Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.527
Filtrar
1.
Food Chem ; 302: 125343, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31430630

RESUMO

Pectin was extracted from blueberry powder as water soluble fraction (WSF), rich in branched regions, and chelator soluble fraction (CSF), linear, with strong negative charge. Binding of pectins with three anthocyanin standards (malvidin-3-glucoside; M3G, cyanidin-3-glucoside; C3G, and delphinidin-3-glucoside; D3G) and blueberry extract (BBE) were used. Without blueberry pectin, M3G was the most stable followed by C3G, whereas D3G completely disappeared after gastrointestinal digestion. CSF prevented M3G and C3G degradation more than WSF, the in vitro stability was highest with CSF and C3G. Increased stability of anthocyanins after simulated gastrointestinal digestion suggests that anthocyanins can be transported to colon where gut microbiota actively produce anthocyanin metabolites. The amount of bound anthocyanins that interacted with blueberry pectin increased as the number of hydroxyl groups increased on anthocyanins. Hydrogen bonding in addition to electrostatic interaction contribute to stability of pectin-anthocyanins interaction at pH 4.0 and contribute to stability under gastrointestinal simulation.


Assuntos
Antocianinas/química , Antocianinas/farmacocinética , Mirtilos Azuis (Planta)/química , Pectinas/química , Antocianinas/metabolismo , Digestão , Glucosídeos/química , Glucosídeos/metabolismo , Glucosídeos/farmacocinética , Ligações de Hidrogênio , Concentração de Íons de Hidrogênio , Pectinas/metabolismo , Pectinas/farmacocinética , Extratos Vegetais/química , Eletricidade Estática
2.
J Agric Food Chem ; 67(41): 11288-11306, 2019 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-31557009

RESUMO

Delphinidin (Del) and its glycosides are water-soluble pigments, belonging to a subgroup of flavonoids. They are health-promoting candidates for pharmaceutical and nutraceutical uses, as indicated by exhibiting antioxidation, anti-inflammation, antimicroorganism, antidiabetes, antiobesity, cardiovascular protection, neuroprotection, and anticancer properties. Glycosylation modification of Del is associated with increased stability and reduced biological activity. Del and its glycosides can be the alternative inhibitors of CBRs, ERα/ß, EGFR, BCRP, and SGLT-1, and virtual docking indicates that the sugar moiety may not effectively interact with the active sites of the targets. Structure-based characteristics confer the multifunctional properties of Del and its glycosides. Because of their health-promoting effects, Del and its glycosides are promising and have been developed as potential pharmaceuticals. However, more investigation on the underlying mechanisms of Del and its glycosides in mediating cellular processes with high specificity are still needed. The research progression of Del and its glycosides over the last 10 years is comprehensively reviewed in this article.


Assuntos
Antocianinas/farmacologia , Glicosídeos/farmacologia , Animais , Antocianinas/química , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Glicosídeos/química , Humanos , Estrutura Molecular
3.
J Agric Food Chem ; 67(40): 11108-11118, 2019 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-31496243

RESUMO

A blood glucose level lowering effect is postulated for polyphenols (PPs), which is in part attributed to the inhibition of α-amylase. To estimate structure-effect relationships, chlorogenic acid (CA), phlorizin (PHL), epigallocatechin gallate (EGCG), epicatechin (EC), and malvidin-3-glucoside (Mlv-3-glc) were used as inhibitors in an enzyme assay, on the basis of the conversion of GalG2CNP by α-amylase. The detection of CNP was performed by UV/vis spectroscopy. The data reveal that the inhibitor strength decreases as follows: EGCG > Mlv-3-glc > EC > PHL ∼ CA. Detection of the substrate conversion by isothermal titration calorimetry supports these results. All PPs showed mixed inhibition, except for CA and EGCG wherein the competitive proportion was predominant. Investigations by saturation transfer difference NMR revealed interaction of PPs with α-amylase prevalently based on interactions with the aromatic or conjugated system. A correlation between the extent of the conjugated system and the IC50 of the PP could be found.


Assuntos
Antocianinas/química , Catequina/análogos & derivados , Catequina/química , Ácido Clorogênico/química , Inibidores Enzimáticos/química , Glucosídeos/química , alfa-Amilases Pancreáticas/antagonistas & inibidores , Florizina/química , Animais , Calorimetria , alfa-Amilases Pancreáticas/química , Suínos
4.
J Agric Food Chem ; 67(37): 10432-10447, 2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-31466447

RESUMO

A composite nanogel was developed for cyanidin-3-O-glucoside (C3G) delivery by combining Maillard reaction and heat gelation. The starting materials utilized were ovalbumin, dextran, and pectin. C3G-loaded nanogel was spherical with a diameter of ∼185 nm, which was maintained over a wide range of pH and NaCl concentrations. The composite nanogel enhanced the chemical stability of C3G under accelerated degradation models and a simulated gastrointestinal tract. Clathrin-mediated, caveolae-mediated, and macropinocytosis-related endocytosis contributed to the higher cellular uptake of nano-C3G than that of free-C3G. The apparent permeability coefficients of C3G increased 2.16 times after nanoencapsulation. The transcytosis of the C3G-bearing nanogel occurred primarily through the clathrin-related pathway and macropinocytosis and followed the "common recycling endosomes-endoplasmic reticulum-Golgi complex-basolateral plasma membrane" route. Moreover, nano-C3G was more efficient in restoring the viability of cells and activities of endogenous antioxidant enzymes than free-C3G in oxidative models, which may be attributed to the former's high cellular absorption.


Assuntos
Antocianinas/química , Antocianinas/metabolismo , Antioxidantes/química , Antioxidantes/metabolismo , Portadores de Fármacos/química , Glucosídeos/química , Glucosídeos/metabolismo , Células CACO-2 , Composição de Medicamentos , Estabilidade de Medicamentos , Trato Gastrointestinal/metabolismo , Géis/química , Géis/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Absorção Intestinal , Modelos Biológicos , Nanopartículas/química , Nanopartículas/metabolismo , Tamanho da Partícula
5.
Food Chem ; 301: 125280, 2019 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-31377624

RESUMO

Self-assembled nanoparticles using the biopolymers chitosan (CH) and chondroitin sulfate (CS) were developed to improve the biological activity of anthocyanin (ACN). The 86.32 ±â€¯0.15% (w/w) of ACN was incorporated into ACN/CH/CS nanoparticles, with the particle size of 350.1 ±â€¯0.99 nm in diameter (i.d.) and 42.55 ±â€¯0.54 in zeta potential (mV). Morphological study and thermogravimetric analysis suggested that the ACN/CH/CS nanoparticles exhibited heterogeneous morphology and high thermal stability. Significant increases in apoptosis by 12.1% and 35.1% were observed with 0.05 mg/ml ACN and ACN/CH/CS nanoparticles in the HCT-116 cell line, indicating that the nanoparticle system led to significant increase in apoptosis (p < 0.05). Structural changes in mitochondria caused by ACN/CH/CS nanoparticles indicated that the nanoparticles had negative impacts on mitochondria. These results showed that nanoparticles could potentially be used as a carrier system to improve the efficacy of ACN.


Assuntos
Antocianinas/farmacologia , Apoptose , Neoplasias do Colo/tratamento farmacológico , Nanopartículas/química , Oryza/química , Antocianinas/química , Antineoplásicos/farmacologia , Quitosana/química , Sulfatos de Condroitina/química , Neoplasias do Colo/fisiopatologia , Células HCT116 , Humanos , Tamanho da Partícula
6.
Food Chem ; 301: 125289, 2019 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-31387047

RESUMO

Acylated anthocyanins, such as those found in red cabbage, are more heat-, light-, and alkaline pH-stable than non-acylated anthocyanins, making them attractive for a variety of commercial applications. A UPLC-DAD-MSE method with an optimized chromatographic strategy was used to identify 29 red cabbage anthocyanins, predominantly acylated and glucosylated cyanidin derivatives. Anthocyanin profiles of 27 red cabbage genotypes harvested in consecutive growing seasons were measured and assessed for variation. Three unique anthocyanin profile fingerprints were identified through hierarchical clustering analysis. PCA analysis identified anthocyanin accumulation traits and genotypes with high diversity which can be utilized in future investigations into the genetic and molecular basis for anthocyanin production, acylation, and diversity.


Assuntos
Antocianinas/análise , Brassica/química , Brassica/genética , Melhoramento Vegetal , Polimorfismo Genético , Estações do Ano , Acilação , Antocianinas/química , Brassica/metabolismo , Cromatografia Líquida de Alta Pressão , Genótipo , Espectrometria de Massas
7.
J Agric Food Chem ; 67(32): 8938-8949, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31361121

RESUMO

Polymeric pigments formed via ethyl linkages between grape tannins and anthocyanins are important to the development of stable red wine color. To determine the effect of tannin structure on the stability and color properties of ethyl-linked polymeric pigments, tannin fractions with average polymerization between 4 and 43 units were prepared from grape skins and seeds and combined with malvidin-3-glucoside (M3G) in model wine containing acetaldehyde. As tannin molecular mass increased, the reaction rate with M3G increased. Compared with skin tannins of comparable molecular mass, seed tannins reacted more rapidly with M3G but were prone to precipitation. This resulted in a loss of polymeric pigments formed from seed tannins, which was greater as tannin molecular mass increased. Aggregation occurred following the reaction of seed tannin with M3G, concomitant with precipitation. The aggregation-precipitation phenomenon was not observed for skin tannin-derived pigments, indicating a greater stability in solution than those formed from seed tannins.


Assuntos
Acetaldeído/química , Antocianinas/química , Pigmentos Biológicos/química , Extratos Vegetais/química , Sementes/química , Taninos/química , Vitis/química , Precipitação Química , Cor , Frutas/química , Cinética , Peso Molecular , Polimerização , Polímeros/química
8.
Chemistry ; 25(50): 11696-11706, 2019 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-31264754

RESUMO

The interaction of two anthocyanins with a water-soluble polyanionic dendrimer was studied through UV/Vis, stopped-flow, and NMR spectroscopy. Cyanidin-3-glucoside (cy3glc) revealed a stronger interaction than malvidin-3-glucoside (mv3glc) at pH 1 according to their apparent association constants. A higher color increased was also obtained for cy3glc at pH 3.5 as a result of this stronger interaction. A high-frequency chemical shift of the cy3glc aromatic protons suggest the formation of ionic pairs. The interaction parameters (K≈700 m-1 , n≈295) indicated the binding of approximately two anthocyanin molecules by each sulfate group. The equilibrium and rate constants of cy3glc in the presence of dendrimer showed an increased stability of the flavylium cation and a higher protection of this species from hydration (pK'a and pKh increased almost one pH unit). The tuning and color stabilization of anthocyanins by using this dendrimer allow novel applications as colorimetric sensors for food packaging.


Assuntos
Antocianinas/química , Dendrímeros/química , Ácido Gálico/química , Glucosídeos/química , Concentração de Íons de Hidrogênio , Isomerismo , Cinética , Solubilidade , Água/química
9.
J Agric Food Chem ; 67(33): 9344-9353, 2019 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-31361957

RESUMO

Anthocyanins determine the color and potential health-promoting properties of red fruit juices, but the juices contain remarkably less anthocyanins than the fruits, which is partly caused by the interactions of anthocyanins with the residues of cell wall polysaccharides like pectin. In this study, pectin was modified by ultrasound and enzyme treatments to residues of polysaccharides and oligosaccharides widely differing in their molecular weight. Modifications decreased viscosity and degrees of acetylation and methylation and released smooth and hairy region fragments. Native and modified pectin induced different effects on the concentrations of individual anthocyanins after short-term and long-term incubation caused by both hydrophobic and hydrophilic interactions. Results indicate that both pectin and anthocyanin structure influence these interactions. Linear polymers generated by ultrasound formed insoluble anthocyanin complexes, whereas oligosaccharides produced by enzymes formed soluble complexes with protective properties. The structure of the anthocyanin aglycone apparently influenced interactions more than the sugar moiety.


Assuntos
Antocianinas/química , Beta vulgaris/química , Pectinas/química , Acetilação , Cor , Frutas/química , Sucos de Frutas e Vegetais/análise , Interações Hidrofóbicas e Hidrofílicas , Metilação , Peso Molecular , Ultrassom , Viscosidade
10.
Food Chem ; 299: 125102, 2019 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-31279126

RESUMO

The chemical compositions and α-glucosidase inhibitory activities of anthocyanins extracted from blueberry, blackcurrant and blue honeysuckle fruits and their acid hydrolysates (anthocyanidins) were analysed. Those anthocyanins were glycosidic anthocyanins that converted to anthocyanidins during acid hydrolysis, leading to increases in their α-glucosidase inhibitory activities (expressed as IC50 values) from 0.232, 0.152 and 0.188 to 0.113 to 0.005 and 0.025 mg/mL. The potential inhibitory mechanism of these anthocyanidins was then investigated through inhibition kinetics, fluorescence quenching and docking simulations. The results showed the following: 1) all anthocyanidins were mixed-type inhibitors of α-glucosidase and they bind more tightly to free α-glucosidase as compared to the α-glucosidase-substrate complex; 2) anthocyanidin inhibition of α-glucosidase was a static procedure, presumably driven by hydrophobic associations and hydrogen bonding; and 3) all anthocyanidins were inserted into the active site of α-glucosidase and avoided the entrance of p-nitrophenyl-a-D-glucopyranoside. This study is valuable for anthocyanidins as potential α-glucosidase inhibitors.


Assuntos
Antocianinas/farmacologia , Mirtilos Azuis (Planta)/química , Inibidores de Glicosídeo Hidrolases/farmacologia , Lonicera/química , Ribes/química , Antocianinas/análise , Antocianinas/química , Fluorescência , Frutas/química , Inibidores de Glicosídeo Hidrolases/química , Ligações de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Cinética , Simulação de Acoplamento Molecular , alfa-Glucosidases/química , alfa-Glucosidases/metabolismo
11.
Food Chem ; 299: 125097, 2019 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-31284242

RESUMO

The low solubility, instability, and low bioavailability of food bioactive compounds such as polyphenols and flavonoids, restrict their applications in the fields of food science and nutrition. Ferritin protein has received more and more attention in encapsulation and delivery of the bioactive compounds due to its nanosized shell-like structure and its reversible self-assembly character. After encapsulation, bioactive compounds can be functionalized by the ferritin vehicle to achieve stabilization, solubilization, and targeted delivery. In addition, the outer interfaces and the porous structure of ferritin are also artfully harnessed for encapsulation. This review focuses on the newest advances in the fabrication, characterization, and application of ferritin-based nano-carriers for bioactive compounds by the reversible self-assembly, outer-interface decoration methods, and the channel-directed approach. The functional improvements of food bioactive compounds, including their solubility, stability, and cellular uptake, are emphasized. The limitations that affect ferritin encapsulation are also examined.


Assuntos
Ferritinas/química , Ferritinas/farmacocinética , Alimentos , Nanoestruturas/química , Antocianinas/administração & dosagem , Antocianinas/química , Antocianinas/farmacocinética , Disponibilidade Biológica , Catequina/análogos & derivados , Catequina/química , Quitosana/química , Curcumina/administração & dosagem , Curcumina/química , Curcumina/farmacocinética , Humanos , Polifenóis/administração & dosagem , Polifenóis/química , Polifenóis/farmacocinética , Proantocianidinas/administração & dosagem , Proantocianidinas/química , Proantocianidinas/farmacocinética , Solubilidade , beta Caroteno/administração & dosagem , beta Caroteno/química , beta Caroteno/farmacocinética
12.
Food Chem ; 300: 125167, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31325747

RESUMO

Anthocyanin lipophilization emerged as an efficient technique to improve their chemical stability, liposolubility and antioxidant properties for novel technological applications. This work describes an efficient method for the synthesis of cyanidin-3-glucoside-fatty acid conjugate using a Candida antarctica lipase B-rich extract, without further purification and retained in a porous membrane. Due to the enzyme retention within the membrane structure it was possible to improve the yield of the lipophilization reaction by 2.5-fold as well as obtaining the product in a shorter period of time comparing with its free form. Furthermore, the membrane retention allowed for enzyme reusability, since the same conversion yield was obtained in three consecutive reaction cycles.


Assuntos
Antocianinas/metabolismo , Ácidos Graxos/metabolismo , Proteínas Fúngicas/metabolismo , Glucosídeos/metabolismo , Lipase/metabolismo , Antocianinas/química , Antioxidantes/química , Enzimas Imobilizadas/metabolismo , Glucosídeos/química
13.
J Food Sci ; 84(7): 1712-1720, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31242535

RESUMO

Black rice (Oryza sativa L. indica) is one of the cereal commodities considered to be a source of anthocyanin. One of the obstacles of using anthocyanins as natural food colorants is their low stability. The objective of this study was to determine the effect of natural plants extracts on anthocyanin copigmentation and to study the stability of the encapsulated copigmented anthocyanin during storage under different temperatures and light exposure. Dried bilimbi leaves (BL) and sow thistle leaves (STL) were extracted using ethanol to obtain the crude flavonoid extract that was subsequently purified using solid phase extraction. Both crude (CBL, CSTL) and purified (PBL, PSTL) extract were used as copigment agents with the molar ratio of 1:0.1 to 1:10 at pH 1 and pH 3. The copigmentation effect was evaluated by measuring the wavelength and absorbance shifts at wavelengths of 500 to 600 nm. The stability of the dried anthocyanin powder was evaluated under different temperatures and light exposure for up to 4 weeks. Anthocyanin was successfully copigmented with BL and STL extracts showing a wavelength shift and absorbance increase at pH 1 and pH 3. Purification of BL enhanced the hyperchromic effect more than that of the crude form, in contrast to the STL. Meanwhile, the retention of absorbance (%) for encapsulated copigmented anthocyanin samples was within 74% to 83% at the end of the storage period. PRACTICAL APPLICATION: Natural food pigment such as anthocyanin obtained from plant extract usually shows very limited stability under various processing conditions. This study shows that color stability of anthocyanin extracted from black rice can be improved by copigmentation with flavonoids extracted from particular plants. Encapsulation of the copigmented anthocyanin could further enhance its color stability. The availability of encapsulated and copigmented anthocyanins with improved color stability is expected to provide more alternatives for especially the beverage industry to choose suitable natural colorant for their products.


Assuntos
Antocianinas/química , Flavonoides/química , Oryza/química , Extratos Vegetais/química , Polissacarídeos/química , Sonchus/química , Cor , Corantes de Alimentos/química , Armazenamento de Alimentos , Folhas de Planta/química
14.
J Sci Food Agric ; 99(14): 6173-6181, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31250429

RESUMO

BACKGROUND: Tomato is one of the most important agricultural crops and it is characterized by a wide bioactive compound profile. However, little information is reported on its comprehensive polyphenol profile. In this work, 13 commercial tomato cultivars for industrial transformation were screened by ultra-high-pressure liquid chromatography coupled to quadrupole-time-of-flight mass spectrometry (UHPLC-QTOF-MS) for both free and bound phenolic profiles. Thereafter, the in vitro antioxidant activity of each cultivar was assessed by ferric reducing antioxidant power (FRAP) and oxygen radical absorbance activity (ORAC) assays. Multivariate statistics, i.e. orthogonal projection to latent structures discriminant analysis (OPLS-DA), were then used to model samples according to their distinct phenolic signatures, thus providing compounds that better discriminated between the distributions of the cultivars that were considered. RESULTS: More than 350 phenolic compounds could be identified across the samples that were considered: flavonoids (such as flavones and flavanols), hydroxycinnamic acids, lignans, and lower-molecular-weight phenolics were the most frequently observed classes of phenolics in tomato berries. Anthocyanins were the most abundant class among bound phenolics (being highest in the Leader F1 and Defender F1 cultivars), followed by tyrosols (mainly in Heinz cultivars). However, flavones and hydroxybenzoic acids were the most represented discriminant phenolics in the bound fraction. CONCLUSIONS: Untargeted metabolomics allowed significant differences in phenolic composition to be outlined across the tomato cultivars that were analyzed. Such differences were particularly evident regarding the free-to-bound phenolic ratio, hence allowing differences in the bioaccessibility of phenolics to be postulated. © 2019 Society of Chemical Industry.


Assuntos
Lycopersicon esculentum/química , Fenóis/química , Extratos Vegetais/química , Antocianinas/química , Antioxidantes/química , Cromatografia Líquida de Alta Pressão , Flavonoides/química , Frutas/química , Espectrometria de Massas
15.
Food Chem ; 297: 124898, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31253334

RESUMO

Anthocyanins and anthocyanidins are polyphenolic compounds, responsible for the red and blue colours in several fruits, flowers, and leaves. Their colorant properties, bioavailability and antioxidant activity, made anthocyanins and anthocyanidins largely adopted in food and pharmaceutical industries. In this body of work, we firstly introduced structure, photophysical properties, co-pigmentation, antioxidant properties, glycosylation and complexation of anthocyanins and anthocyanidins. Secondly, we reported the computational methods adopted and the main theoretical results involving either anthocyanins and anthocyanidins, ranging from the first theoretical investigation on the structure of flavylium ions to the most recent studies on anthocyanins adsorbed on TiO2. We reviewed the computational contributions to the description of molecular properties of anthocyanins and anthocyanidins, giving a particular attention to the geometries, the spectroscopic features and the complexation properties of such molecules. Nowadays, theoretical calculations represent an essential methodology to understand and predict the chemical and physical properties of anthocyanins and their derivates.


Assuntos
Antocianinas/química , Antioxidantes/química , Adsorção , Antocianinas/análise , Glicosilação , Pigmentação , Teoria Quântica , Energia Solar
16.
Food Chem ; 293: 57-65, 2019 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31151649

RESUMO

The bioavailability of drugs can be improved by regulating the structural properties, particularly lipoid systems, such as niosomes, can increase cellular uptake. Herein, we optimized double emulsion and niosomal formulations for encapsulating anthocyanin-rich black carrot extract. Nanoparticles obtained by selected formulation were characterized in terms of morphology, particle size, drug encapsulation efficiency, in vitro release and cytotoxicity. The optimum conditions for niosomal formulation were elicited as 30 mg of cholesterol, 150 mg of Tween 20 and feeding time of 1 min at a stirring rate of 900 rpm yielding the lowest average particle size of 130 nm. In vitro release data showed the majority of the encapsulated anthocyanins were released at the end of 10 h. A mathematical model was developed to estimate the absorption of anthocyanins released from niosomes and cytotoxicity was assessed against neuroblastoma. Overall, these findings suggest that niosomal vesicles might be suitable delivery systems for anthocyanins.


Assuntos
Antocianinas/química , Lipossomos/química , Antocianinas/metabolismo , Varredura Diferencial de Calorimetria , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Colesterol/química , Daucus carota/química , Daucus carota/metabolismo , Humanos , Lipossomos/toxicidade , Modelos Teóricos , Nanopartículas/química , Tamanho da Partícula , Polissorbatos/química
17.
Carbohydr Polym ; 219: 29-38, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31151527

RESUMO

Multi-objective sequential fractionation of mango (Mangifera indica L.) peels for pectin and anthocyanins in a biorefinery, was investigated with the aims of enhancing pectin purity, bioactivity and increasing recovered products. Anthocyanins were extracted from mango peels based on a Box-Behnken experimental design (ethanol concentration (50-80%), acetic acid concentration (0.1-2%), time (60-150 min) and temperature (25 °C)). The remaining residue was subsequently fractionated to recover pectin. The optimum anthocyanin conditions (67.45% ethanol, 0.24% acetic acid and 60 min) resulted in pectin with a 5.5% higher antioxidant activity, it was 23% richer in polygalacturonic acid (PGA) and had a yield of 31% w/w higher than conventionally extracted pectin. An anthocyanin extract with anthocyanin contents, polyphenol contents, and antioxidant activity of 22.33 mg/100 g, 132.62 mg/g, and 1.36 µg gallic acid equivalent, respectively, was obtained. Therefore, the sequential extraction of anthocyanins and pectin improves pectin functional properties and increases the mango peel value potential.


Assuntos
Antocianinas , Fracionamento Químico/métodos , Frutas/química , Mangifera/química , Pectinas , Antocianinas/química , Antocianinas/isolamento & purificação , Pectinas/química , Pectinas/isolamento & purificação , Projetos de Pesquisa
18.
Chem Biol Interact ; 309: 108701, 2019 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-31181187

RESUMO

Pelargonidin, a well-known natural anthocyanidin found in berries strawberries, blueberries, red radishes and other natural foods, has been found to possess health beneficial effects including anti-cancer effect. Herein, we investigated the effect of pelargonidin on cellular transformation in mouse skin epidermal JB6 (JB6 P+) cells induced by tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA). Pelargonidin treatment significantly decreased colony formation and suppressed cell viability of JB6 P+ cells. Pelargonidin also induced the anti-oxidant response element (ARE)-luciferase activation in HepG2-C8 cells overexpressing the ARE-luciferase reporter. Knockdown of nuclear factor E2-related factor 2 (Nrf2) in shNrf2 JB6 P+ cells enhanced TPA-induced colony formation and attenuated pelargonidin's blocking effect. Pelargonidin reduced the protein levels of genes encoding methyltransferases (DNMTs) and histone deacetylases (HDACs). Importantly, pelargonidin decreased the DNA methylation in the Nrf2 promoter region of JB6 P+ cells and increased Nrf2 downstream target genes expression, such as NAD(P)H/quinone oxidoreductase 1 (NQO1) and heme oxygenase-1 (HO-1), involved in cellular protection. In summary, our results showed that pelargonidin blocks TPA-induced cell transformation. The possible molecular mechanisms of its potential anti-cancer effects against neoplastic transformation may be attributed to its activation of Nrf2-ARE signaling pathway and its cytoprotective effect.


Assuntos
Antocianinas/farmacologia , Desmetilação do DNA/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Animais , Antocianinas/química , Elementos de Resposta Antioxidante/genética , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , DNA-Citosina Metilases/metabolismo , Células Epidérmicas/citologia , Células Epidérmicas/efeitos dos fármacos , Células Epidérmicas/metabolismo , Expressão Gênica/efeitos dos fármacos , Células Hep G2 , Histona Desacetilases/metabolismo , Humanos , Camundongos , Fator 2 Relacionado a NF-E2/antagonistas & inibidores , Fator 2 Relacionado a NF-E2/genética , Regiões Promotoras Genéticas , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Acetato de Tetradecanoilforbol/farmacologia
19.
J Sci Food Agric ; 99(13): 5934-5945, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31206676

RESUMO

BACKGROUND: Package oxygen transmission rate (OTR) can affect the stability of natural color pigments such as anthocyanins, betalains and chlorophylls in foods during storage. In the present study, we investigated the oxygen sensitivity of selected pigments in thermally pasteurized vegetable purees held at a refrigeration temperature. We modulated the oxygen ingress in packaging using multilayer films with OTRs of 1, 30 and 81 cm3  m-2  day-1 . Red cabbage, beetroot and pea purees were vacuum packed, pasteurized to achieve a cumulative lethality of P 90 ° C 10 ° C = 12.8-13.4 min and stored at 7 °C for 80 days. RESULTS: Anthocyanins were relatively stable (< 4% losses), regardless of the film OTR. Betalains showed the highest sensitivity to different OTRs, with total losses varying from 4% to 49% at the end of storage and showing significant differences (P < 0.05) among the three films. Chlorophylls showed no significant difference (P > 0.05) in sensitivity to film OTRs. However, continuous degradation of chlorophylls was observed for all film types, with total chlorophyll losses ranging from 33% to 35%. Overall color differences (ΔE) at the end of storage for cabbage, beet and pea puree were between 0.50-1.70, 1.00-4.55 and 7.41-8.08, respectively. Betalains and chlorophylls degradation followed first-order and fractional conversion kinetics, whereas ΔE followed zero-order and fractional conversion kinetics during storage. CONCLUSION: All three pigments behaved differently to oxygen ingress during storage. Low to medium barrier films are suitable for products containing red cabbage anthocyanins. High barrier films are must for betalains, whereas medium to high barrier films are suitable for chlorophyll-containing products. © 2019 Society of Chemical Industry.


Assuntos
Antocianinas/química , Betalaínas/química , Clorofila/química , Produtos Vegetais/análise , Verduras/química , Beta vulgaris/química , Brassica/química , Cor , Armazenamento de Alimentos , Temperatura Alta , Oxirredução , Pasteurização , Ervilhas/química
20.
J Sci Food Agric ; 99(13): 5946-5952, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31206683

RESUMO

BACKGROUND: Grape berries produce significant amounts of phenolic compounds. These are an essential qualitative factor due to their nutritional value and effect on berry color and texture. Salicylic acid (SA) and its derivatives usually lead to enhancement of phenolic content in plant tissues. The present study was conducted to evaluate the effect of different levels of SA (0.0, 50.0, 100.0, and 200.0 mM) on the production of phenolic compounds and the derivatives (anthocyanin and flavonoid) in the grape berries, with emphasis on malvidin-3-O-ß glucoside as a regular anthocyanin in red grapes. RESULT: The results showed that total phenolics content were significantly enhanced in SA-treated (100.0 and 200.0 mM) berries compared to untreated ones. Salicylic acid treatment at all concentrations considerably improved the anthocyanin content in the berries and, compared with untreated berries, the accumulation of malvidin-3-O-ß glucoside was higher in SA-treated fruits. In particular, the 200.0 mM concentration caused approximately two times more malvidin-3-O-ß glucoside than the control. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging capacity of the fruits treated with SA were significantly higher than those of the untreated berries. The activity of phenylalanine ammonia-lyase (PAL) in SA treated fruits significantly increased as compared with the untreated clusters. CONCLUSION: A general evaluation of the current results leads us to the conclusion that SA is a suitable and recommendable treatment for improving and increasing the phenolic and antioxidant capacity of grape berries. Spraying grape berries at pre-véraison stage with SA could therefore be a convenient strategy to increase quality and nutritional value of grape berries considerably. © 2019 Society of Chemical Industry.


Assuntos
Antocianinas/química , Frutas/química , Extratos Vegetais/química , Ácido Salicílico/farmacologia , Vitis/química , Antioxidantes/metabolismo , Cor , Frutas/efeitos dos fármacos , Fenóis/química , Fenilalanina Amônia-Liase/genética , Fenilalanina Amônia-Liase/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Vitis/efeitos dos fármacos , Vitis/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA