Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 18.604
Filtrar
1.
Medicine (Baltimore) ; 100(35): e26878, 2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34477121

RESUMO

ABSTRACT: Many free radicles are implicated to activate a number of oncogenic signaling, cause damage to deoxyribonucleic acid and tumor suppressor genes, or promote expression of proto-oncogenes. Reduced level of antioxidants and increases oxidative stress markers are associated with the development of various types of cancer.This prospective study included 60 women who were grouped into equal groups. Patients group included 30 breast cancer women and control group consisting of 30 apparently healthy women. Both groups were compared regarding the serum levels of antioxidants biomarkers (vitamin C, ceruloplasmin, glutathione) and oxidative stress biomarkers, malondialdehyde (MDA), peroxynitrite, and gamma-glutamyl transferase.In regard to the antioxidant biomarkers, there was a significant difference between the patients and the controls regarding the levels of serum ceruloplasmin and glutathione, (P values .000) for each while vitamin C showed no significant correlation (P value .053), while regarding oxidative stress biomarkers, the correlation was significant for both peroxynitrite and MDA (P value .000 and .001) respectively, and not significant for gamma-glutamyl transferase (P value 1.00).Reduced level both ceruloplasmin and glutathione is seen in patients with breast cancer while vitamin C is not associated. Elevated levels of both peroxynitrite and MDA is seen in patients with breast cancer which may be used as serum markers for the early detection of breast cancer.


Assuntos
Antioxidantes/análise , Neoplasias da Mama/tratamento farmacológico , Adulto , Antioxidantes/uso terapêutico , Estudos de Casos e Controles , Correlação de Dados , Feminino , Humanos , Pessoa de Meia-Idade , Estresse Oxidativo , Estudos Prospectivos
2.
Molecules ; 26(17)2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34500838

RESUMO

Phenolic acids comprise a class of phytochemical compounds that can be extracted from various plant sources and are well known for their antioxidant and anti-inflammatory properties. A few of the most common naturally occurring phenolic acids (i.e., caffeic, carnosic, ferulic, gallic, p-coumaric, rosmarinic, vanillic) have been identified as ingredients of edible botanicals (thyme, oregano, rosemary, sage, mint, etc.). Over the last decade, clinical research has focused on a number of in vitro (in human cells) and in vivo (animal) studies aimed at exploring the health protective effects of phenolic acids against the most severe human diseases. In this review paper, the authors first report on the main structural features of phenolic acids, their most important natural sources and their extraction techniques. Subsequently, the main target of this analysis is to provide an overview of the most recent clinical studies on phenolic acids that investigate their health effects against a range of severe pathologic conditions (e.g., cancer, cardiovascular diseases, hepatotoxicity, neurotoxicity, and viral infections-including coronaviruses-based ones).


Assuntos
Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Cinamatos/farmacologia , Hidroxibenzoatos/farmacologia , Extratos Vegetais/farmacologia , Anti-Inflamatórios/uso terapêutico , Antioxidantes/uso terapêutico , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/tratamento farmacológico , Cinamatos/uso terapêutico , Ensaios Clínicos como Assunto , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/tratamento farmacológico , Humanos , Hidroxibenzoatos/uso terapêutico , Hepatopatias/diagnóstico , Hepatopatias/tratamento farmacológico , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico , Doenças do Sistema Nervoso/diagnóstico , Doenças do Sistema Nervoso/tratamento farmacológico , Extratos Vegetais/uso terapêutico , Índice de Gravidade de Doença , Resultado do Tratamento
3.
Int J Mol Sci ; 22(16)2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34445519

RESUMO

Cardiovascular disease is the leading cause of morbidity and mortality in diabetes. Recent clinical studies indicate that sodium-glucose co-transporter 2 (SGLT2) inhibitors improve cardiovascular outcomes in patients with diabetes. The mechanism underlying the beneficial effect of SGLT2 inhibitors is not completely clear but may involve direct actions on vascular cells. SGLT2 inhibitors increase the bioavailability of endothelium-derived nitric oxide and thereby restore endothelium-dependent vasodilation in diabetes. In addition, SGLT2 inhibitors favorably regulate the proliferation, migration, differentiation, survival, and senescence of endothelial cells (ECs). Moreover, they exert potent antioxidant and anti-inflammatory effects in ECs. SGLT2 inhibitors also inhibit the contraction of vascular smooth muscle cells and block the proliferation and migration of these cells. Furthermore, studies demonstrate that SGLT2 inhibitors prevent postangioplasty restenosis, maladaptive remodeling of the vasculature in pulmonary arterial hypertension, the formation of abdominal aortic aneurysms, and the acceleration of arterial stiffness in diabetes. However, the role of SGLT2 in mediating the vascular actions of these drugs remains to be established as important off-target effects of SGLT2 inhibitors have been identified. Future studies distinguishing drug- versus class-specific effects may optimize the selection of specific SGLT2 inhibitors in patients with distinct cardiovascular pathologies.


Assuntos
Complicações do Diabetes/prevenção & controle , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Remodelação Vascular/efeitos dos fármacos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Complicações do Diabetes/metabolismo , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Humanos , Óxido Nítrico/metabolismo , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico
4.
Chin Med J (Engl) ; 134(16): 1897-1907, 2021 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-34415890

RESUMO

ABSTRACT: Oxidative stress is caused by the imbalance between the generation of free radicals/reactive oxygen species (ROS) and the antioxidant defense systems, which can activate various transcription factors and affect their transcriptional pathways. Oxidative stress plays an important role in the occurrence and development of leukemia and is closely related to the treatment and prognosis of leukemia. The standard chemotherapy strategies for the pre-treatment of leukemia have many drawbacks. Hence, the usage of antioxidants and oxidants in the treatment of leukemia is being explored and has been preliminarily applied. This article reviews the research progress of oxidative stress and leukemia. In addition, the application of antioxidants treatment in leukemia has been summarized.


Assuntos
Antioxidantes , Leucemia , Antioxidantes/uso terapêutico , Humanos , Leucemia/tratamento farmacológico , Estresse Oxidativo , Espécies Reativas de Oxigênio
5.
Int J Mol Sci ; 22(15)2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34360751

RESUMO

Coronavirus disease 2019 (COVID-19) was first reported in Wuhan, China, in late December 2019. Since then, COVID-19 has spread rapidly worldwide and was declared a global pandemic on 20 March 2020. Cardiovascular complications are rapidly emerging as a major peril in COVID-19 in addition to respiratory disease. The mechanisms underlying the excessive effect of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection on patients with cardiovascular comorbidities remain only partly understood. SARS-CoV-2 infection is caused by binding of the viral surface spike (S) protein to the human angiotensin-converting enzyme 2 (ACE2), followed by the activation of the S protein by transmembrane protease serine 2 (TMPRSS2). ACE2 is expressed in the lung (mainly in type II alveolar cells), heart, blood vessels, small intestine, etc., and appears to be the predominant portal to the cellular entry of the virus. Based on current information, most people infected with SARS-CoV-2 virus have a good prognosis, while a few patients reach critical condition, especially the elderly and those with chronic underlying diseases. The "cytokine storm" observed in patients with severe COVID-19 contributes to the destruction of the endothelium, leading to "acute respiratory distress syndrome" (ARDS), multiorgan failure, and death. At the origin of the general proinflammatory state may be the SARS-CoV-2-mediated redox status in endothelial cells via the upregulation of ACE/Ang II/AT1 receptors pathway or the increased mitochondrial reactive oxygen species (mtROS) production. Furthermore, this vicious circle between oxidative stress (OS) and inflammation induces endothelial dysfunction, endothelial senescence, high risk of thrombosis and coagulopathy. The microvascular dysfunction and the formation of microthrombi in a way differentiate the SARS-CoV-2 infection from the other respiratory diseases and bring it closer to cardiovascular diseases like myocardial infarction and stroke. Due the role played by OS in the evolution of viral infection and in the development of COVID-19 complications, the use of antioxidants as adjuvant therapy seems appropriate in this new pathology. Alpha-lipoic acid (ALA) could be a promising candidate that, through its wide tissue distribution and versatile antioxidant properties, interferes with several signaling pathways. Thus, ALA improves endothelial function by restoring the endothelial nitric oxide synthase activity and presents an anti-inflammatory effect dependent or independent of its antioxidant properties. By improving mitochondrial function, it can sustain the tissues' homeostasis in critical situation and by enhancing the reduced glutathione it could indirectly strengthen the immune system. This complex analysis could open a new therapeutic perspective for ALA in COVID-19 infection.


Assuntos
Antioxidantes/uso terapêutico , COVID-19/tratamento farmacológico , Doenças Cardiovasculares/tratamento farmacológico , Ácido Tióctico/uso terapêutico , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Antioxidantes/química , COVID-19/complicações , Doenças Cardiovasculares/etiologia , Síndrome da Liberação de Citocina/etiologia , Síndrome da Liberação de Citocina/metabolismo , Células Endoteliais/metabolismo , Humanos , Ácido Tióctico/química
6.
Nutrients ; 13(7)2021 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-34371951

RESUMO

Diabetic retinopathy, which was primarily regarded as a microvascular disease, is the leading cause of irreversible blindness worldwide. With obesity at epidemic proportions, diabetes-related ocular problems are exponentially increasing in the developed world. Oxidative stress due to hyperglycemic states and its associated inflammation is one of the pathological mechanisms which leads to depletion of endogenous antioxidants in retina in a diabetic patient. This contributes to a cascade of events that finally leads to retinal neurodegeneration and irreversible vision loss. The xanthophylls lutein and zeaxanthin are known to promote retinal health, improve visual function in retinal diseases such as age-related macular degeneration that has oxidative damage central in its etiopathogenesis. Thus, it can be hypothesized that dietary supplements with xanthophylls that are potent antioxidants may regenerate the compromised antioxidant capacity as a consequence of the diabetic state, therefore ultimately promoting retinal health and visual improvement. We performed a comprehensive literature review of the National Library of Medicine and Web of Science databases, resulting in 341 publications meeting search criteria, of which, 18 were found eligible for inclusion in this review. Lutein and zeaxanthin demonstrated significant protection against capillary cell degeneration and hyperglycemia-induced changes in retinal vasculature. Observational studies indicate that depletion of xanthophyll carotenoids in the macula may represent a novel feature of DR, specifically in patients with type 2 or poorly managed type 1 diabetes. Meanwhile, early interventional trials with dietary carotenoid supplementation show promise in improving their levels in serum and macular pigments concomitant with benefits in visual performance. These findings provide a strong molecular basis and a line of evidence that suggests carotenoid vitamin therapy may offer enhanced neuroprotective effects with therapeutic potential to function as an adjunct nutraceutical strategy for management of diabetic retinopathy.


Assuntos
Carotenoides/uso terapêutico , Retinopatia Diabética/dietoterapia , Suplementos Nutricionais , Luteína/uso terapêutico , Zeaxantinas/uso terapêutico , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Carotenoides/farmacologia , Humanos , Luteína/farmacologia , Pigmento Macular/análise , Zeaxantinas/farmacologia
7.
Int J Mol Sci ; 22(15)2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-34361019

RESUMO

Cholestatic liver diseases can progress to end-stage liver disease and reduce patients' quality of life. Although their underlying mechanisms are still incompletely elucidated, oxidative stress is considered to be a key contributor to these diseases. Heme oxygenase-1 (HO-1) is a cytoprotective enzyme that displays antioxidant action. It has been found that this enzyme plays a protective role against various inflammatory diseases. However, the role of HO-1 in cholestatic liver diseases has not yet been investigated. Here, we examined whether pharmacological induction of HO-1 by cobalt protoporphyrin (CoPP) ameliorates cholestatic liver injury. To this end, a murine model of 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) diet feeding was used. Administration of CoPP ameliorated liver damage and cholestasis with HO-1 upregulation in DDC diet-fed mice. Induction of HO-1 by CoPP suppressed the DDC diet-induced oxidative stress and hepatocyte apoptosis. In addition, CoPP attenuated cytokine production and inflammatory cell infiltration. Furthermore, deposition of the extracellular matrix and expression of fibrosis-related genes after DDC feeding were also decreased by CoPP. HO-1 induction decreased the number of myofibroblasts and inhibited the transforming growth factor-ß pathway. Altogether, these data suggest that the pharmacological induction of HO-1 ameliorates cholestatic liver disease by suppressing oxidative stress, hepatocyte apoptosis, and inflammation.


Assuntos
Anti-Inflamatórios/uso terapêutico , Antioxidantes/uso terapêutico , Colestase Intra-Hepática/tratamento farmacológico , Heme Oxigenase-1/metabolismo , Protoporfirinas/uso terapêutico , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Apoptose , Colestase Intra-Hepática/etiologia , Colestase Intra-Hepática/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Protoporfirinas/farmacologia , Piridinas/toxicidade , Xenobióticos/toxicidade
8.
Molecules ; 26(16)2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34443365

RESUMO

(±)-Anastatins A and B are flavonoids isolated from Anastatica hierochuntica. In a previous study, twenty-four di- and tri-substituted novel derivatives of anastatins were designed and their preliminary antioxidant activities were evaluated. In the present study, the protective effect of myocardial ischemia-reperfusion (I/R) and the systematic antioxidant capacity of 24 derivatives were further studied. Compound 13 was the most potent among all the compounds studied, which increased the survival of H9c2 cells to 80.82%. The antioxidant capability of compound 13 was evaluated in ferric reducing antioxidant power, 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) radical scavenging, and 2,2-diphenyl-1-picrylhydrazyl assays. It was observed that compound 13 significantly reduced infarcted areas and improved histopathological and electrocardiogram changes in rats with myocardial I/R injury. Moreover, compound 13 decreased the leakage rates of serum lactate dehydrogenase, creatine kinase, and malonyldialdehyde from rat myocardial tissues and increased the level of glutathione and superoxide dismutase activities following myocardial I/R injury in rats. Taken together, we concluded that compound 13 had potent cardioprotective effects against myocardial I/R injury both in vitro and in vivo owing to its extensive antioxidant activities.


Assuntos
Antioxidantes/química , Antioxidantes/farmacologia , Flavonoides/química , Flavonoides/farmacologia , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Animais , Antioxidantes/uso terapêutico , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Flavonoides/uso terapêutico , Glutationa/metabolismo , Masculino , Malondialdeído/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Estresse Oxidativo/efeitos dos fármacos , Ratos
10.
Molecules ; 26(16)2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34443463

RESUMO

In our study, Allium subhirsutum L. (AS) was investigated to assess its phenolic profile and bioactive molecules including flavonoids and organosulfur compounds. The antioxidant potential of AS and wound healing activity were addressed using skin wound healing and oxidative stress and inflammation marker estimation in rat models. Phytochemical and antiradical activities of AS extract (ASE) and oil (ASO) were studied. The rats were randomly assigned to four groups: group I served as a control and was treated with simple ointment base, group II was treated with ASE ointment, group III was treated with ASO ointment and group IV (reference group; Ref) was treated with a reference drug "Cytolcentella® cream". Phytochemical screening showed that total phenols (215 ± 3.5 mg GAE/g) and flavonoids (172.4 ± 3.1 mg QE/g) were higher in the ASO than the ASE group. The results of the antioxidant properties showed that ASO exhibited the highest DPPH free radical scavenging potential (IC50 = 0.136 ± 0.07 mg/mL), FRAP test (IC50 = 0.013 ± 0.006 mg/mL), ABTS test (IC50 = 0.52 ± 0.03 mg/mL) and total antioxidant capacity (IC50 = 0.34 ± 0.06 mg/mL). In the wound healing study, topical application of ASO performed the fastest wound-repairing process estimated by a chromatic study, percentage wound closure, fibrinogen level and oxidative damage status, as compared to ASE, the Cytolcentella reference drug and the untreated rats. The use of AS extract and oil were also associated with the attenuation of oxidative stress damage in the wound-healing treated rats. Overall, the results provided that AS, particularly ASO, has a potential medicinal value to act as effective skin wound healing agent.


Assuntos
Allium/química , Antioxidantes/farmacologia , Dermatite/tratamento farmacológico , Inflamação/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Cicatrização/efeitos dos fármacos , Animais , Antioxidantes/química , Antioxidantes/uso terapêutico , Modelos Animais de Doenças , Fibrinogênio/metabolismo , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Tecido de Granulação/efeitos dos fármacos , Masculino , Fenóis/farmacologia , Fenóis/uso terapêutico , Extratos Vegetais/química , Extratos Vegetais/uso terapêutico , Óleos Vegetais/química , Óleos Vegetais/farmacologia , Óleos Vegetais/uso terapêutico , Ratos Wistar
11.
Molecules ; 26(16)2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34443483

RESUMO

Skeletal muscle atrophy is the decrease in muscle mass and strength caused by reduced protein synthesis/accelerated protein degradation. Various conditions, such as denervation, disuse, aging, chronic diseases, heart disease, obstructive lung disease, diabetes, renal failure, AIDS, sepsis, cancer, and steroidal medications, can cause muscle atrophy. Mechanistically, inflammation, oxidative stress, and mitochondrial dysfunction are among the major contributors to muscle atrophy, by modulating signaling pathways that regulate muscle homeostasis. To prevent muscle catabolism and enhance muscle anabolism, several natural and synthetic compounds have been investigated. Recently, polyphenols (i.e., natural phytochemicals) have received extensive attention regarding their effect on muscle atrophy because of their potent antioxidant and anti-inflammatory properties. Numerous in vitro and in vivo studies have reported polyphenols as strongly effective bioactive molecules that attenuate muscle atrophy and enhance muscle health. This review describes polyphenols as promising bioactive molecules that impede muscle atrophy induced by various proatrophic factors. The effects of each class/subclass of polyphenolic compounds regarding protection against the muscle disorders induced by various pathological/physiological factors are summarized in tabular form and discussed. Although considerable variations in antiatrophic potencies and mechanisms were observed among structurally diverse polyphenolic compounds, they are vital factors to be considered in muscle atrophy prevention strategies.


Assuntos
Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Músculo Esquelético/efeitos dos fármacos , Atrofia Muscular/tratamento farmacológico , Atrofia Muscular/metabolismo , Compostos Fitoquímicos/farmacologia , Polifenóis/farmacologia , Animais , Anti-Inflamatórios/efeitos adversos , Anti-Inflamatórios/química , Anti-Inflamatórios/uso terapêutico , Antioxidantes/efeitos adversos , Antioxidantes/química , Antioxidantes/uso terapêutico , Humanos , Compostos Fitoquímicos/efeitos adversos , Compostos Fitoquímicos/química , Compostos Fitoquímicos/uso terapêutico , Polifenóis/efeitos adversos , Polifenóis/química , Polifenóis/uso terapêutico , Transdução de Sinais/efeitos dos fármacos
12.
J Evid Based Integr Med ; 26: 2515690X211036875, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34384258

RESUMO

Worldwide, the turmoil of the SARS-CoV-2 (COVID-19) pandemic has generated a burst of research efforts in search of effective prevention and treatment modalities. Current recommendations on natural supplements arise from mostly anecdotal evidence in other viral infections and expert opinion, and many clinical trials are ongoing. Here the authors review the evidence and rationale for the use of natural supplements for prevention and treatment of COVID-19, including those with potential benefit and those with potential harms. Specifically, the authors review probiotics, dietary patterns, micronutrients, antioxidants, polyphenols, melatonin, and cannabinoids. Authors critically evaluated and summarized the biomedical literature published in peer-reviewed journals, preprint servers, and current guidelines recommended by expert scientific governing bodies. Ongoing and future trials registered on clinicaltrials.gov were also recorded, appraised, and considered in conjunction with the literature findings. In light of the controversial issues surrounding the manufacturing and marketing of natural supplements and limited scientific evidence available, the authors assessed the available data and present this review to equip clinicians with the necessary information regarding the evidence for and potential harms of usage to promote open discussions with patients who are considering dietary supplements to prevent and treat COVID-19.


Assuntos
Antioxidantes/uso terapêutico , COVID-19/tratamento farmacológico , Suplementos Nutricionais , Micronutrientes/uso terapêutico , Extratos Vegetais/uso terapêutico , Antioxidantes/farmacologia , Canabinoides/farmacologia , Canabinoides/uso terapêutico , Humanos , Melatonina/farmacologia , Melatonina/uso terapêutico , Micronutrientes/farmacologia , Niacinamida/farmacologia , Niacinamida/uso terapêutico , Extratos Vegetais/farmacologia , Polifenóis/farmacologia , Polifenóis/uso terapêutico , Probióticos/uso terapêutico , SARS-CoV-2
13.
Biomed Pharmacother ; 141: 111888, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34237598

RESUMO

Curcumin, isolated from Curcuma longa L., is a fat-soluble natural compound that can be obtained from ginger plant tuber roots, which accumulative evidences have demonstrated that it can resist viral and microbial infection and has anti-tumor, reduction of blood lipid and blood glucose, antioxidant and removal of free radicals, and is active against numerous disorders various chronic diseases including cardiovascular, pulmonary, neurological and autoimmune diseases. In this article is highlighted the recent evidence of curcuminoids applied in sevral aspects of medical problem particular in COVID-19 pandemics. We have searched several literature databases including MEDLINE (PubMed), EMBASE, the Web of Science, Cochrane Library, Google Scholar, and the ClinicalTrials.gov website via using curcumin and medicinal properties as a keyword. All studies published from the time when the database was established to May 2021 was retrieved. This review article summarizes the growing confirmation for the mechanisms related to curcumin's physiological and pharmacological effects with related target proteins interaction via molecular docking. The purpose is to provide deeper insight and understandings of curcumin's medicinal value in the discovery and development of new drugs. Curcumin could be used in the prevention or therapy of cardiovascular disease, respiratory diseases, cancer, neurodegeneration, infection, and inflammation based on cellular biochemical, physiological regulation, infection suppression and immunomodulation.


Assuntos
Anti-Inflamatórios não Esteroides/uso terapêutico , Antineoplásicos/uso terapêutico , Antioxidantes/uso terapêutico , Curcumina/uso terapêutico , Animais , Anti-Inflamatórios não Esteroides/metabolismo , Anti-Inflamatórios não Esteroides/farmacologia , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Doenças Autoimunes/tratamento farmacológico , Doenças Autoimunes/metabolismo , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/metabolismo , Curcumina/metabolismo , Curcumina/farmacologia , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Estrutura Secundária de Proteína
14.
Biomed Pharmacother ; 141: 111922, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34323703

RESUMO

The Coronavirus disease 19 (Covid-19) pandemic is devastating the public health: it is urgent to find a viable therapy to reduce the multiorgan damage of the disease. A validated therapeutic protocol is still missing. The most severe forms of the disease are related to an exaggerated inflammatory response. The pivotal role of reactive oxygen species (ROS) in the amplification of inflammation makes the antioxidants a potential therapy, but clinical trials are needed. The lecitinized superoxide dismutase (PC-SOD) could represent a possibility because of bioaviability, safety, and its modulatory effect on the innate immune response in reducing the harmful consequences of oxidative stress. In this review we summarize the evidence on lecitinized superoxide dismutase in animal and human studies, to highlight the rationale for using the PC-SOD to treat COVID-19.


Assuntos
COVID-19/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Fosfatidilcolinas/uso terapêutico , Superóxido Dismutase/uso terapêutico , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , COVID-19/diagnóstico , COVID-19/metabolismo , Humanos , Insuficiência de Múltiplos Órgãos/diagnóstico , Insuficiência de Múltiplos Órgãos/tratamento farmacológico , Insuficiência de Múltiplos Órgãos/metabolismo , Estresse Oxidativo/fisiologia , Pandemias , Fosfatidilcolinas/farmacologia , Espécies Reativas de Oxigênio/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/farmacologia
15.
Molecules ; 26(13)2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-34279399

RESUMO

A series of L-serine amides of antioxidant acids, such as Trolox, (E)-3-(3,5-di-tert-butyl-4-hydroxyphenyl)acrylic acid (phenolic derivative of cinnamic acid) and 3,5-di-tert-butyl-4-hydroxybenzoic acid (structurally similar to butylated hydroxytoluene), was synthesized. The hydroxy group of serine was esterified with two classical NSAIDs, ibuprofen and ketoprofen. The Trolox derivatives with ibuprofen (7) and ketoprofen (10) were the most potent inhibitors of lipid peroxidation (IC50 3.4 µΜ and 2.8 µΜ), several times more potent than the reference Trolox (IC50 25 µΜ). Most of the compounds decreased carrageenan-induced rat paw edema (37-67% at 150 µmol/kg). They were moderate inhibitors of soybean lipoxygenase, with the exception of ibuprofen derivative 8 (IC50 13 µΜ). The most active anti-inflammatory compounds exhibited a significant decrease in lipidemic indices in the plasma of Triton-induced hyperlipidemic rats, e.g., the most active compound 9 decreased triglycerides, total cholesterol and low-density lipoprotein cholesterol by 52%, 61% and 70%, respectively, at 150 µmol/kg (i.p.), similar to that of simvastatin, a well-known hypocholesterolemic drug. Since the designed compounds seem to exhibit multiple pharmacological actions, they may be of use for the development of agents against inflammatory and degenerative conditions.


Assuntos
Anti-Inflamatórios não Esteroides/síntese química , Antioxidantes/síntese química , Hipolipemiantes/síntese química , Inibidores de Lipoxigenase/síntese química , Animais , Anti-Inflamatórios não Esteroides/farmacocinética , Anti-Inflamatórios não Esteroides/uso terapêutico , Antioxidantes/farmacocinética , Antioxidantes/uso terapêutico , Carragenina/toxicidade , Colesterol/sangue , Edema/tratamento farmacológico , Edema/etiologia , Esterificação , Hiperlipidemias/tratamento farmacológico , Hipolipemiantes/farmacocinética , Hipolipemiantes/uso terapêutico , Inibidores de Lipoxigenase/farmacocinética , Inibidores de Lipoxigenase/uso terapêutico , Ratos , Ratos Wistar , Serina/química , Triglicerídeos/sangue
16.
Molecules ; 26(13)2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34206588

RESUMO

Anthocyanins are natural products that give color to plants. As natural plant pigments, anthocyanins also have a series of health-promoting benefits. Many researchers have proved that anthocyanins have therapeutic effects on diseases, such as circulatory, nervous, endocrine, digestive, sensory, urinary and immune systems. Additionally, a large number of studies have reported that anthocyanins have an anticancer effect through a wide range of anti-inflammatory and antioxidant effects. The anti-disease impact and mechanism of anthocyanins are diverse, so they have high research value. This review summarizes the research progress of anthocyanins on the pharmacological agents of different diseases to provide references for subsequent research.


Assuntos
Antocianinas , Anti-Inflamatórios , Antioxidantes , Produtos Biológicos , Plantas/química , Antocianinas/química , Antocianinas/uso terapêutico , Anti-Inflamatórios/química , Anti-Inflamatórios/uso terapêutico , Antioxidantes/química , Antioxidantes/uso terapêutico , Produtos Biológicos/química , Produtos Biológicos/uso terapêutico , Humanos
17.
Int J Mol Sci ; 22(13)2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34209800

RESUMO

Diabetes mellitus (DM) is a chronic metabolic disease characterised by insulin deficiency, resulting in hyperglycaemia, a characteristic symptom of type 2 diabetes mellitus (DM2). DM substantially affects numerous metabolic pathways, resulting in ß-cell dysfunction, insulin resistance, abnormal blood glucose levels, impaired lipid metabolism, inflammatory processes, and excessive oxidative stress. Oxidative stress can affect the body's normal physiological function and cause numerous cellular and molecular changes, such as mitochondrial dysfunction. Animal models are useful for exploring the cellular and molecular mechanisms of DM and improving novel therapeutics for their safe use in human beings. Due to their health benefits, there is significant interest in a wide range of natural compounds that can act as naturally occurring anti-diabetic compounds. Due to rodent models' relatively similar physiology to humans and ease of handling and housing, they are widely used as pre-clinical models for studying several metabolic disorders. In this review, we analyse the currently available rodent animal models of DM and their advantages and disadvantages and highlight the potential anti-oxidative effects of natural compounds and their mechanisms of action.


Assuntos
Produtos Biológicos/uso terapêutico , Diabetes Mellitus Experimental/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Produtos Biológicos/farmacologia , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Humanos , Estresse Oxidativo/fisiologia , Roedores
18.
AAPS PharmSciTech ; 22(5): 203, 2021 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-34244867

RESUMO

Capsanthin, a brightly orange-red-coloured pigment responsible for the peculiar red colour of paprika fruits (Capsicum annuum), belongs to xanthophylls, a class of oxygen-containing carotenoids. The characteristic chemical structure of capsanthin containing a keto group in conjunction with a long chain of 11 conjugated dienes is responsible for its strong radical scavenging and singlet oxygen quenching ability. Chemopreventive, antitumour, skin photo-protective, anti-inflammatory, and antidiabetic activities demonstrated by capsanthin are a consequence of its potent antioxidant action. Anti-obesity, anti-adipogenic, and antihyperlipidaemic activities are some of the more important features of capsanthin. With natural origin, bright red colour, and array of health benefits, capsanthin has a potential to be translated into a commercial cosmeceutical, nutraceutical, and/or pharmaceutical. However, the very low aqueous solubility of capsanthin is responsible for its highly variable and poor oral bioavailability. Moreover, its susceptibility to degradation due to heat, light, oxygen, and moisture poses challenges in the development of stable formulations for this otherwise meritorious compound. The current review presents various pharmacological activities of capsanthin and their underlying mechanisms. The review further discusses hitherto explored formulation strategies to improve solubility and stability of capsanthin. Graphical abstract.


Assuntos
Animais , Fármacos Antiobesidade/administração & dosagem , Fármacos Antiobesidade/farmacologia , Fármacos Antiobesidade/uso terapêutico , Antineoplásicos Fitogênicos/administração & dosagem , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/uso terapêutico , Antioxidantes/administração & dosagem , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Capsicum/química , Humanos , Hipolipemiantes/administração & dosagem , Hipolipemiantes/farmacologia , Hipolipemiantes/uso terapêutico , Xantofilas/administração & dosagem , Xantofilas/química , Xantofilas/farmacologia , Xantofilas/uso terapêutico
19.
Int J Mol Sci ; 22(12)2021 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-34202966

RESUMO

Ginger (Zingiber officinale Roscoe, family: Zingiberaceae), originating in South-East Asia, is one of the most used spices and condiments for foods and beverages. It is also used in traditional medicine for many human disorders including fever, gastrointestinal complications, arthritis, rheumatism, hypertension, and various infectious diseases due to its anti-inflammatory, antioxidant, antimicrobial, and antiemetic properties. Intriguingly, many recent studies evidenced the potent chemopreventive characteristics of ginger extracts against different types of cancer. The aim of this work is to review the literature related to the use of ginger extracts as a chemotherapeutic agent and to structure the cellular and molecular mechanisms through which ginger acts in different cancer types. Data summarized from experiments (in vitro or in vivo) and clinical studies, evidenced in this review, show that ginger derivatives perpetrate its anti-tumor action through important mediators, involved in crucial cell processes, such as cell cycle arrest, induction of cancer cell death, misbalance of redox homeostasis, inhibition of cell proliferation, angiogenesis, migration, and dissemination of cancer cells.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Quimioprevenção , Gengibre/química , Neoplasias/prevenção & controle , Extratos Vegetais/farmacologia , Animais , Antineoplásicos Fitogênicos/uso terapêutico , Antioxidantes/química , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Quimioprevenção/métodos , Resistencia a Medicamentos Antineoplásicos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/etiologia , Neoplasias/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Oxirredução/efeitos dos fármacos , Extratos Vegetais/química , Extratos Vegetais/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Relação Estrutura-Atividade
20.
Int J Mol Sci ; 22(11)2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34199527

RESUMO

Overactive bladder (OAB) syndrome, including frequency, urgency, nocturia and urgency incontinence, has a significantly negative impact on the quality-of-life scale (QoL) and can cause sufferer withdrawal from social activities. The occurrence of OAB can result from an imbalance between the production of pro-oxidants, such as free radicals and reactive species, and their elimination through protective mechanisms of antioxidant-induced oxidative stress. Several animal models, such as bladder ischemia/reperfusion (I/R), partial bladder outlet obstruction (PBOO) and ovarian hormone deficiency (OHD), have suggested that cyclic I/R during the micturition cycle induces oxidative stress, leading to bladder denervation, bladder afferent pathway sensitization and overexpression of bladder-damaging molecules, and finally resulting in bladder hyperactivity. Based on the results of previous animal experiments, the present review specifically focuses on four issues: (1) oxidative stress and antioxidant defense system; (2) oxidative stress in OAB and biomarkers of OAB; (3) OAB animal model; (4) potential nature/plant antioxidant treatment strategies for urinary dysfunction with OAB. Moreover, we organized the relationships between urinary dysfunction and oxidative stress biomarkers in urine, blood and bladder tissue. Reviewed information also revealed the summary of research findings for the effects of various antioxidants for treatment strategies for OAB.


Assuntos
Antioxidantes/uso terapêutico , Isquemia/tratamento farmacológico , Bexiga Urinária Hiperativa/tratamento farmacológico , Incontinência Urinária/tratamento farmacológico , Humanos , Isquemia/patologia , Estresse Oxidativo/genética , Estresse Oxidativo/fisiologia , Bexiga Urinária/efeitos dos fármacos , Bexiga Urinária/patologia , Incontinência Urinária/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...