Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.334
Filtrar
1.
Food Chem ; 366: 130582, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34303205

RESUMO

Leaf removal applied in the upper canopy of modified vertical shooting positioning trellis system has been proposed as an effective strategy to mitigate the adverse effects of global warming on grape and wine quality. In this study, we removed the upper leaves of Cabernet Sauvignon canopy in a semi-arid climate for three consecutive years (2018-2020). About one-third of the whole canopy leaves were removed at the beginning of véraison (LR1) and post-véraison (LR2). All leaf removal treatments included two schemes: (i) leaf removal in the same vines in all vintages to investigate the carry-over effects (1-LR1 and 1-LR2); (ii) leaf removal in different vines in each vintage as repeated experiments among vintages (2-LR1 and 2-LR2). Results showed that leaf removal treatments significantly decreased total soluble solids accumulation in grapes without affecting titratable acidity and pH. LR1 treatments could delay ripening to 6.6 days on average, which was 2.6 days longer than LR2 treatments. LR treatments did not affect the yield but decreased soluble sugar content in canes. Leaves net assimilation rate showed no compensation for the loss of leaves. For phenolic composition, LR treatments increased flavonol concentration in both wines and grapes while had inconsistent effects on anthocyanins and flavanols over three seasons. Principal component analysis (PCA) showed that different LR treatment stages (LR1s vs LR2s) and whether LR in the same vines over consecutive years (1-LRs vs 2-LRs) had limited effects on phenolic profiles. In conclusion, LR in consecutive years at the upper canopy of grapevines was a practical strategy to face global warming in Xinjiang.


Assuntos
Vitis , Vinho , Antocianinas/análise , Flavonóis , Frutas/química , Folhas de Planta/química , Vinho/análise
2.
Food Chem ; 366: 130574, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34303209

RESUMO

There is growing interest in chitosan-based intelligent packaging films for monitoring food quality. However, practical application of these biopolymeric films has been limited by their poor physical and mechanical attributes. Herein, a versatile colorimetric indicator film was developed based on chitosan (CHI) and broken Riceberry phenolic extract (RPE). The effects of RPE fortification on the microstructure, physical, and functional attributes of the CHI films were comprehensively evaluated. The results revealed that CHI-RPE films exhibited increased hydrophobicity, mechanical resistance, thermal stability, barrier properties, and antioxidant activity compared to plain CHI film. The CHI-RPE films were cytocompatible. Notably, CHI-RPE film also produced intense naked-eye detectable colorimetric response to pH (2-12) variation and volatile ammonia. When enclosed with fresh shrimp, CHI-RPE film changed from orange-red to yellow in response to shrimp spoilage. Thus, CHI-RPE film has high potential for fabricating pragmatic, smart packaging labels for on-site visual detection of freshness in seafood products.


Assuntos
Quitosana , Antocianinas , Antioxidantes , Embalagem de Alimentos , Concentração de Íons de Hidrogênio , Extratos Vegetais , Alimentos Marinhos/análise
3.
Food Chem ; 366: 130644, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34311234

RESUMO

Bioactive compounds were extracted using two different extraction solvents (acetone and water) from pulp and whole grape berries derived from hybrid Vitis vinifera L. varieties Sweet sapphire (SP) and Sweet surprise (SU) and were characterised based on a comprehensive metabolomic approach by chromatography coupled with mass spectrometry (UPLC-QTOF-MSE and GC-FID/MS). GC-FID/MS analysis was performed with two different extraction methods (solvent extraction method and solid-phase extraction). Anthocyanins were characterised and quantified by HPLC-UV. The antioxidant potential was assessed by different assays. SP acetone extract from grape skin had the highest mean to DPPH, FRAP, ORAC and phenolic content SP samples, also showed higher anthocyanin content. Globally, 87 phenolic compounds were identified. The relative quantification by UPLC-MSE showed flavonoids the most abundant class. Forty two compounds were found in the volatile fraction of SU, while only thirty one volatile compounds were found in the SP samples.


Assuntos
Vitis , Óxido de Alumínio , Antocianinas/análise , Antioxidantes/análise , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Frutas/química , Cromatografia Gasosa-Espectrometria de Massas , Espectrometria de Massas em Tandem
4.
Food Chem ; 367: 130743, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34384982

RESUMO

Berry fruits consumption has increased in recent years because they are rich sources of polyphenols with reported health benefits. The aim of the present work was to develop a new comprehensive and fast HPLC-MS/MS method for simultaneous determination of 36 phenolic compounds (7 anthocyanins, 9 flavonols, 4 flavan-3-ols, 2 dihydrochalcones, 2 flavanones and 12 phenolic acids) present in blueberry, strawberry, and their fruit jam. Blueberry fruits showed higher contents of anthocyanins, flavonols and phenolic acids, while strawberry fruits exhibited higher contents of flavan-3-ols, dihydrochalcones and flavanones. Anthocyanins were the main phenolic constituents in both berries. Furthermore, the higher total phenolic content in the blueberry fruit and jam justified their greater antioxidant capacity measured by DPPH free radical assay, compared to strawberry. In conclusion, this new HPLC-MS/MS method is useful and reliable for quality control and authentication analyses of blueberry and strawberry fruits and their commercial food products, such as jams.


Assuntos
Mirtilos Azuis (Planta) , Fragaria , Antocianinas/análise , Antioxidantes , Cromatografia Líquida de Alta Pressão , Frutas/química , Polifenóis , Espectrometria de Massas em Tandem
5.
Food Chem ; 366: 130611, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34388403

RESUMO

Anthocyanins are pigments abundant in fruits and vegetables, and commonly applied in foods due to attractive colour and health-promoting benefits. However, instability of anthocyanins leads to their easy degradation, reduced bioactivity, and colour fading in food processing, limiting their application and causing economic losses. Stability of anthocyanins depends on their own structures and environmental factors. For structural factors, modification including copigmentation, acylation and biosynthesis is a potential solution to increase anthocyanin stability due to forming stable structures. With regard to environmental factors, encapsulation such as microencapsulation, liposome and nanoparticles has been shown effectively to enhance the stability. We proposed the potential challenges and perspectives for the diversification of anthocyanin-rich products for food application, particularly, introduction of hazards, technical limitations, interaction with other ingredients in food system and exploration of pyranoanthocyanins. The integrated strategies are warranted for improving anthocyanin stabilization for promoting their further application in food industry.


Assuntos
Antocianinas , Frutas , Pigmentação , Extratos Vegetais , Verduras
6.
Talanta ; 236: 122857, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34635241

RESUMO

Phenolic compounds are secondary metabolites known to play crucial roles in important chemical reactions impacting the mouthfeel, colour and ageing potential of red wine. Their complexity has resulted in a number of advanced analytical methods, which often prevent routine phenolic analysis in winemaking. Fluorescence spectroscopy could be an alternative to current spectrophotometric techniques and its combination with chemometrics was investigated for its suitability in directly quantifying phenolic content of unaltered red wine and fermenting samples. Front-face fluorescence was optimised and used to build predictive models for total phenols, total condensed tannins, total anthocyanins, colour density and polymeric pigments. Machine learning algorithms were used for model development. The most successful models were built for total phenols, total condensed tannins and total anthocyanins with coefficient of determination (R2cal) and RMSECV of 0.81, 0.89, 0.80 and 5.71, 104.03 mg/L, 60.67 mg/L, respectively. The validation results showed R2val values of 0.77, 0.8 and 0.77, and RMSEP values of 7.6, 172.37 mg/L and 76.57 mg/L, respectively. A novel approach for the classification of South African red wine cultivars based on unique fluorescent fingerprints was also successful with an overall cross validation score of 0.8. The best classification ability (validation score = 0.93) was shown for the data set containing only fermenting wines for the most widely represented cultivars (>20 samples). This approach may provide a useful tool for authentication and quality control by regulatory bodies.


Assuntos
Proantocianidinas , Vinho , Antocianinas/análise , Fenóis/análise , Espectrometria de Fluorescência , Vinho/análise
7.
Food Chem ; 368: 130684, 2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-34391099

RESUMO

In this study, we tested the in vitro efficacy of a graphene oxide-chitooligosaccharide (GO-COS) complex developed to protect blueberry anthocyanins (An) from degradation by various physicochemical factors and the digestive process. We prepared a GO-COS complex to adsorb An and protect them from the destructive effects of their ambient environment. The complex protected the An under various temperature, pH, light, oxidant, and reductant conditions. We evaluated An content and composition in a simulated digestive system using the pH differential method and the high performance liquid chromatography-mass spectrometry (HPLC-MS). The GO-COS carrier stabilized An in the intestine and protected their peroxyl radical-scavenging capacity. Additionally, we observed a dose-response relationship between An content and cellular antioxidant activity, and simultaneous improvement of An bioavailability when the An were encapsulated in the complex. The complex inhibited HepG2 cell proliferation at the tested dose range. This study provides valuable information for stability of An-rich products.


Assuntos
Mirtilos Azuis (Planta) , Antocianinas/análise , Antioxidantes , Quitosana , Cromatografia Líquida de Alta Pressão , Digestão , Grafite , Oligossacarídeos , Extratos Vegetais
8.
Food Chem ; 368: 130817, 2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-34411863

RESUMO

Novel microcapsules containing grape peel by-product extract were obtained. In this pursuit, complex coacervation of casein/pectin bioconjugate and spray-drying were combined. We have investigated the role of the dispersion feed rate (FR), drying air inlet temperature (IT) and drying air flow rate (AR) in the drying yield, microencapsulation efficiency, total polyphenols and anthocyanins contents, antioxidant activity, and morphology of the products. Also, the first-order degradation kinetics of the phytochemicals for both the extract and dried microcapsules was assessed and compared. The loss on the phytochemicals during spray-drying was attenuated in up to 88%, and the IT was the main factor affecting the particle properties. The polyphenols on the extract interacted with the polymers, influencing the assemble of the bioconjugate and the particle's features. Such microencapsulation strategy enhanced the thermal stability of the phytochemicals and rendered biocompatible and biodegradable products of which the nutraceutical and cosmeceutical application may have potential.


Assuntos
Vitis , Antocianinas , Cápsulas , Caseínas , Composição de Medicamentos , Pectinas
9.
Food Chem ; 368: 130863, 2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-34428691

RESUMO

A novel sensor based on bead-counting of purple sweet potato tapioca pearl for freshness monitoring of shrimp was proposed. The sensor was prepared from commercially available tapioca pearls with purple sweet potato as a natural colorant by using a similar procedure as to prepare "Thai Saku dessert". A novel concept of using five tapioca pearls stacked in a pipette tip was proposed to observe the color change of the pearls by bead counting approach. The color of the tapioca pearl changed from purple to greenish-blue upon the detection of volatile amines and then to green on prolonged exposure to volatile amines. This color change was observed from the first bead and gradually observed on the next beads according to the concept of distance-based colorimetric measurement. This work is the first to demonstrate the use of bead counting as a novel, low-cost sensor technology for estimating the freshness of shrimp.


Assuntos
Ipomoea batatas , Manihot , Animais , Antocianinas , Crustáceos , Alimentos Marinhos
10.
Food Chem ; 368: 130825, 2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-34496332

RESUMO

Protein-polysaccharide nanocomplexes system could improve the low stability of ACNs, making ACNs become a potential and stable pH indicator. In this study, intelligent colorimetric film was designed to monitor pork freshness by incorporating ACNs-loaded ovalbumin-propylene glycol alginate nanocomplexes (ACNs-loaded OVA-PGA) into polyvinyl alcohol/ glycerol (PG) matrix. The intelligent film (PG/ACNs-loaded OVA-PGA film) presented well barrier performance (lower water vapor permeability and light transmittance at 200-600 nm). Fourier transform infrared spectroscopy further confirmed the hydrogen bonds among film-forming components. Moreover, Scanning electron microscope and X-ray diffraction showed that ACNs-loaded OVA-PGA was uniformly distributed in film matrix but decreased the crystallinity of polyvinyl alcohol. PG/ACNs-loaded OVA-PGA film had distinguishable colorimetric response to pH 2.0-11.0 buffers and volatile ammonia. In the test, PG/ACNs-loaded OVA-PGA film displayed visible color alterations from purplish-red to dark-blue as pork freshness decreased, suggesting it can be used in intelligent packaging for real-time monitoring freshness of meat products.


Assuntos
Carne de Porco , Carne Vermelha , Alginatos , Animais , Antocianinas , Colorimetria , Embalagem de Alimentos , Concentração de Íons de Hidrogênio , Ovalbumina , Suínos
11.
Planta ; 254(5): 92, 2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34633541

RESUMO

MAIN CONCLUSION: From Brassica oleracea genome, 88 anthocyanin biosynthetic genes were identified. They expanded via whole-genome or tandem duplication and showed significant expression differentiation. Functional characterization revealed BoMYB113.1 as positive and BoMYBL2.1 as negative regulators responsible for anthocyanin accumulation. Brassica oleracea produces various health-promoting phytochemicals, including glucosinolates, carotenoids, and vitamins. Despite the anthocyanin biosynthetic pathways in the model plant Arabidopsis thaliana being well characterized, little is known about the genetic basis of anthocyanin biosynthesis in B. oleracea. In this study, we identified 88 B. oleracea anthocyanin biosynthetic genes (BoABGs) representing homologs of 46 Arabidopsis anthocyanin biosynthetic genes (AtABGs). Most anthocyanin biosynthetic genes, having expanded via whole-genome duplication and tandem duplication, retained more than one copy in B. oleracea. Expression analysis revealed diverse expression patterns of BoABGs in different tissues, and BoABG duplications showed significant expression differentiation. Additional expression analysis and functional characterization revealed that the positive regulator BoMYB113.1 and negative regulator BoMYBL2.1 may be key genes responsible for anthocyanin accumulation in red cabbage and ornamental kale by upregulating the expression of structural genes. This study paves the way for a better understanding of anthocyanin biosynthetic genes in B. oleracea and should promote breeding for anthocyanin content.


Assuntos
Arabidopsis , Brassica , Antocianinas , Arabidopsis/genética , Brassica/genética , Genes de Plantas , Melhoramento Vegetal
12.
J Agric Food Chem ; 69(40): 11937-11946, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34607437

RESUMO

Acrolein (ACR), the simplest α,ß-unsaturated aldehyde, possesses high reactivity and toxicity both in vitro and in vivo and results in various chronic diseases. This has attracted increasing interest from researchers to screen various bioactive compounds to control it. In this article, we attempted to discover a new attribute of cyanidin-3-O-glucoside (C3G), including its ACR-scavenging capacity, reaction pathway, and possible application. Our findings revealed that C3G could capture ACR to form mono- and diadducts at room temperature by using liquid chromatography-mass spectrometry, and we further synthesized and elucidated the structures of C3G-ACR and C3G-2ACR using HRMS and 2D NMR. The structural data validated that there were two active sites of C3G for trapping ACR: at C-6 in the A-ring and C-5' in the B-ring. In addition, we found that C3G-ACR exhibited a more remarkable clearing ability than C3G within a short time. More than 65.9% of ACR was eliminated by C3G-ACR within 5 min via further formation of C3G-2ACR, but there was no obvious effect of C3G on ACR. When the incubation time was extended to 120 min, C3G could remove up to 83.2% of ACR. Subsequently, we also observed that mynica red (>5% C3G), as a pigmented food additive, could efficiently eliminate ACR generated in the Chinese liquor model and real red bayberry wine products to form C3G-ACR and C3G-2ACR. Both adducts increased significantly, by 10 times to a 100 times, after adding mynica red to red bayberry wine products for 24 h; they also increased rapidly with prolonged incubation time in the liquor-mynica red model system. Therefore, our findings suggest that C3G or mynica red may be developed as a promising novel ACR inhibitor in fruit wine and assembled alcoholic drinks or as a health food.


Assuntos
Acroleína , Myrica , Antocianinas , Cromatografia Líquida , Glucosídeos
13.
Oxid Med Cell Longev ; 2021: 5520059, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34484562

RESUMO

Due to the increase of stress-related memory impairment accompanying with the COVID-19 pandemic and financial crisis, the prevention of cognitive decline induced by stress has gained much attention. Based on the evidence that an anthocyanin-rich mulberry milk demonstrated the cognitive enhancing effect, we hypothesized that it should be able to enhance memory in working-age volunteers who are exposed to working stress. This study is an open-label, two-arm randomized study. Both men and women volunteers at age between 18 and 60 years old were randomly assigned to consume the tested product either 1 or 2 servings daily for 6 weeks. All subjects were assessed for cortisol, acetylcholinesterase (AChE), monoamine oxidase (MAO), monoamine oxidase type A (MAO-A), and monoamine oxidase type B (MAO-B) in saliva, and their working memory was determined both at baseline and at a 6-week period. The results showed that the working memory of subjects in both groups was enhanced at the end of the study period together with the reduction of saliva cortisol. The suppression of AChE, MAO, and MAO-A was also observed in subjects who consumed the tested product 2 servings daily. Therefore, we suggest the memory enhancing effect of an anthocyanin-rich mulberry milk. The possible mechanism may occur primarily via the suppression of cortisol. In addition, the high dose of mulberry milk also suppresses AChE, MAO, and MAO-A.


Assuntos
Antocianinas/farmacologia , Memória de Curto Prazo/efeitos dos fármacos , Morus , Estresse Ocupacional , Extratos Vegetais/farmacologia , Acetilcolinesterase/efeitos dos fármacos , Acetilcolinesterase/metabolismo , Adulto , Feminino , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Monoaminoxidase/efeitos dos fármacos , Monoaminoxidase/metabolismo , Morus/química
14.
Plant Sci ; 311: 110996, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34482908

RESUMO

Rubus chingii, is widely distributed in many Asian countries and well known for its medicinal and dietary properties. Diversity of fruit color in raspberry has been attributed to the presence of either anthocyanins or carotenoids. In this study, we investigated anthocyanins and carotenoids, and their biosynthesis by LC-MS/MS. Six anthocyanins mainly consisted of flavanol-anthocyanins while five carotenoids mainly consisted of ß-citraurin esters. Flavanol-anthocyanins were produced from an offshoot of the anthocyanin biosynthesis, which started with biosynthesis of flavanols and anthocyanidin by leucoanthocyanidin reductase (LAR)/anthocyanidin reductase (ANR) and anthocyanidin synthase (ANS/LDOX) respectively. ß-citraurin esters were produced from cleavage of zeaxanthin and esterification by organic acid, which was an offshoot of the carotenoid biosynthesis. The offshoot started with biosynthesis of zeaxanthin and ß-citraurin by carotene ß-hydroxylase (CHYB/LUT5) and carotenoid cleavage dioxygenase (CCD) respectively. During fruit ripening, biosynthesis of flavanols and anthocyanins was down-regulated by genes/proteins involved in phenylpropanoid and flavonoid biosynthesis, while biosynthesis of ß-citraurin esters was up-regulated by imbalanced expression of genes/proteins involved in ß,ß-ring and ß, ε-ring hydroxylation. Thus, ß-citraurin esters, instead of anthocyanins imparted reddish color to the ripe fruit. These pigments and their biosynthesis in R. chingii are totally different from what occurs in other raspberry species.


Assuntos
Antocianinas/metabolismo , Carotenoides/metabolismo , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Pigmentação/fisiologia , Rubus/crescimento & desenvolvimento , Rubus/metabolismo , Antocianinas/genética , China , Frutas/anatomia & histologia , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Pigmentação/genética , Rubus/anatomia & histologia
15.
BMC Plant Biol ; 21(1): 432, 2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34556053

RESUMO

BACKGROUND: MYB transcription factors, comprising one of the largest transcription factor families in plants, play many roles in secondary metabolism, especially in anthocyanin biosynthesis. However, the functions of the PdeMYB transcription factor in colored-leaf poplar remain elusive. RESULTS: In the present study, genome-wide characterization of the PdeMYB genes in colored-leaf poplar (Populus deltoids) was conducted. A total of 302 PdeMYB transcription factors were identified, including 183 R2R3-MYB, five R1R2R3-MYB, one 4R-MYB, and 113 1R-MYB transcription factor genes. Genomic localization and paralogs of PdeMYB genes mapped 289 genes on 19 chromosomes, with collinearity relationships among genes. The conserved domain, gene structure, and evolutionary relationships of the PdeMYB genes were also established and analyzed. The expression levels of PdeMYB genes were obtained from previous data in green leaf poplar (L2025) and colored leaf poplar (QHP) as well as our own qRT-PCR analysis data in green leaf poplar (L2025) and colored leaf poplar (CHP), which provide valuable clues for further functional characterization of PdeMYB genes. CONCLUSIONS: The above results provide not only comprehensive insights into the structure and functions of PdeMYB genes but also provide candidate genes for the future improvement of leaf colorization in Populus deltoids.


Assuntos
Antocianinas/biossíntese , Antocianinas/genética , Arabidopsis/genética , Pigmentação/genética , Folhas de Planta/anatomia & histologia , Folhas de Planta/genética , Populus/genética , Fatores de Transcrição/genética , Regulação da Expressão Gênica de Plantas , Variação Genética , Estudo de Associação Genômica Ampla , Genômica , Genótipo , Filogenia , Plantas Geneticamente Modificadas
16.
BMC Genomics ; 22(1): 684, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34548018

RESUMO

BACKGROUND: The bast fiber crop ramie can be used as high-quality forage resources, especially in tropical or subtropical region where there is lack of high-quality protein feed. Hongxuan No.1 (HX_1) is a unique ramie variety with a light reddish brown leaf color, which is obviously different from elite cultivar, Zhongzhu No.1 (ZZ_1, green leaf). While, the regulatory mechanism of color difference or secondary metaboliates synthesis between these two varieties have not been studied. RESULTS: In this study, phenotypic, transcriptomic and metabolomic analysis of HX_1 and ZZ_1 were conducted to elucidate the mechanism of leaf color formation. Chromaticity value and pigment content measuring showed that anthocyanin was the main metabolites imparting the different leaf color phenotype between the two varieties. Based on LC/MS, at least 14 anthocyanins were identified in leaves of HX_1 and ZZ_1, and the HX_1 showed the higher relative content of malvidin-, pelargonidin-,and cyanidin-based anthocyanins. Transcriptome and metabolome co-analysis revealed that the up-regulated expression of flavonoids synthesis gene was positively correlated with total anthocyanins accumulation in ramie leaf, and the differentfially expression of "blue gene" (F3'5'H) and the "red gene" (F3'H) in leaves bring out HX_1 metabolic flow more input into the cyanidin branch. Furthermore, the enrichment of glycosylated modification pathway (UGT and AT) and the expression of flavonoid 3-O-glucosyl transferase (UFGT), anthocyanidin reductase (ANR), in leaves were significantly influenced the diversity of anthocyanins between HX_1 and ZZ_1. CONCLUSIONS: Phenotypic, transcriptomic and metabolomic analysis of HX_1 and ZZ_1 indicated that the expression levels of genes related to anthocyanin metabolism contribute to the color formation of ramie variety. Anthocyanins are important plant secandary metabilates with many physiological functions, the results of this study will deepened our understanding of ramie leaf color formation, and provided basis for molecular breeding of functional forage ramie.


Assuntos
Boehmeria , Antocianinas/metabolismo , Cor , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Metaboloma , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Transcriptoma
17.
Int J Mol Sci ; 22(18)2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34575968

RESUMO

Purple-colored leaves in plants attain much interest for their important biological functions and could be a potential source of phenotypic marker in selecting individuals in breeding. The transcriptional profiling helps to precisely identify mechanisms of leaf pigmentation in crop plants. In this study, two genetically unlike rice genotypes, the mutant purple leaf (pl) and wild (WT) were selected for RNA-sequencing and identifying the differentially expressed genes (DEGs) that are regulating purple leaf color. In total, 609 DEGs were identified, of which 513 and 96 genes were up- and down-regulated, respectively. The identified DEGs are categorized into metabolic process, carboxylic acid biosynthesis, phenylpropanoids, and phenylpropanoid biosynthesis process enrichment by GO analysis. Kyoto Encyclopedia of Genes and Genomes (KEGG) confirmed their association with phenylpropanoid synthesis, flavonoid synthesis, and phenylalanine metabolism. To explore molecular mechanism of purple leaf color, a set of anthocyanin biosynthetic and regulatory gene expression patterns were checked by qPCR. We found that OsPAL (Os02g0626100, Os02g0626400, Os04g0518400, Os05g0427400 and Os02g0627100), OsF3H (Os03g0122300), OsC4HL (Os05g0320700), and Os4CL5 (Os08g0448000) are associated with anthocyanin biosynthesis, and they were up-regulated in pl leaves. Two members of regulatory MYB genes (OsMYB55; Os05g0553400 and Os08g0428200), two bHLH genes (Os01g0196300 and Os04g0300600), and two WD40 genes (Os11g0132700 and Os11g0610700) also showed up-regulation in pl mutant. These genes might have significant and vital roles in pl leaf coloration and could provide reference materials for further experimentation to confirm the molecular mechanisms of anthocyanin biosynthesis in rice.


Assuntos
Antocianinas/biossíntese , Oryza/genética , Folhas de Planta/genética , Transcriptoma/genética , Antocianinas/genética , Regulação da Expressão Gênica de Plantas/genética , Proteínas Mutantes/genética , Oryza/crescimento & desenvolvimento , Pigmentação/genética , Melhoramento Vegetal , Folhas de Planta/crescimento & desenvolvimento , RNA-Seq
18.
Food Res Int ; 148: 110612, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34507756

RESUMO

Sorghum derived 3-deoxyanthocyanins (3-DXA) are of growing interest as natural food colors due to their unique stability compared to anthocyanins, but are generally difficult to extract. Microwave-assisted extraction (MAE) can dramatically improve extraction efficiency of 3-DXA from sorghum tissue. However, condensed tannins common in some sorghums could impact MAE extractability and color properties of 3-DXA. The objective of this work was to determine how presence of condensed tannins affect MAE extractability, stability, and color properties of sorghum 3-DXA. Sorghums of varying 3-DXA profile and tannin content, as well as purified tannins, were subjected to MAE and pigment yield and profile, aqueous color properties and stability at pH 1 - 5 monitored over time using, UV-vis spectroscopy, colorimetry, and UPLC-MS. The relative yield of 3-DXA from tannin sorghums was higher (3 - 10-fold) after MAE than from non-tannin sorghum (2-fold). During MAE, condensed tannins underwent extensive oxidative depolymerization to anthocyanidins (cyanidin and 7-O-methylcyanidin), which caused the tannin-sorghum pigment extracts to have a redder hue (12-43H°) compared to the non-tannin pigment extract (58H°). The tannin-derived anthocyanidins transformed over time into xanthylium pigments, resulting in increased extract H°. Tannins enhanced both color intensity (pH 1) and stability (pH 3-5) of the 3-DXA over 14 days, indicating they acted as copigments. The presence of tannins in sorghum enhances MAE extractability of 3-DXA from sorghum tissue, and could also potentially enhance their functionality in aqueous food systems. However, the initial changes in extract hue properties due to tannin-derived anthocyanidins should be considered.


Assuntos
Sorghum , Taninos , Antocianinas/análise , Cromatografia Líquida , Micro-Ondas , Espectrometria de Massas em Tandem
19.
Food Res Int ; 148: 110630, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34507774

RESUMO

The feasibility was investigated of 4D printing of lotus root gel compounded with a pigment that responds to pH change and alters colour. The pigment comprised of a combination of anthocyanins and lemon yellow; it was used in gel preparation for printing. The flowability and self-support properties of the lotus root-pigment gel were studied to evaluate its 3D printing performance. The gel viscosity decreased with the increase of printing temperature over the range 40, 50, and 60 °C. The gel with a ratio (lotus root powder/compound pigment) of 0.35 extruded smoothly and maintained high formability at temperatures below 60 °C. The pH response of compound pigment enabled the printed sample to change colour from reddish/yellowish to green after spraying with NaHCO3. The a* and b* values decreased significantly (p < 0.05) after spraying for 1 min. The gel with ratios of 0.30 and 0.35 achieved rapid colour change both superficially and internally. Through several different model designs (apple, Christmas tree, letters, and Chinese characters), high-quality 4D printing could be realized without problem. Thus, lotus root gel can be mixed with suitable pigments in correct proportion for 4D printing at appropriate temperature to ensure good flowability.


Assuntos
Antocianinas , Impressão Tridimensional , Cor , Géis , Concentração de Íons de Hidrogênio
20.
J Plant Res ; 134(6): 1335-1349, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34477986

RESUMO

Although anthocyanins are widely distributed in higher plants, betalains have replaced anthocyanins in most species of the order Caryophyllales. The accumulation of flavonols in Caryophyllales plants implies that the late step of anthocyanin biosynthesis from dihydroflavonols to anthocyanins may be blocked in Caryophyllales. The isolation and characterization of functional dihydroflavonol 4-reductase (DFR) and anthocyanidin synthase (ANS) from Caryophyllales plants has indicated a lack of anthocyanins due to suppression of DFR and ANS. In this study, we demonstrated that overexpression of DFR and ANS from Spinacia oleracea (SoDFR and SoANS, respectively) with PhAN9, which encodes glutathione S-transferase (required for anthocyanin sequestration) from Petunia induces ectopic anthocyanin accumulation in yellow tepals of the cactus Astrophytum myriostigma. A promoter assay of SoANS showed that the Arabidopsis MYB transcription factor PRODUCTION OF ANTHOCYANIN PIGMENT1 (PAP1) activated the SoANS promoter in Arabidopsis leaves. The overexpression of Arabidopsis transcription factors with PhAN9 also induced ectopic anthocyanin accumulation in yellow cactus tepals. PAP homologs from betalain-producing Caryophyllales did not activate the promoter of ANS. In-depth characterization of Caryophyllales PAPs and site-directed mutagenesis in the R2R3-MYB domains identified the amino acid residues affecting transactivation of Caryophyllales PAPs. The substitution of amino acid residues recovered the transactivation ability of Caryophyllales PAPs. Therefore, loss of function in MYB transcription factors may suppress expression of genes involved in the late stage of anthocyanin synthesis, resulting in a lack of anthocyanin in betalain-producing Caryophyllales plants.


Assuntos
Arabidopsis , Caryophyllales , Antocianinas , Arabidopsis/genética , Arabidopsis/metabolismo , Betalaínas/metabolismo , Caryophyllales/genética , Regulação da Expressão Gênica de Plantas , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...