RESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: The Antiviral Granules (AG) are derived from the classical famous prescription, which is composed of 9 traditional Chinese medicines, namely Radix Isatidis (called Banlangen, BLG in Chinese), Forsythiae Fructus (called Lianqiao, LQ in Chinese), Gypsum fibrosum, Anemarrhenae Rhizoma (called Zhimu, ZM in Chinese), Phragmitis Rhizoma (called Lugen, LG in Chinese), Rehmanniae Radix (called Dihuang, DH in Chinese), Pogostemonis Herba (called Guanghuoxiang, GHX in Chinese), Acori Tatarinowii Rhizoma (called Shichangpu, SCP in Chinese), and Curcumae Radix (called Yujin, YJ in Chinese), and has shown an excellent therapeutic effect in clinical treatment of influenza. However, there are few studies on the anti-influenza mechanism of AG, and the mechanism of action is still unclear. AIM OF THE STUDY: The purpose is to provide the latest information about the clinical efficacy, pharmacodynamic composition and mechanism of AG based on scientific literature, so as to enhance the utilization of AG in the treatment of influenza and related diseases, and promote the development and innovation of novel anti-influenza drugs targeting the influenza virus. MATERIALS AND METHODS: Enter the data retrieval room, search for Antiviral Granules, as well as the scientific names, common names, and Chinese names of each Chinese medicine. Additionally, search for the relevant clinical applications, pharmacodynamic composition, pharmacological action, and molecular mechanism of both Antiviral Granules and single-ingredient medicines. Keywords includes terms such as "antiviral granules", "influenza", "Isatis indigotica Fort.", "Radix Isatidis", "Banlangeng", "pharmacology", "clinical application", "pharmacologic action", etc. and their combinations. Obtain results from the Web of Science, PubMed, Google Scholar, Sci Finder Scholar, CNKI and other resources. RESULTS: AG is effective in the treatment of influenza and is often used in combination with other drugs to treat viral diseases. Its chemical composition is complex, including alkaloids, polysaccharides, volatile oils, steroid saponins, phenylpropanoids, terpenoids and other compounds. These compounds have a variety of pharmacological activities, which can interfere with the replication cycle of the influenza virus, regulate RIG-I-MAVS, JAK/STAT, TLRs/MyD88, NF-κB signaling pathways and related cytokines, regulate intestinal microorganisms, and protect both the lungs and extrapulmonary organs. CONCLUSIONS: AG can overcome the limitations of traditional antiviral drug therapy, play a synergistic role in fighting influenza virus with the characteristics of multi-component, multi-pathway and multi-target therapy, and reverse the bodily function damage caused by influenza virus. AG may be a potential drug in the prevention and treatment of influenza and related diseases.
Assuntos
Antivirais , Medicamentos de Ervas Chinesas , Antivirais/farmacologia , Antivirais/uso terapêutico , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Medicamentos de Ervas Chinesas/química , Extratos Vegetais/farmacologia , Medicina Tradicional Chinesa , Resultado do TratamentoRESUMO
This chapter intends to provide a general overview of web-based resources available for antiviral drug discovery studies. First, we explain how the structure for a potential viral protein target can be obtained and then highlight some of the main considerations in preparing for the application of receptor-based molecular docking techniques. Thereafter, we discuss the resources to search for potential drug candidates (ligands) against this target protein receptor, how to screen them, and preparing their analogue library. We make specific reference to free, online, open-source tools and resources which can be applied for antiviral drug discovery studies.
Assuntos
Antivirais , Sistemas de Liberação de Medicamentos , Antivirais/farmacologia , Descoberta de Drogas , Ligantes , Simulação de Acoplamento MolecularRESUMO
Enteroviruses are pathogens responsible for several diseases, being enterovirus A71 (EVA71) the second leading cause of hand, foot, and mouth disease (HFMD), especially in Asia-Pacific countries. HFMD is mostly common in infants and children, with mild symptoms. However, the disease can result in severe nervous system disorders in children as well as in immunosuppressed adults. The virus is highly contagious, and its transmission occurs via fecal-oral, oropharyngeal secretions, and fomites. The EVA71 burdens the healthy systems and economies around the world, however, up to date, there is no antiviral approved to treat infected individuals and the existent vaccines are not available or approved to be used worldwide. In this context, an extensive literature research was conducted to describe and summarize the recent advances in natural and/or synthetic compounds with antiviral activity against EVA71. The summarized data presented here might simply encourage the future studies in EVA71 antiviral development, by encouraging further research encompassing these compounds or even the application of the techniques and technologies to improve or produce new antiviral molecules.
Assuntos
Enterovirus , Nanopartículas , Adulto , Criança , Lactente , Humanos , Antivirais/farmacologia , Antivirais/uso terapêutico , Fezes , Hospedeiro ImunocomprometidoRESUMO
Hepatitis C virus (HCV) infection remains a challenge to human public health despite the development of highly effective direct-acting antivirals (DAAs). Sofosbuvir (SOF), a key component in most DAA-based anti-HCV cocktail regimens, is a potent viral RNA polymerase (NS5B) inhibitor with a high barrier to drug resistance. The serine-to-threonine mutation at NS5B 282 (S282T) confers the SOF resistance, but severely impairs viral replication in most HCV genotypes (GTs) and cannot be stably maintained after the termination of the SOF-based therapies. In this study, we first developed a new HCV GT-6a subgenomic replicon PR58D6. Next, we selected SOF-resistant PR58D6 variants by culturing the replicon cells in the presence of SOF. Interestingly, unlike many other HCV replicons which require additional mutations to compensate for the S282T-inducing fitness loss, S282T alone in PR58D6 is genetically stable and confers the SOF resistance without significantly impairing viral replication. Furthermore, we showed that amino acid residue at NS5B 74 (R74) and 556 (D556) which are conserved in GT 6a HCV contribute to efficient replication of PR58D6 containing S282T. Finally, we showed that the G556D mutation in NS5B could rescue the replication deficiency of the S282T in JFH1, a GT-2a replicon. In conclusion, we showed that a novel GT-6a HCV replicon may easily render SOF resistance, which may call for attention to potential drug resistance during DAA therapies of HCV GT-6a patients.
Assuntos
Hepatite C Crônica , Hepatite C , Humanos , Sofosbuvir/farmacologia , RNA Subgenômico , Hepacivirus/genética , Antivirais/farmacologia , Hepatite C/tratamento farmacológico , GenótipoRESUMO
Influenza is an acute respiratory disorder caused by the influenza virus and is associated with prolonged hospitalization and high mortality rates in older individuals and chronically ill patients. Vaccination is the most effective preventive strategy for ameliorating seasonal influenza. However, the vaccine is not fully effective in cases of antigenic mismatch with the viral strains circulating in the community. The emergence of resistance to antiviral drugs aggravates the situation. Therefore, developing new vaccines and antiviral drugs is essential. Castanea crenata honey (CH) is an extensively cultivated food worldwide and has been used as a nutritional supplement or herbal medicine. However, the potential anti-influenza properties of CH remain unexplored. In this study, the in vitro and in vivo antiviral effects of CH were assessed. CH significantly prevented influenza virus infection in mouse Raw264.7 macrophages. CH pretreatment inhibited the expression of the viral proteins M2, PA, and PB1 and enhanced the secretion of proinflammatory cytokines and type-I interferon (IFN)-related proteins in vitro. CH increased the expression of RIG-1, mitochondrial antiviral signaling (MAVS) protein, and IFN-inducible transmembrane protein, which interferes with virus replication. CH reduced body weight loss by 20.9%, increased survival by 60%, and decreased viral replication and inflammatory response in the lungs of influenza A virus-infected mice. Therefore, CH stimulates an antiviral response in murine macrophages and mice by preventing viral infection through the RIG-1-mediated MAVS pathway. Further investigation is warranted to understand the molecular mechanisms involved in the protective effects of CH on influenza virus infection.
Assuntos
Mel , Vacinas contra Influenza , Influenza Humana , Infecções por Orthomyxoviridae , Animais , Camundongos , Humanos , Imunidade Inata , Antivirais/farmacologia , Antivirais/uso terapêuticoRESUMO
This review discusses receptor-binding domain (RBD) mutations related to the emergence of various SARS-CoV-2 variants, which have been highlighted as a major cause of repetitive clinical waves of COVID-19. Our perusal of the literature reveals that most variants were able to escape neutralizing antibodies developed after immunization or natural exposure, pointing to the need for a sustainable technological solution to overcome this crisis. This review, therefore, focuses on nanotechnology and the development of antiviral nanomaterials with physical antagonistic features of viral replication checkpoints as such a solution. Our detailed discussion of SARS-CoV-2 replication and pathogenesis highlights four distinct checkpoints, the S protein (ACE2 receptor coupling), the RBD motif (ACE2 receptor coupling), ACE2 coupling, and the S protein cleavage site, as targets for the development of nano-enabled solutions that, for example, prevent viral attachment and fusion with the host cell by either blocking viral RBD/spike proteins or cellular ACE2 receptors. As proof of this concept, we highlight applications of several nanomaterials, such as metal and metal oxide nanoparticles, carbon-based nanoparticles, carbon nanotubes, fullerene, carbon dots, quantum dots, polymeric nanoparticles, lipid-based, polymer-based, lipid-polymer hybrid-based, surface-modified nanoparticles that have already been employed to control viral infections. These nanoparticles were developed to inhibit receptor-mediated host-virus attachments and cell fusion, the uncoating of the virus, viral gene expression, protein synthesis, the assembly of progeny viral particles, and the release of the virion. Moreover, nanomaterials have been used as antiviral drug carriers and vaccines, and nano-enabled sensors have already been shown to enable fast, sensitive, and label-free real-time diagnosis of viral infections. Nano-biosensors could, therefore, also be useful in the remote testing and tracking of patients, while nanocarriers probed with target tissue could facilitate the targeted delivery of antiviral drugs to infected cells, tissues, organs, or systems while avoiding unwanted exposure of non-target tissues. Antiviral nanoparticles can also be applied to sanitizers, clothing, facemasks, and other personal protective equipment to minimize horizontal spread. We believe that the nanotechnology-enabled solutions described in this review will enable us to control repeated SAR-CoV-2 waves caused by antibody escape mutations.
Assuntos
COVID-19 , Nanotubos de Carbono , Humanos , Antivirais/farmacologia , Antivirais/uso terapêutico , SARS-CoV-2/genética , Enzima de Conversão de Angiotensina 2/genética , Anticorpos Neutralizantes , Mutação , LipídeosRESUMO
The majority of antivirals available target viral proteins; however, RNA is emerging as a new and promising antiviral target due to the presence of highly structured RNA in viral genomes fundamental for their replication cycle. Here, we discuss methods for the identification of RNA-targeting compounds, starting from the determination of RNA structures either from purified RNA or in living cells, followed by in silico screening on RNA and phenotypic assays to evaluate viral inhibition. Moreover, we review the small molecules known to target the programmed ribosomal frameshifting element of SARS-CoV-2, the internal ribosomal entry site of different viruses, and RNA elements of HIV.
Assuntos
COVID-19 , RNA Viral , Humanos , RNA Viral/genética , SARS-CoV-2/genética , Antivirais/farmacologia , Antivirais/uso terapêutico , BioensaioRESUMO
Perylenylethynyl derivatives have been recognized as broad-spectrum antivirals that target the lipid envelope of enveloped viruses. In this study, we present novel perylenylethynylphenols that exhibit nanomolar or submicromolar antiviral activity against Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) and feline infectious peritonitis virus (FIPV) in vitro. Perylenylethynylphenols incorporate into viral and cellular membranes and block the entry of the virus into the host cell. Furthermore, these compounds demonstrate an ability to generate singlet oxygen when exposed to visible light. The rate of singlet oxygen production is positively correlated with antiviral activity, confirming that the inhibition of fusion is primarily due to singlet-oxygen-induced damage to the viral envelope. The unique combination of a shape that affords affinity to the lipid bilayer and the capacity to generate singlet oxygen makes perylenylethynylphenols highly effective scaffolds against enveloped viruses. The anticoronaviral activity of perylenylethynylphenols is strictly light-dependent and disappears in the absence of daylight (under red light). Moreover, these compounds exhibit negligible cytotoxicity, highlighting their significant potential for further exploration of the precise antiviral mechanism and the broader scope and limitations of this compound class.
Assuntos
COVID-19 , Oxigênio Singlete , Animais , Gatos , SARS-CoV-2 , Membranas , Antivirais/farmacologiaRESUMO
The search and creation of innovative antimicrobial drugs, acting against resistant and multiresistant strains of bacteria and fungi, are one of the most important tasks of modern bioorganic chemistry and pharmaceuticals. Since iron is essential for the vital activity of almost all organisms, including mammals and bacteria, the proteins involved in its metabolism can serve as potential targets in the development of new promising antimicrobial agents. Such targets include endogenous mammalian biomolecules, heme oxygenases, siderophores, protein 24p3, as well as bacterial heme oxygenases and siderophores. Other proteins that are responsible for the delivery of iron to cells and its balance between bacteria and the host organism also attract certain particular interest. The review summarizes data on the development of inhibitors and inducers (activators) of heme oxygenases, selective for mammals and bacteria, and considers the characteristic features of their mechanisms of action and structure. Based on the reviewed literature data, it was concluded that the use of hemin, the most powerful hemooxygenase inducer, and its derivatives as potential antimicrobial and antiviral agents, in particular against COVID-19 and other dangerous infections, would be a promising approach. In this case, an important role is attributed to the products of hemin degradation formed by heme oxygenases in vitro and in vivo. Certain attention has been paid to the data on the antimicrobial action of iron-free protoporphyrinates, namely complexes with Co, Ga, Zn, Mn, their advantages and disadvantages compared to hemin. Modification of the well-known antibiotic ceftazidime with a siderophore molecule increased its effectiveness against resistant bacteria.
Assuntos
Anti-Infecciosos , COVID-19 , Animais , Antivirais/farmacologia , Hemina , Sideróforos/farmacologia , Anti-Infecciosos/farmacologia , Oxigenases , MamíferosRESUMO
Severe acute respiratory syndrome-associated coronavirus (SARS-CoV) identified in 2003 infected â¼8000 people in 26 countries with 800 deaths, which was soon contained and eradicated by syndromic surveillance and enhanced quarantine. A closely related coronavirus SARS-CoV-2, the causative agent of COVID-19 identified in 2019, has been dramatically more contagious and catastrophic. It has infected and caused various flu-like symptoms of billions of people in >200 countries, including >6 million people died of or with the virus. Despite the availability of several vaccines and antiviral drugs against SARS-CoV-2, finding new therapeutics is needed because of viral evolution and a possible emerging coronavirus in the future. The main protease (Mpro) of these coronaviruses plays important roles in their life cycle and is essential for the viral replication. This article represents a comprehensive review of the function, structure and inhibition of SARS-CoV and -CoV-2 Mpro, including structure-activity relationships, protein-inhibitor interactions and clinical trial status.
Assuntos
COVID-19 , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Humanos , Antivirais/farmacologia , Peptídeo Hidrolases , SARS-CoV-2RESUMO
Global coronavirus disease 2019 (COVID-19) pandemic still threatens human health and public safety, and the development of effective antiviral agent is urgently needed. The SARS-CoV-2 main protease (Mpro) and papain-like protease (PLpro) are vital proteins in viral replication and promising therapeutic targets. Additionally, PLpro also modulates host immune response by cleaving ubiquitin and interferon-stimulated gene product 15 (ISG15) from ISGylated host proteins. In this report, we identified [1,2]selenazolo[5,4-c]pyridin-3(2H)-one and benzo[d]isothiazol-3(2H)-one as attractive scaffolds of PLpro and Mpro inhibitors. The representative compounds 6c and 7e exhibited excellent PLpro inhibition with percent inhibition of 42.9% and 44.9% at 50 nM, respectively. The preliminary enzyme kinetics experiment and fluorescent labelling experiment results determined that 6c was identified as a covalent PLpro inhibitor, while 7e was a non-covalent inhibitor. Molecular docking and dynamics simulations revealed that 6c and 7e bound to Zn-finger domain of PLpro. Compounds 6c and 7e were also identified to potent Mpro inhibitors, and they exhibited potent antiviral activities in SARS-CoV-2 infected Vero E6 cells, with EC50 value of 3.9 µM and 7.4 µM, respectively. In addition, the rat liver homogenate half-life of 6c and 7e exceeded 24 h. These findings suggest that 6c and 7e are promising led compounds for further development of PLpro/Mpro dual-target antiviral drugs.
Assuntos
COVID-19 , Proteases Semelhantes à Papaína de Coronavírus , Inibidores de Protease de Coronavírus , Animais , Humanos , Ratos , Antivirais/farmacologia , Corantes , Endopeptidases , Simulação de Acoplamento Molecular , Peptídeo Hidrolases , SARS-CoV-2 , Inibidores de Protease de Coronavírus/química , Inibidores de Protease de Coronavírus/farmacologia , Proteases Semelhantes à Papaína de Coronavírus/antagonistas & inibidoresRESUMO
Cannabis is a general name for plants of the genus Cannabis. Used as fiber, medicine, drug, for religious, therapeutic, and hedonistic purposes along the millenia, it is mostly known for its psychoactive properties. One of its major constituents, cannabidiol (CBD), a non-psychoactive substance, among many other biological activities, has shown potential as an anti-SARS-CoV-2 drug. In this work, three derivatives and an analogue of CBD were synthesized, and cell viability and antiviral activities were evaluated. None of the compounds showed cytotoxicity up to a maximum concentration of 100 µM and, in contrast, displayed a significant antiviral activity, superior to remdesivir and nafamostat mesylate, with IC50 values ranging from 9.4 to 1.9 µM. In order to search for a possible molecular target, the inhibitory activity of the compounds against ACE2 was investigated, with expressive results (IC50 ranging from 3.96 µM to 0.01 µM).
Assuntos
COVID-19 , Canabidiol , Humanos , Canabidiol/farmacologia , Enzima de Conversão de Angiotensina 2 , SARS-CoV-2 , Antivirais/farmacologiaRESUMO
Four new 26-carboxylated ergostane-type sterols (Sarcodonol A-D) were isolated from 70% ethanol extracts of dried fruiting bodies of Sarcodon imbricatus. Their chemical structures were elucidated using 1D- and 2D-nuclear magnetic resonance and high-resolution electrospray ionization mass spectrometry, and confirmed by comparison with previously reported data. As far as we know, this is the first instance of isolating a 26-carboxylated ergostane-type sterol from nature. The determined antiviral efficacy of sarcodonol A-D (1-4) against HCoV-OC43 in MRC-5 cells confirmed that sarcodonol D (4) had significant antiviral activity. Notably, sarcodonol D (4) potently blocked virus infection at low-micromolar concentration and showed high SI (IC50 = 2.26 µM; CC50 > 100 µM; SI > 44.2). In addition, this research shows that the antiviral effect of sarcodonol D (4) via reduced apoptosis increased by viral infection is through mitochondrial stress regulation. This suggests that sarcodonol D (4) is a potential candidate for use as an antiviral treatment.
Assuntos
Antivirais , Basidiomycota , Coronavirus Humano OC43 , Esteróis , Antivirais/química , Antivirais/farmacologia , Apoptose , Ácidos Carboxílicos , Carpóforos/química , Esteróis/química , Esteróis/farmacologia , Basidiomycota/químicaRESUMO
The host cell membrane-associated RING-CH 8 protein (MARCH8), a member of the E3 ubiquitin ligase family, regulates intracellular turnover of many transmembrane proteins and shows potent antiviral activities. Generally, 2 antiviral modes are performed by MARCH8. On the one hand, MARCH8 catalyzes viral envelope glycoproteins (VEGs) ubiquitination and thus leads to their intracellular degradation, which is the cytoplasmic tail (CT)-dependent (CTD) mode. On the other hand, MARCH8 traps VEGs at some intracellular compartments (such as the trans-Golgi network, TGN) but without inducing their degradation, which is the cytoplasmic tail-independent (CTI) mode, by which MARCH8 hijacks furin, a cellular proprotein convertase, to block VEGs cleavage. In addition, the MARCH8 C-terminal tyrosine-based motif (TBM) 222YxxL225 also plays a key role in its CTI antiviral effects. In contrast to its antiviral potency, MARCH8 is occasionally hijacked by some viruses and bacteria to enhance their invasion, indicating a duplex role of MARCH8 in host pathogenic infections. This review summarizes MARCH8's antiviral roles and how viruses evade its restriction, shedding light on novel antiviral therapeutic avenues.
Assuntos
Viroses , Humanos , Antivirais/farmacologia , Ligante de CD40 , Proteínas de Membrana , Tirosina , Proteínas do Envelope ViralRESUMO
The natural Fisetin and its derivatives have been shown to have effective bioactivity and strong pharmacological profile, which is continuously drawing the interest of therapeutic applications to the development of new biomolecules against Breast cancer and Monkeypox, and Marburg viral infection, while computational approaches and the study of their structure-activity relationship (SAR) are the most eloquent and reliable platform for performing their hypothetical profile renovation. So, the main perspective of this investigation is to evaluate dual function of Fisetin and its derivatives against both virus and cancerous target. First and foremost, the prediction of activity spectra for materials (PASS) valuation has provided preliminary data on the antiviral, antibacterial, antiparasitic, and anti-cancer possibilities of the mentioned compounds. According to the evidence, PASS predicted scores were shown to perform better in antineoplastic and antiviral than antibacterial, and antiparasitic efficiency; as evidenced by their higher PASS scores in antineoplastic and antiviral drug tests. Breast cancer, Monkeypox, and Marburg virus have been selected as targeted pathogens, and different in silico studies were conducted to determine the dual function of mention derivatives. The "Lipinski five rules," on the other hand, has been subjected to extensive testing for drug-like characteristics. Molecular docking against Breast cancer, Monkeypox, and Marburg virus have been accomplished after confirmation of their bioactivity. The molecular docking evaluation against targeted disease displayed re-markable binding affinity and non-bonding engagement, with most of the results indicating that derivatives are more effective than the FDA approved standard antiviral, and antineoplastic drugs. Finally, the ADMET characteristics have been computed, and they indicate that the substance is suitable to use and did not have any chance to produce adverse effects on aquatic or non-aquatic environment, as well as having a highly soluble capacity in water medium, high G.I absorption rate, with outstanding bioavailability index. Therefore, these mentioned Fisetin derivatives could be suggested as potential medication against Breast cancer and newly reported Monkeypox, and Marburg virus, and may further proceed for laboratory experiment, synthesis, and clinical trials to evaluate their practical value.
Assuntos
Marburgvirus , Varíola dos Macacos , Neoplasias , Humanos , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade , Antivirais/farmacologia , Antibacterianos , AntiparasitáriosRESUMO
Norovirus is a leading cause of epidemic viral gastroenteritis, with no currently approved vaccines or antivirals. Murine norovirus (MNoV) is a well-characterized model of norovirus pathogenesis in vivo, and persistent strains exhibit lifelong intestinal infection. Interferon-λ (IFN-λ) is a potent antiviral that rapidly cures MNoV. We previously demonstrated that IFN-λ signaling in intestinal epithelial cells (IECs) controls persistent MNoV, and here demonstrate that IFN-λ acts on tuft cells, the exclusive site of MNoV persistence, to limit infection. While interrogating the source of IFN-λ to regulate MNoV, we confirmed that MDA5-MAVS signaling, required for IFN-λ induction to MNoV in vitro, controls persistent MNoV in vivo. We demonstrate that MAVS in IECs and not immune cells controls MNoV. MAVS in nonsusceptible enterocytes, but not in tuft cells, restricts MNoV, implicating noninfected cells as the IFN-λ source. Our findings indicate that host sensing of MNoV is distinct from cellular tropism, suggesting intercellular communication between IECs for antiviral signaling induction in uninfected bystander cells.
Assuntos
Infecções por Enterovirus , Norovirus , Animais , Camundongos , Enterócitos , Células Epiteliais , Transdução de Sinais , Antivirais/farmacologia , Interferon lambdaRESUMO
The virus life cycle depends on host-virus protein-protein interactions, which often involve a disordered protein region binding to a folded protein domain. Here, we used proteomic peptide phage display (ProP-PD) to identify peptides from the intrinsically disordered regions of the human proteome that bind to folded protein domains encoded by the SARS-CoV-2 genome. Eleven folded domains of SARS-CoV-2 proteins were found to bind 281 peptides from human proteins, and affinities of 31 interactions involving eight SARS-CoV-2 protein domains were determined (KD â¼ 7-300 µM). Key specificity residues of the peptides were established for six of the interactions. Two of the peptides, binding Nsp9 and Nsp16, respectively, inhibited viral replication. Our findings demonstrate how high-throughput peptide binding screens simultaneously identify potential host-virus interactions and peptides with antiviral properties. Furthermore, the high number of low-affinity interactions suggest that overexpression of viral proteins during infection may perturb multiple cellular pathways.
Assuntos
Antivirais , COVID-19 , Humanos , Antivirais/farmacologia , Domínios Proteicos , SARS-CoV-2 , Ligantes , Proteômica , Peptídeos/farmacologiaRESUMO
CONTEXT: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is still spreading rapidly. Relevant research based on the antiviral effects of Thesium chinense Turcz (Santalaceae) was not found. OBJECTIVE: To investigate the antiviral and anti-inflammatory effects of extracts of T. chinense. MATERIALS AND METHODS: To investigate the anti-entry and replication effect of the ethanol extract of T. chinense (drug concentration 80, 160, 320, 640, 960 µg/mL) against the SARS-CoV-2. Remdesivir (20.74 µM) was used as positive control, and Vero cells were used as host cells to detect the expression level of nucleocapsid protein (NP) in the virus by real-time quantitative polymerase chain reaction (RT-PCR) and Western blotting. RAW264.7 cells were used as an anti-inflammatory experimental model under lipopolysaccharide (LPS) induction, and the expression levels of tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) were detected by enzyme-linked immunosorbent assay (ELISA). RESULTS: The ethanol extract of T. chinense significantly inhibited the replication (half maximal effective concentration, EC50: 259.3 µg/mL) and entry (EC50: 359.1 µg/mL) of SARS-CoV-2 into Vero cells, and significantly reduced the levels of IL-6 and TNF-α produced by LPS-stimulated RAW264.7 cells. Petroleum ether (EC50: 163.6 µg/mL), ethyl acetate (EC50: 22.92 µg/mL) and n-butanol (EC50: 56.8 µg/mL) extracts showed weak inhibition of SARS-CoV-2 replication in Vero cells, and reduced the levels of IL-6 and TNF-α produced by LPS-stimulated RAW264.7 cells. CONCLUSION: T. chinense can be a potential candidate to fight SARS-CoV-2, and is becoming a traditional Chinese medicine candidate for treating COVID-19.
Assuntos
COVID-19 , SARS-CoV-2 , Chlorocebus aethiops , Animais , Interleucina-6 , Lipopolissacarídeos , Fator de Necrose Tumoral alfa , Células Vero , Inflamação/tratamento farmacológico , Antivirais/farmacologia , EtanolRESUMO
Human adenovirus (HAdV) is ubiquitous in the human population, constituting a significant burden of global respiratory diseases. Children and individuals with low immunity are at risk of developing severe infections without approved antiviral treatment for HAdV. Our study demonstrated that TRIM35 inhibited HAdV-C5 early gene transcription, early protein expression, genome replication, and infectious virus progeny production. Furthermore, TRIM35 was found to inhibit HAdV replication by attenuating E1A expression. Mechanistically, TRIM35 interacts with and degrades E1A by promoting its K48-linked ubiquitination. Additionally, K253 and K285 are the key sites necessary for TRIM35 degradation. Moreover, an oncolytic adenovirus carrying shTRIM35 was constructed and observed to exhibit improved oncolysis in vivo, providing new ideas for clinical tumor treatment. Our results expand the broad antiviral activity of TRIM35 and mechanically support its application as a HAdV replication inhibitor. IMPORTANCE E1A is an essential human adenovirus (HAdV) protein responsible for the early replication of adenovirus while interacting with multiple host proteins. Understanding the interaction between HAdV E1A and TRIM35 helps identify effective antiviral therapeutic targets. The viral E1A protein is a crucial activator and regulator of viral transcription during the early infection stages. We first reported that TRIM35 interacts with E1A to resist adenovirus infection. Our study demonstrated that TRIM35 targets E1A to resist adenovirus, indicating the applicability of targeting virus-dependent host factors as a suitable antiviral strategy.
Assuntos
Adenovírus Humanos , Criança , Humanos , Adenovírus Humanos/fisiologia , Adenoviridae/metabolismo , Replicação Viral , Proteínas E1A de Adenovirus/genética , Proteínas E1A de Adenovirus/metabolismo , Proteínas Virais/metabolismo , Antivirais/farmacologia , Proteínas Reguladoras de Apoptose/metabolismoRESUMO
Development of highly effective antivirals that are robust to viral evolution is a practical strategy for combating the continuously evolved severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Inspired by viral multistep entry process, we here focus on developing a bispecific SARS-CoV-2 entry inhibitor, which acts on the cell receptor angiotensin converting enzyme 2 (ACE2) and viral S2 fusion protein. First, we identified a panel of diverse spike (S) receptor-binding domains (RBDs) and found that the RBD derived from Guangdong pangolin coronavirus (PCoV-GD) possessed the most potent antiviral potency. Next, we created a bispecific inhibitor termed RBD-IPB01 by genetically linking a peptide fusion inhibitor IPB01 to the C-terminal of PCoV-GD RBD, which exhibited greatly increased antiviral potency via cell membrane ACE2 anchoring. Promisingly, RBD-IPB01 had a uniformly bifunctional inhibition on divergent pseudo- and authentic SARS-CoV-2 variants, including multiple Omicron subvariants. RBD-IPB01 also showed consistently cross-inhibition of other sarbecoviruses, including SARS-CoV, PCoV-GD, and Guangxi pangolin coronavirus (PCoV-GX). RBD-IPB01 displayed low cytotoxicity, high trypsin resistance, and favorable metabolic stability. Combined, our studies have provided a tantalizing insight into the design of broad-spectrum and potent antiviral agent. IMPORTANCE Ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) evolution and spillover potential of a wide variety of sarbecovirus lineages indicate the importance of developing highly effective antivirals with broad capability. By directing host angiotensin converting enzyme 2 receptor and viral S2 fusion protein, we have created a dual-targeted virus entry inhibitor with high antiviral potency and breadth. The inhibitor receptor-binding domain (RBD)-IPB01 with the Guangdong pangolin coronavirus (PCoV-GD) spike RBD and a fusion inhibitor IPB01 displays bifunctional cross-inhibitions on pseudo- and authentic SARS-CoV-2 variants including Omicron, as well as on the sarbecoviruses SARS-CoV, PCoV-GD, and Guangxi pangolin coronavirus. RBD-IPB01 also efficiently inhibits diverse SARS-CoV-2 infection of human Calu-3 cells and blocks viral S-mediated cell-cell fusion with a dual function. Thus, the creation of such a bifunctional inhibitor with pan-sarbecovirus neutralizing capability has not only provided a potential weapon to combat future SARS-CoV-2 variants or yet-to-emerge zoonotic sarbecovirus, but also verified a viable strategy for the designing of antivirals against infection of other enveloped viruses.