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32597573

RESUMO

OBJECTIVES: Cryptococcus heimaeyensis S20 is found in Antarctica and can produce exopolysaccharides (CHEPS). Here, we explore the anti-tumour effects of CHEPS on non-small cell lung cancer (NSCLC). MATERIALS AND METHODS: Cell viability was assessed by CCK8 and colony formation assays. Flow cytometry was used to analyse the cell cycle, cell apoptosis and reactive oxygen species (ROS). Cell autophagy was detected by EGFP-LC3 puncta assay, Lyso-Tracker Red staining and transmission electron microscopy. mRNA and protein levels were analysed by qRT-PCR and Western blot. Related mechanisms were confirmed using appropriate inhibitors or shRNA. In vitro results were further confirmed by a tumour xenograft study. RESULTS: CHEPS inhibited the proliferation of NSCLC cells by inducing S- and G2/M-phase arrest and autophagic cell death, but not apoptosis. CHEPS was less toxic to normal human embryonic lung fibroblasts. CHEPS activated the MAPK pathway in NSCLC cells, and p38 and ERK promoted CHEPS-induced cell death. Further studies showed that p38 and ERK promoted CHEPS-induced NSCLC cell autophagy and ERK promoted CHEPS-induced S- and G2/M-phase arrest. ROS were induced by CHEPS. A ROS scavenger attenuated CHEPS-induced p38 and ERK activation, autophagy and cell death. Finally, CHEPS reduced orthotopic lung tumour growth without organ-related toxicity. CHEPS also induced ROS, activated p38 and ERK, and triggered autophagy in vivo. CONCLUSIONS: CHEPS induces autophagic cell death and S- and G2/M-phase arrest in NSCLC cells via ROS/p38 and ROS/ERK signalling.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Cryptococcus/efeitos dos fármacos , Antineoplásicos Fitogênicos/farmacologia , Morte Celular Autofágica/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Cryptococcus/metabolismo , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
19.
Food Chem ; 328: 127102, 2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-32512468

RESUMO

Sprouting process enhances plant bioactive compounds. Broccoli (Brassica oleracea L) sprouts are well known for their high levels of glucosinolates (GLs), amino acids, and antioxidants, which offer outstanding biological activities with positive impacts on plant metabolism. Elevated CO2 (eCO2, 620 ppm) was applied for 9 days to further improve nutritive and health-promoting values of three cultivars of broccoli sprouts i.e., Southern star, Prominence and Monotop. eCO2 improved sprouts growth and induced GLs accumulation e.g., glucoraphanin, possibly through amino acids production e.g., high methionine and tryptophan. There were increases in myrosinase activity, which stimulated GLs hydrolysis to yield health-promoting sulforaphane. Interestingly, low levels of ineffective sulforaphane nitrile were detected and positively correlated with reduced epithiospecifier protein after eCO2 treatment. High glucoraphanin and sulforaphane levels in eCO2 treated sprouts improved the anticarcinogenic and anti-inflammatory properties of their extracts. In conclusion, eCO2 treatment enriches broccoli sprouts with health-promoting metabolites and bioactivities.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Brassica/metabolismo , Dióxido de Carbono/metabolismo , Glucosinolatos/metabolismo , Aminoácidos/metabolismo , Anti-Inflamatórios/farmacologia , Brassica/química , Brassica/crescimento & desenvolvimento , Linhagem Celular , Glucosinolatos/farmacologia , Humanos , Imidoésteres/metabolismo , Imidoésteres/farmacologia , Isotiocianatos/metabolismo , Isotiocianatos/farmacologia , Extratos Vegetais/farmacologia
20.
Life Sci ; 256: 118000, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32585246

RESUMO

AIMS: Hsp90 is regarded as an important therapeutic target in cancer treatment. Client proteins of Hsp90 like Beclin-1, PI3K, and AKT, are associated with tumor development, poor prognosis, and resistance to cancer therapies. This study aims to analyze the role of Gedunin, an Hsp-90 inhibitor, in mediation of crosstalk between apoptosis and autophagy by targeting Beclin-1:Bcl-2 interaction, and ER stress. MAIN METHODS: A549 cells were treated with different concentrations of gedunin, and inhibitory rate was evaluated by MTT assay. Effect of gedunin on generation of reactive oxygen species, mitochondrial membrane potential, and chromatin condensation was studied by staining methods like DCFH-DA, MitoTracker, and DAPI. Expression of EGFR, PIK3CA, AKT, marker genes for apoptosis and autophagy were studied using semi-quantitative RT-PCR. Interaction study of Hsp90:Beclin-1:Bcl-2 was done by immunoprecipitation analysis. Protein expression of autophagy and apoptosis markers along with Grp78, Hsp70, and Hsp90 was analyzed by immunoblotting. KEY FINDINGS: Gedunin exerts cytotoxic effects, causes increase in ROS generation, downregulates mitochondrial membrane potential and induces loss in DNA integrity. mRNA expression analysis revealed that gedunin sensitized A549 cells towards apoptosis by downregulating EGFR, PIK3CA, AKT, and autophagy. Gedunin also inhibited interaction between Hsp90:Beclin-1:Bcl-2, leading to downregulation of autophagy (Beclin-1, Atg5-12 complex, and LC3) and antiapoptotic protein Bcl-2, which may result in ER stress-induced apoptosis. Moreover, Hsp90 inhibition by gedunin did not cause upregulation of Hsp70 expression. SIGNIFICANCE: Gedunin induces apoptosis in lung cancer cells by disrupting Hsp90:Beclin-1:Bcl-2 interaction and autophagy downregulation, thus making gedunin a good drug lead for targeting lung cancer.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Limoninas/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Células A549 , Antineoplásicos Fitogênicos/administração & dosagem , Autofagia/efeitos dos fármacos , Proteína Beclina-1/metabolismo , Relação Dose-Resposta a Droga , Regulação para Baixo/efeitos dos fármacos , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Limoninas/administração & dosagem , Neoplasias Pulmonares/patologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA