Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 846
Filtrar
1.
Int J Mol Sci ; 22(7)2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-33805379

RESUMO

ß-Glucosidase is a microbial cellulose multienzyme that plays an important role in the regulation of the entire cellulose hydrolysis process, which is the rate-limiting step in bacterial carbon cycling in marine environments. Despite its importance in coral reefs, the diversity of ß-glucosidase-producing bacteria, their genes, and enzymatic characteristics are poorly understood. In this study, 87 ß-glucosidase-producing cultivable bacteria were screened from 6 genera of corals. The isolates were assigned to 21 genera, distributed among three groups: Proteobacteria, Firmicutes, and Actinobacteria. In addition, metagenomics was used to explore the genetic diversity of bacterial ß-glucosidase enzymes associated with scleractinian corals, which revealed that these enzymes mainly belong to the glycosidase hydrolase family 3 (GH3). Finally, a novel recombinant ß-glucosidase, referred to as Mg9373, encompassing 670 amino acids and a molecular mass of 75.2 kDa, was classified as a member of the GH3 family and successfully expressed and characterized. Mg9373 exhibited excellent tolerance to ethanol, NaCl, and glucose. Collectively, these results suggest that the diversity of ß-glucosidase-producing bacteria and genes associated with scleractinian corals is high and novel, indicating great potential for applications in the food industry and agriculture.


Assuntos
Antozoários/microbiologia , Bactérias/enzimologia , Microbiota/genética , beta-Glucosidase/genética , Animais , Bactérias/genética , Metagenômica , Filogenia , beta-Glucosidase/metabolismo
2.
Microbiome ; 9(1): 72, 2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33766108

RESUMO

BACKGROUND: In octocorals (Cnidaria Octocorallia), the functional relationship between host health and its symbiotic consortium has yet to be determined. Here, we employed comparative metagenomics to uncover the distinct functional and phylogenetic features of the microbiomes of healthy Eunicella gazella, Eunicella verrucosa, and Leptogorgia sarmentosa tissues, in contrast with the microbiomes found in seawater and sediments. We further explored how the octocoral microbiome shifts to a pathobiome state in E. gazella. RESULTS: Multivariate analyses based on 16S rRNA genes, Clusters of Orthologous Groups of proteins (COGs), Protein families (Pfams), and secondary metabolite-biosynthetic gene clusters annotated from 20 Illumina-sequenced metagenomes each revealed separate clustering of the prokaryotic communities of healthy tissue samples of the three octocoral species from those of necrotic E. gazella tissue and surrounding environments. While the healthy octocoral microbiome was distinguished by so-far uncultivated Endozoicomonadaceae, Oceanospirillales, and Alteromonadales phylotypes in all host species, a pronounced increase of Flavobacteriaceae and Alphaproteobacteria, originating from seawater, was observed in necrotic E. gazella tissue. Increased abundances of eukaryotic-like proteins, exonucleases, restriction endonucleases, CRISPR/Cas proteins, and genes encoding for heat-shock proteins, inorganic ion transport, and iron storage distinguished the prokaryotic communities of healthy octocoral tissue regardless of the host species. An increase of arginase and nitric oxide reductase genes, observed in necrotic E. gazella tissues, suggests the existence of a mechanism for suppression of nitrite oxide production by which octocoral pathogens may overcome the host's immune system. CONCLUSIONS: This is the first study to employ primer-less, shotgun metagenome sequencing to unveil the taxonomic, functional, and secondary metabolism features of prokaryotic communities in octocorals. Our analyses reveal that the octocoral microbiome is distinct from those of the environmental surroundings, is host genus (but not species) specific, and undergoes large, complex structural changes in the transition to the dysbiotic state. Host-symbiont recognition, abiotic-stress response, micronutrient acquisition, and an antiviral defense arsenal comprising multiple restriction endonucleases, CRISPR/Cas systems, and phage lysogenization regulators are signatures of prokaryotic communities in octocorals. We argue that these features collectively contribute to the stabilization of symbiosis in the octocoral holobiont and constitute beneficial traits that can guide future studies on coral reef conservation and microbiome therapy. Video Abstract.


Assuntos
Antozoários/microbiologia , Bactérias/classificação , Bactérias/genética , Interações Hospedeiro-Patógeno , Metagenoma/genética , Metagenômica , Filogenia , Animais , Disbiose , RNA Ribossômico 16S/genética
3.
Microbiome ; 9(1): 43, 2021 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-33583433

RESUMO

BACKGROUND: Chitin ranks as the most abundant polysaccharide in the oceans yet knowledge of shifts in structure and diversity of chitin-degrading communities across marine niches is scarce. Here, we integrate cultivation-dependent and -independent approaches to shed light on the chitin processing potential within the microbiomes of marine sponges, octocorals, sediments, and seawater. RESULTS: We found that cultivatable host-associated bacteria in the genera Aquimarina, Enterovibrio, Microbulbifer, Pseudoalteromonas, Shewanella, and Vibrio were able to degrade colloidal chitin in vitro. Congruent with enzymatic activity bioassays, genome-wide inspection of cultivated symbionts revealed that Vibrio and Aquimarina species, particularly, possess several endo- and exo-chitinase-encoding genes underlying their ability to cleave the large chitin polymer into oligomers and dimers. Conversely, Alphaproteobacteria species were found to specialize in the utilization of the chitin monomer N-acetylglucosamine more often. Phylogenetic assessments uncovered a high degree of within-genome diversification of multiple, full-length endo-chitinase genes for Aquimarina and Vibrio strains, suggestive of a versatile chitin catabolism aptitude. We then analyzed the abundance distributions of chitin metabolism-related genes across 30 Illumina-sequenced microbial metagenomes and found that the endosymbiotic consortium of Spongia officinalis is enriched in polysaccharide deacetylases, suggesting the ability of the marine sponge microbiome to convert chitin into its deacetylated-and biotechnologically versatile-form chitosan. Instead, the abundance of endo-chitinase and chitin-binding protein-encoding genes in healthy octocorals leveled up with those from the surrounding environment but was found to be depleted in necrotic octocoral tissue. Using cultivation-independent, taxonomic assignments of endo-chitinase encoding genes, we unveiled previously unsuspected richness and divergent structures of chitinolytic communities across host-associated and free-living biotopes, revealing putative roles for uncultivated Gammaproteobacteria and Chloroflexi symbionts in chitin processing within sessile marine invertebrates. CONCLUSIONS: Our findings suggest that differential chitin degradation pathways, utilization, and turnover dictate the processing of chitin across marine micro-niches and support the hypothesis that inter-species cross-feeding could facilitate the co-existence of chitin utilizers within marine invertebrate microbiomes. We further identified chitin metabolism functions which may serve as indicators of microbiome integrity/dysbiosis in corals and reveal putative novel chitinolytic enzymes in the genus Aquimarina that may find applications in the blue biotechnology sector. Video abstract.


Assuntos
Organismos Aquáticos/microbiologia , Bactérias/metabolismo , Quitina/metabolismo , Sedimentos Geológicos/microbiologia , Metagenômica , Microbiota , Água do Mar/microbiologia , Animais , Antozoários/microbiologia , Bactérias/enzimologia , Bactérias/genética , Quitinases/genética , Quitinases/metabolismo , Microbiota/genética , Oceanos e Mares , Filogenia , Poríferos/microbiologia , Simbiose
4.
Artigo em Inglês | MEDLINE | ID: mdl-33406032

RESUMO

A Gram-stain-negative, aerobic, mesophilic, non-motile bacterium, designated M0104T, was isolated from a gorgonian coral collected from Xieyang island, Guangxi Province, PR China. Colonies of the strain were non-motile cocci and pink. The strain grew at 15-34 °C (optimum, 28 °C), pH 4.5-8.0 (optimum, pH 7.0) and with 0-4% (w/v) NaCl (optimum, 0-2 %). Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain M0104T was closely related to Roseomonas deserti JCM 31275T (96.2 %), Roseomonas vastitatis KCTC 62043T (96.0 %), Roseomonas aerofrigidensis JCM 31878T (95.9 %) and Roseomonas oryzae KCTC 42542T (95.7 %). The strain had an assembly size of 5.0 Mb and a G+C content of 71.0mol%. Genes involved in copper, cadmium, lead, arsenic and zinc resistance were identified in the genome of strain M0104T. The digital DNA-DNA hybridization and average nucleotide identity values between the genome sequence of strain M0104T and those of closely related type strains were 19.4-24.9 % and 74.3-81.8 %, respectively. Strain M0104T contained C18:1 ω7c, C18:3 ω3c, anteiso C11:0 and C16:0 as the major fatty acids (>7 %) and ubiquinone Q-10 as the sole isoprenoid quinone. Diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and phosphatidylcholine were its major polar lipids. Based on its phenotypic, phylogenetic and chemotaxonomic properties, strain M0104T is proposed to represent a novel species within the genus Roseomonas, for which the name Roseomonas coralli sp. nov. is proposed. The type strain is M0104T (=KCTC 62359T=MCCC 1K03632T).


Assuntos
Antozoários/microbiologia , Metais Pesados , Methylobacteriaceae/classificação , Filogenia , Animais , Técnicas de Tipagem Bacteriana , Composição de Bases , China , DNA Bacteriano/genética , Ácidos Graxos/química , Methylobacteriaceae/isolamento & purificação , Hibridização de Ácido Nucleico , Fosfolipídeos/química , Pigmentação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Ubiquinona/análogos & derivados , Ubiquinona/química
5.
Appl Environ Microbiol ; 87(6)2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33419736

RESUMO

Ocean acidification (OA) threatens the growth and function of coral reef ecosystems. A key component to coral health is the microbiome, but little is known about the impact of OA on coral microbiomes. A submarine CO2 vent at Maug Island in the Northern Mariana Islands provides a natural pH gradient to investigate coral responses to long-term OA conditions. Three coral species (Pocillopora eydouxi, Porites lobata, and Porites rus) were sampled from three sites where the mean seawater pH is 8.04, 7.98, and 7.94. We characterized coral bacterial communities (using 16S rRNA gene sequencing) and determined pH of the extracellular calcifying fluid (ECF) (using skeletal boron isotopes) across the seawater pH gradient. Bacterial communities of both Porites species stabilized (decreases in community dispersion) with decreased seawater pH, coupled with large increases in the abundance of Endozoicomonas, an endosymbiont. P. lobata experienced a significant decrease in ECF pH near the vent, whereas P. rus experienced a trending decrease in ECF pH near the vent. In contrast, Pocillopora exhibited bacterial community destabilization (increases in community dispersion), with significant decreases in Endozoicomonas abundance, while its ECF pH remained unchanged across the pH gradient. Our study shows that OA has multiple consequences on Endozoicomonas abundance and suggests that Endozoicomonas abundance may be an indicator of coral response to OA. We reveal an interesting dichotomy between two facets of coral physiology (regulation of bacterial communities and regulation of calcification), highlighting the importance of multidisciplinary approaches to understanding coral health and function in a changing ocean.IMPORTANCE Ocean acidification (OA) is a consequence of anthropogenic CO2 emissions that is negatively impacting marine ecosystems such as coral reefs. OA affects many aspects of coral physiology, including growth (i.e., calcification) and disrupting associated bacterial communities. Coral-associated bacteria are important for host health, but it remains unclear how coral-associated bacterial communities will respond to future OA conditions. We document changes in coral-associated bacterial communities and changes to calcification physiology with long-term exposure to decreases in seawater pH that are environmentally relevant under midrange IPCC emission scenarios (0.1 pH units). We also find species-specific responses that may reflect different responses to long-term OA. In Pocillopora, calcification physiology was highly regulated despite changing seawater conditions. In Porites spp., changes in bacterial communities do not reflect a breakdown of coral-bacterial symbiosis. Insights into calcification and host-microbe interactions are critical to predicting the health and function of different coral taxa to future OA conditions.


Assuntos
Antozoários/microbiologia , Antozoários/fisiologia , Calcificação Fisiológica , Água do Mar/química , Animais , Bactérias/classificação , Bactérias/isolamento & purificação , Concentração de Íons de Hidrogênio , Oceanos e Mares
6.
Int J Syst Evol Microbiol ; 70(9): 5149-5155, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32812859

RESUMO

A Gram-stain-negative, oxidase- and catalase-positive, facultative anaerobic and rod-shaped bacterium, designated strain SM1977T, was isolated from the surface of coralline algae collected from the intertidal zone at Qingdao, PR China. The strain grew at 10-35 °C, pH 4.5-8.5 and with 1-8.5% (w/v) NaCl. It reduced nitrate to nitrite and hydrolysed Tween 20 and DNA. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain SM1977T was affiliated with the genus Vibrio, having the highest sequence similarity (97.6 %) to the type strain of Vibrio casei, followed by those of another five species (95.6-97.6 %) in the Rumoiensis clade of the genus Vibrio. However, the in silico DNA-DNA hybridization (75.3-75.9 %) and average nucleotide identity (21.6-22.8 %) values of SM1977T against these close relatives were all below the corresponding thresholds to discriminate bacterial species. The major fatty acids were summed feature 3 (C16:1 ω7c and/or C16:1 ω6c), C16:0 and summed feature 8 (C18:1 ω6c and /or C18:1 ω7c). The predominant polar lipids were phosphatidylethanolamine, diphosphatidylglycerol and phosphatidylglycerol. The sole respiratory quinone was Q-8. The genomic DNA G+C content of strain SM1977T, determined from the obtained whole genomic sequence, was 42.3 mol%. On the basis of the polyphasic results obtained in this study, strain SM1977T is considered to represent a novel species within the genus Vibrio, for which the name Vibrio algicola sp. nov. is proposed. The type strain is SM1977T (=MCCC 1K04351T=KCTC 72847T).


Assuntos
Antozoários/microbiologia , Clorófitas/microbiologia , Filogenia , Vibrio/classificação , Animais , Técnicas de Tipagem Bacteriana , Composição de Bases , China , DNA Bacteriano/genética , Ácidos Graxos/química , Hibridização de Ácido Nucleico , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Ubiquinona/química , Vibrio/isolamento & purificação
7.
Proc Natl Acad Sci U S A ; 117(24): 13588-13595, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32482859

RESUMO

Viruses, microbes, and host macroorganisms form ecological units called holobionts. Here, a combination of metagenomic sequencing, metabolomic profiling, and epifluorescence microscopy was used to investigate how the different components of the holobiont including bacteria, viruses, and their associated metabolites mediate ecological interactions between corals and turf algae. The data demonstrate that there was a microbial assemblage unique to the coral-turf algae interface displaying higher microbial abundances and larger microbial cells. This was consistent with previous studies showing that turf algae exudates feed interface and coral-associated microbial communities, often at the detriment of the coral. Further supporting this hypothesis, when the metabolites were assigned a nominal oxidation state of carbon (NOSC), we found that the turf algal metabolites were significantly more reduced (i.e., have higher potential energy) compared to the corals and interfaces. The algae feeding hypothesis was further supported when the ecological outcomes of interactions (e.g., whether coral was winning or losing) were considered. For example, coral holobionts losing the competition with turf algae had higher Bacteroidetes-to-Firmicutes ratios and an elevated abundance of genes involved in bacterial growth and division. These changes were similar to trends observed in the obese human gut microbiome, where overfeeding of the microbiome creates a dysbiosis detrimental to the long-term health of the metazoan host. Together these results show that there are specific biogeochemical changes at coral-turf algal interfaces that predict the competitive outcomes between holobionts and are consistent with algal exudates feeding coral-associated microbes.


Assuntos
Antozoários/metabolismo , Clorófitas/metabolismo , Animais , Antozoários/química , Antozoários/microbiologia , Antozoários/parasitologia , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Clorófitas/química , Recifes de Corais , Ecossistema , Metagenômica , Microbiota
8.
Int J Syst Evol Microbiol ; 70(5): 3241-3246, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32375933

RESUMO

A novel Gram-stain-positive, aerobic, non-motile actinobacterium, designated strain E2AT, was isolated from a coral sample and examined using a polyphasic taxonomic approach. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain E2AT formed a distinct phyletic lineage in the genus Saccharopolyspora and was closely related to S. cavernae CCTCC AA 2012022T (96.4 %) and S. lacisalsi CCTCC AA 2010012T (95.3 %). The isolate grew at 15-35 °C, pH 5-12 and in the presence of 1-16 % (w/v) NaCl. The cell-wall diamino acid was meso-DAP. Major fatty acids identified were iso-C15 : 0, iso-C16 : 0 and C17 : 1 ω8c. The predominant menaquinone was MK-9(H4). The polar lipids detected were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, phosphatidylmethylethanolamine, one unidentified glycolipid, one unidentified phospholipid and one unidentified aminolipid. The genomic DNA G+C content was 68.6 mol%. Based on the data from the polyphasic taxonomic study reported here, strain E2AT represents a novel species within the genus Saccharopolyspora, for which the name Saccharopolyspora coralli sp. nov. is proposed. The type strain is E2AT=(JCM 31844T=MCCC 1A17150T).


Assuntos
Antozoários/microbiologia , Filogenia , Saccharopolyspora/classificação , Animais , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Glicolipídeos/química , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Saccharopolyspora/isolamento & purificação , Análise de Sequência de DNA , Vitamina K 2/análogos & derivados , Vitamina K 2/química
9.
Prog Chem Org Nat Prod ; 111: 81-153, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32114663

RESUMO

Marine-derived fungi play an important role in the search for structurally unique secondary metabolites, some of which show promising pharmacological activities that make them useful leads for drug discovery. Marine natural product research in China in general has made enormous progress in the last two decades as described in this chapter on fungal metabolites. This contribution covers 613 new natural products reported from 2001 to 2017 from marine-derived fungi obtained from algae, sponges, corals, and other marine organisms from Chinese waters. The genera Aspergillus (170 new natural products, 28%) and Penicillium (70 new natural products, 11%) were the main fungal producers of new natural products during the time period covered, whereas sponges (184 new natural products, 30%) were the most abundant source of new natural products, followed by corals (154 new natural products, 25%) and algae (130 new natural products, 21%). Close to 40% of all natural products covered in this contribution displayed various bioactivities. The major bioactivities reported were cytotoxicity against different cancer cell lines, antimicrobial (mainly antibacterial) activity, and antiviral activity, which accounted for 13%, 9%, and 3% of all natural products reported. In terms of structural classes, polyketides (188 new natural products, 31%) play a dominant role, and if prenylated polyketides and nitrogen-containing polyketides (included in meroterpenes and alkaloids in this contribution) are taken into account, their total number even exceeds 50%. Nitrogen-containing compounds including peptides (65 new natural products, 10%) and alkaloids (103 new natural products, 17%) are the second largest group.


Assuntos
Produtos Biológicos/farmacologia , Fungos/química , Policetídeos/farmacologia , Animais , Antozoários/microbiologia , Anti-Infecciosos , Antineoplásicos , Organismos Aquáticos/microbiologia , Aspergillus/química , Produtos Biológicos/química , China , Penicillium/química , Policetídeos/química , Poríferos/microbiologia , Metabolismo Secundário
10.
PLoS One ; 15(3): e0229442, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32160233

RESUMO

Reef organisms influence microorganisms within the surrounding seawater, yet the spatial and temporal dynamics of seawater microbial communities located in proximity to corals are rarely investigated. To better understand reef seawater microbial community dynamics over time and space, we collected small-volume seawater samples during the day and night over a 72 hour period from three locations that differed in spatial distance from 5 Porites astreoides coral colonies on a shallow reef in St. John, U.S. Virgin Islands: near-coral (sampled 5 cm horizontally from each colony), reef-depth (sampled 2 m above each colony) and surface seawater (sampled 1 m from the seawater surface). At all time points and locations, we quantified abundances of microbial cells, sequenced small subunit rRNA genes of bacterial and archaeal communities, and measured inorganic nutrient concentrations. Prochlorococcus and Synechococcus cells were consistently elevated at night compared to day and these abundances changed over time, corresponding with temperature, nitrite, and silicate concentrations. During the day, bacterial and archaeal alpha diversity was significantly higher in reef-depth and near-coral seawater compared to the surface seawater, signifying that the reef influences the diversity of the seawater microorganisms. At night, alpha diversity decreased across all samples, suggesting that photosynthesis may favor a more taxonomically diverse community. While Prochlorococcus exhibited consistent temporal rhythmicity, additional taxa were enriched in reef seawater at night compared to day or in reef-depth compared to surface seawater based on their normalized sequence counts. There were some significant differences in nutrient concentrations and cell abundances between reef-depth and near-coral seawater but no clear trends. This study demonstrates that temporal variation supersedes small-scale spatial variation in proximity to corals in reef seawater microbial communities. As coral reefs continue to change in benthic composition worldwide, monitoring microbial composition in response to temporal changes and environmental fluctuations will help discern normal variability from longer lasting changes attributed to anthropogenic stressors and global climate change.


Assuntos
Antozoários/microbiologia , Archaea , Bactérias , Recifes de Corais , Microbiota , Água do Mar/microbiologia , Animais , Archaea/classificação , Archaea/isolamento & purificação , Bactérias/classificação , Bactérias/isolamento & purificação , Filogenia , Ilhas Virgens Americanas , Microbiologia da Água
11.
Microbiome ; 8(1): 8, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-32008576

RESUMO

BACKGROUND: The capacity of reef-building corals to tolerate (or adapt to) heat stress is a key factor determining their resilience to future climate change. Changes in coral microbiome composition (particularly for microalgal endosymbionts and bacteria) is a potential mechanism that may assist corals to thrive in warm waters. The northern Red Sea experiences extreme temperatures anomalies, yet corals in this area rarely bleach suggesting possible refugia to climate change. However, the coral microbiome composition, and how it relates to the capacity to thrive in warm waters in this region, is entirely unknown. RESULTS: We investigated microbiomes for six coral species (Porites nodifera, Favia favus, Pocillopora damicornis, Seriatopora hystrix, Xenia umbellata, and Sarcophyton trocheliophorum) from five sites in the northern Red Sea spanning 4° of latitude and summer mean temperature ranges from 26.6 °C to 29.3 °C. A total of 19 distinct dinoflagellate endosymbionts were identified as belonging to three genera in the family Symbiodiniaceae (Symbiodinium, Cladocopium, and Durusdinium). Of these, 86% belonged to the genus Cladocopium, with notably five novel types (19%). The endosymbiont community showed a high degree of host-specificity despite the latitudinal gradient. In contrast, the diversity and composition of bacterial communities of the surface mucus layer (SML)-a compartment particularly sensitive to environmental change-varied significantly between sites, however for any given coral was species-specific. CONCLUSION: The conserved endosymbiotic community suggests high physiological plasticity to support holobiont productivity across the different latitudinal regimes. Further, the presence of five novel algal endosymbionts suggests selection of certain genotypes (or genetic adaptation) within the semi-isolated Red Sea. In contrast, the dynamic composition of bacteria associated with the SML across sites may contribute to holobiont function and broaden the ecological niche. In doing so, SML bacterial communities may aid holobiont local acclimatization (or adaptation) by readily responding to changes in the host environment. Our study provides novel insight about the selective and endemic nature of coral microbiomes along the northern Red Sea refugia.


Assuntos
Antozoários/microbiologia , Bactérias/classificação , Dinoflagelados/fisiologia , Especificidade de Hospedeiro , Microbiota , Simbiose , Aclimatação , Animais , Recifes de Corais , Dinoflagelados/classificação , Temperatura Alta , Oceano Índico
12.
ISME J ; 14(5): 1290-1303, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32055028

RESUMO

Dominant coral-associated Endozoicomonas bacteria species are hypothesized to play a role in the coral sulfur cycle by metabolizing dimethylsulfoniopropionate (DMSP) into dimethylsulfide (DMS); however, no sequenced genome to date harbors genes for this process. In this study, we assembled high-quality (>95% complete) draft genomes of strains of the recently added species Endozoicomonas acroporae (Acr-14T, Acr-1, and Acr-5) isolated from the coral Acropora sp. and performed a comparative genomic analysis on the genus Endozoicomonas. We identified DMSP CoA-transferase/lyase-a dddD gene homolog in all sequenced genomes of E. acroporae strains-and functionally characterized bacteria capable of metabolizing DMSP into DMS via the DddD cleavage pathway using RT-qPCR and gas chromatography (GC). Furthermore, we demonstrated that E. acroporae strains can use DMSP as a carbon source and have genes arranged in an operon-like manner to link DMSP metabolism to the central carbon cycle. This study confirms the role of Endozoicomonas in the coral sulfur cycle.


Assuntos
Antozoários/microbiologia , Gammaproteobacteria/metabolismo , Compostos de Sulfônio/metabolismo , Animais , Bactérias/genética , Liases de Carbono-Enxofre , Gammaproteobacteria/genética , Genômica , Sulfetos , Enxofre/metabolismo
13.
Microb Ecol ; 80(1): 103-119, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31932882

RESUMO

In the present study, we assessed prokaryotic communities of demosponges, a calcareous sponge, octocorals, sediment and seawater in coral reef habitat of the central Red Sea, including endemic species and species new to science. Goals of the study were to compare the prokaryotic communities of demosponges with the calcareous sponge and octocorals and to assign preliminary high microbial abundance (HMA) or low microbial abundance (LMA) status to the sponge species based on compositional trait data. Based on the compositional data, we were able to assign preliminary LMA or HMA status to all sponge species. Certain species, however, had traits of both LMA and HMA species. For example, the sponge Ectyoplasia coccinea, which appeared to be a LMA species, had traits, including a relatively high abundance of Chloroflexi members, that were more typical of HMA species. This included dominant OTUs assigned to two different classes within the Chloroflexi. The calcareous sponge clustered together with seawater, the known LMA sponge Stylissa carteri and other presumable LMA species. The two dominant OTUs of this species were assigned to the Deltaproteobacteria and had no close relatives in the GenBank database. The octocoral species in the present study had prokaryotic communities that were distinct from sediment, seawater and all sponge species. These were characterised by OTUs assigned to the orders Rhodospirillales, Cellvibrionales, Spirochaetales and the genus Endozoicomonas, which were rare or absent in samples from other biotopes.


Assuntos
Antozoários/microbiologia , Archaea/fisiologia , Bactérias/isolamento & purificação , Sedimentos Geológicos/microbiologia , Poríferos/microbiologia , Água do Mar/microbiologia , Animais , Archaea/classificação , Archaea/isolamento & purificação , Bactérias/classificação , Fenômenos Fisiológicos Bacterianos , Oceano Índico , Microbiota , Arábia Saudita
14.
PLoS One ; 15(1): e0227864, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31990915

RESUMO

The type VI secretion system (T6SS) is a nanomachine capable of killing adjacent microbial cells in a contact-dependent manner. Due to limited studies, relatively little is known about the range of marine bacteria that are susceptible to T6SS attack. Here, 15 diverse marine bacterial isolates from the phyla Bacteroidetes and Ɣ-Proteobacteria were challenged against the marine bacterium and human pathogen, Vibrio cholerae, which has a well described T6SS. V. cholerae killed several of the tested Ɣ-Proteobacteria, including members of the orders Vibrionales, Alteromonadales, Oceanospirillales, and Pseudomonadales. In contrast, V. cholerae co-existed with multiple Bacteroidetes and Ɣ-Proteobacteria isolates, but was killed by Vibrio coralliilyticus. Follow-up experiments revealed that five V. coralliilyticus strains, including known coral and shellfish pathogens survived the T6SS challenge and killed V. cholerae. By using predicted protein comparisons and mutagenesis, we conclude that V. coralliilyticus protected itself in the challenge by using its own T6SS to kill V. cholerae. This study provides valuable insight into the resilience and susceptibility of marine bacteria to the V. cholerae T6SS, and provides the first evidence for a functional T6SS in V. coralliilyticus, both of which have implications for human and ocean health.


Assuntos
Sistemas de Secreção Tipo VI/genética , Vibrio cholerae/patogenicidade , Vibrio/genética , Animais , Antozoários/microbiologia , Anticorpos Antibacterianos/genética , Proteínas de Bactérias/genética , Bacteroidetes/genética , Regulação Bacteriana da Expressão Gênica/genética , Proteobactérias/genética , Frutos do Mar/microbiologia , Vibrio cholerae/genética
15.
mBio ; 11(1)2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31964724

RESUMO

Reef-building corals form a complex consortium with photosynthetic algae in the family Symbiodiniaceae and bacteria, collectively termed the coral holobiont. These bacteria are hypothesized to be involved in the stress resistance of the coral holobiont, but their functional roles remain largely elusive. Here, we show that cultured Symbiodiniaceae algae isolated from the reef-building coral Galaxea fascicularis are associated with novel bacteria affiliated with the family Flavobacteriaceae Antibiotic treatment eliminated the bacteria from cultured Symbiodiniaceae, resulting in a decreased maximum quantum yield of PSII (variable fluorescence divided by maximum fluorescence [Fv/Fm]) and an increased production of reactive oxygen species (ROS) under thermal and light stresses. We then isolated this bacterial strain, named GF1. GF1 inoculation in the antibiotic-treated Symbiodiniaceae cultures restored the Fv/Fm and reduced the ROS production. Furthermore, we found that GF1 produces the carotenoid zeaxanthin, which possesses potent antioxidant activity. Zeaxanthin supplementation to cultured Symbiodiniaceae ameliorated the Fv/Fm and ROS production, suggesting that GF1 mitigates thermal and light stresses in cultured Symbiodiniaceae via zeaxanthin production. These findings could advance our understanding of the roles of bacteria in Symbiodiniaceae and the coral holobiont, thereby contributing to the development of novel approaches toward coral protection through the use of symbiotic bacteria and their metabolites.IMPORTANCE Occupying less than 1% of the seas, coral reefs are estimated to harbor ∼25% of all marine species. However, the destruction of coral reefs has intensified in the face of global climate changes, such as rising seawater temperatures, which induce the overproduction of reactive oxygen species harmful to corals. Although reef-building corals form complex consortia with bacteria and photosynthetic endosymbiotic algae of the family Symbiodiniaceae, the functional roles of coral-associated bacteria remain largely elusive. By manipulating the Symbiodiniaceae bacterial community, we demonstrated that a bacterium that produces an antioxidant carotenoid could mitigate thermal and light stresses in cultured Symbiodiniaceae isolated from a reef-building coral. Therefore, this study illuminates the unexplored roles of coral-associated bacteria under stressful conditions.


Assuntos
Antozoários/microbiologia , Bactérias/isolamento & purificação , Bactérias/metabolismo , Zeaxantinas/biossíntese , Animais , Bactérias/classificação , Bactérias/genética , Microbiota , Fases de Leitura Aberta , Filogenia , RNA Ribossômico 16S/genética
16.
Microbiol Res ; 233: 126408, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31945519

RESUMO

Coral bleaching, a phenomenon by which the expulsion of corals' alveolate endosymbiont (zooxanthellae) occurs when experiencing thermal stress is the major cause for devastation of corals. However, apart from this obligate symbiont of Scleractinian corals, there are different kinds of microbes that exist as stable, transient or sporadic members of the holobiont which reside within various microhabitats in the coral structures. Thus, this study aims to profile the coral bacterial community composition among different coral genera (thermally-sensitive (Acropora digetifera and A. noblis) and thermally resistant (Favites abdita) coral genera analyzed by field monitoring surveys) and also in a particular coral genus (thermally sensitive coral-A. digetifera) at two different sampling times (March 2016 and January 2017). A total of about 608695 paired end reads were obtained through Illumina MiSeq Sequencing platform. The alpha diversity indices (ACE, Chao1 and Shannon) were found to be higher in A. nobilis, followed by A. digetifera and Favites abdita, and the corresponding Simpson values were also found to follow the same trend, indicating that the samples are both rich in species diversity and species evenness. Proteobacteria was found to be the most dominant phylum and Gammaproteobacteria was the predominant class present in all the coral genera studied as also during different sampling time periods. As Vibrionaceae was previously reported to increase its abundance during bleaching stress conditions, bacterial profiling among different coral genera showed the presence of 86 % Vibrionaceae in A. digetifera colonies, and it was 93 % in A. digetifera samples collected during March 2016 whereas, it was found to decrease significantly (7 %) in same tagged colonies collected during January 2017. Thus, profiling of microbiome is of prime importance while studying the holobiont organism like the corals. Stress levels experienced by Palk Bay are even depicted in this microbiome study showing high alpha diversity indices that should alarm reef managers to pay attention to this precious stress tolerant reef community.


Assuntos
Antozoários/microbiologia , Bactérias/classificação , Resposta ao Choque Térmico , Metagenoma , Microbiota , Animais , Antozoários/fisiologia , Recifes de Corais , Sequenciamento de Nucleotídeos em Larga Escala , Índia , RNA Ribossômico 16S/genética , Simbiose
17.
Microb Ecol ; 80(1): 223-236, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31982929

RESUMO

The success of symbioses between cnidarian hosts (e.g., corals and sea anemones) and micro-algal symbionts hinges on the molecular interactions that govern the establishment and maintenance of intracellular mutualisms. As a fundamental component of innate immunity, glycan-lectin interactions impact the onset of marine endosymbioses, but our understanding of the effects of cell surface glycome composition on symbiosis establishment remains limited. In this study, we examined the canonical N-glycan biosynthesis pathway in the genome of the dinoflagellate symbiont Breviolum minutum (family Symbiodiniaceae) and found it to be conserved with the exception of the transferase GlcNAc-TII (MGAT2). Using coupled liquid chromatography-mass spectrometry (LC-MS/MS), we characterized the cell surface N-glycan content of B. minutum, providing the first insight into the molecular composition of surface glycans in dinoflagellates. We then used the biosynthesis inhibitors kifunensine and swainsonine to alter the glycan composition of B. minutum. Successful high-mannose enrichment via kifunensine treatment resulted in a significant decrease in colonization of the model sea anemone Aiptasia (Exaiptasia pallida) by B. minutum. Hybrid glycan enrichment via swainsonine treatment, however, could not be confirmed and did not impact colonization. We conclude that functional Golgi processing of N-glycans is critical for maintaining appropriate cell surface glycan composition and for ensuring colonization success by B. minutum.


Assuntos
Antozoários/microbiologia , Dinoflagelados/fisiologia , Polissacarídeos/fisiologia , Simbiose , Animais , Interações entre Hospedeiro e Microrganismos , Polissacarídeos/biossíntese , Polissacarídeos/química
18.
Biosci Biotechnol Biochem ; 84(4): 854-864, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31814534

RESUMO

Some coral-associated bacteria show protective roles for corals against pathogens. However, the distribution of coral-protecting bacteria in seawater is not well known. In addition, compared with the methods for investigating coral pathogens, few methods have been developed to detect coral-protecting bacteria. Here we prepared a simple method for detecting Ruegeria spp., some strains of which inhibit growth of the coral pathogen Vibrio coralliilyticus. We successfully obtained two Ruegeria-targeting primer sets through in silico and in vitro screening. The primer sets r38F-r30R and r445F-r446R, in addition to the newly designed universal primer set U357'F-U515'R, were evaluated in vitro using environmental DNA extracted from seawater collected in Osaka. These methods and primers should contribute to revealing the distribution of Ruegeria spp. in marine environments.


Assuntos
Primers do DNA , Rhodobacteraceae/genética , Rhodobacteraceae/isolamento & purificação , Água do Mar , Animais , Antozoários/microbiologia , Eletroforese em Gel de Poliacrilamida , Reação em Cadeia da Polimerase
19.
Arch Microbiol ; 202(4): 733-745, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31796989

RESUMO

A novel aerobic marine actinobacterium (strain S5-52T) belonging to the genus Glutamicibacter was isolated from the coral Favia veroni sampled from the Andaman Sea, India. Cells are Gram stain positive and rod shaped. The DNA G+C content was 58.7 mol%. The major quinones were MK-8 and MK-9. The polar lipids were diphosphatidylglycerol, phosphatidylglycerol, glycolipid, trimannosyldiacylglycerol, phospholipid and dimannosylglyceride. The peptidoglycan type was A4α. Strain S5-52T showed a maximum 16S rRNA similarity of 99.36% with Glutamicibacter halophytocola DSM 101718T. The genome of strain S5-52T was 3.57 Mb that contains 3274 protein coding sequences (CDS). DNA-DNA similarity and ANI values between S5-52T and the reference strains were below 70% and 95-96%, respectively. Analysis of genomic reduction events in the evolutionary path from the LUCA (last universal common ancestor) to G. mishrai LMG 29155T and G. halophytocola DSM 101718T exhibit a number of genes involved in amino acid metabolism, cell wall biogenesis and replication, recombination and repair mechanism that reduced in both the species. Based on phenotypic, chemotaxonomic properties and comparative genomic studies, the strain S5-52T is considered a novel species of the genus Glutamicibacter, for which the name Glutamicibacter mishrai sp. nov. is proposed. The type strain is S5-52T (= KCTC 39846T = LMG 29155T).


Assuntos
Antozoários/microbiologia , Micrococcaceae/classificação , Animais , Composição de Bases , DNA Bacteriano/genética , Glicolipídeos/análise , Índia , Micrococcaceae/genética , Micrococcaceae/isolamento & purificação , Oceanos e Mares , Peptidoglicano/análise , Fosfolipídeos/análise , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
20.
Environ Microbiol ; 22(1): 397-412, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31709681

RESUMO

Reef-building corals form associations with a huge diversity of microorganisms, which are essential for the survival and well-being of their host. While the acquisition patterns of Symbiodiniaceae microalgal endosymbionts are strongly linked to the coral's reproductive strategy, few studies have investigated the transmission mode of bacteria, especially in brooding species. Here, we relied on 16S rRNA gene and Internal Transcribed Spacer 2 marker metabarcoding in conjunction with fluorescence in situ hybridisation microscopy to describe the onset of microbial associations in the common brooding coral Pocillopora acuta. We analysed the bacterial and Symbiodiniaceae community composition in five adult colonies, their larvae, and 4-day old recruits. Larvae and recruits inherited Symbiodiniaceae, as well as a small number of bacterial strains, from their parents. Rhodobacteraceae and Endozoicomonas were among the most abundant taxa that were likely maternally transmitted to the offspring. The presence of bacterial aggregates in newly released larvae was observed with confocal microscopy, confirming the occurrence of vertical transmission of bacteria in P. acuta. We concluded that host factors, as well as the environmental bacterial pool influenced the microbiome of P. acuta.


Assuntos
Antozoários/microbiologia , Recifes de Corais , Dinoflagelados/classificação , Gammaproteobacteria/classificação , Rhodobacteraceae/classificação , Animais , Dinoflagelados/genética , Dinoflagelados/isolamento & purificação , Gammaproteobacteria/genética , Gammaproteobacteria/isolamento & purificação , Microbiota , RNA Ribossômico 16S/genética , Rhodobacteraceae/genética , Rhodobacteraceae/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...