Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 343.326
Filtrar
1.
Biomaterials ; 312: 122719, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39088912

RESUMO

Acute myeloid leukemia (AML) is a deadly form of leukemia with ineffective traditional treatment and frequent chemoresistance-associated relapse. Personalized drug screening holds promise in identifying optimal regimen, nevertheless, primary AML cells undergo spontaneous apoptosis during cultures, invalidating the drug screening results. Here, we reconstitute a 3D osteogenic niche (3DON) mimicking that in bone marrow to support primary AML cell survival and phenotype maintenance in cultures. Specifically, 3DON derived from osteogenically differentiated mesenchymal stem cells (MSC) from healthy and AML donors are co-cultured with primary AML cells. The AML cells under the AML_3DON niche showed enhanced viability, reduced apoptosis and maintained CD33+ CD34-phenotype, associating with elevated secretion of anti-apoptotic cytokines in the AML_3DON niche. Moreover, AML cells under the AML_3DON niche exhibited low sensitivity to two FDA-approved chemotherapeutic drugs, further suggesting the physiological resemblance of the AML_3DON niche. Most interestingly, AML cells co-cultured with the healthy_3DON niche are highly sensitive to the same sample drugs. This study demonstrates the differential responses of AML cells towards leukemic and healthy bone marrow niches, suggesting the impact of native cancer cell niche in drug screening, and the potential of re-engineering healthy bone marrow niche in AML patients as chemotherapeutic adjuvants overcoming chemoresistance, respectively.


Assuntos
Sobrevivência Celular , Leucemia Mieloide Aguda , Células-Tronco Mesenquimais , Fenótipo , Microambiente Tumoral , Humanos , Leucemia Mieloide Aguda/patologia , Microambiente Tumoral/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Cocultura/métodos , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Medula Óssea/patologia , Medula Óssea/efeitos dos fármacos , Nicho de Células-Tronco/efeitos dos fármacos , Células da Medula Óssea/citologia , Masculino , Diferenciação Celular/efeitos dos fármacos , Feminino
2.
Biomaterials ; 312: 122749, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39121725

RESUMO

The prevalence of Alzheimer's disease (AD) is increasing globally due to population aging. However, effective clinical treatment strategies for AD still remain elusive. The mechanisms underlying AD onset and the interplay between its pathological factors have so far been unclear. Evidence indicates that AD progression is ultimately driven by neuronal loss, which in turn is caused by neuroapoptosis and neuroinflammation. Therefore, the inhibition of neuroapoptosis and neuroinflammation could be a useful anti-AD strategy. Nonetheless, the delivery of active drug agents into the brain parenchyma is hindered by the blood-brain barrier (BBB). To address this challenge, we fabricated a black phosphorus nanosheet (BP)-based methylene blue (MB) delivery system (BP-MB) for AD therapy. After confirming the successful preparation of BP-MB, we proved that its BBB-crossing ability was enhanced under near-infrared light irradiation. In vitro pharmacodynamics analysis revealed that BP and MB could synergistically scavenge excessive reactive oxygen species (ROS) in okadaic acid (OA)-treated PC12 cells and lipopolysaccharide (LPS)-treated BV2 cells, thus efficiently reversing neuroapoptosis and neuroinflammation. To study in vivo pharmacodynamics, we established a mouse model of AD mice, and behavioral tests confirmed that BP-MB treatment could successfully improve cognitive function in these animals. Notably, the results of pathological evaluation were consistent with those of the in vitro assays. The findings demonstrated that BP-MB could scavenge excessive ROS and inhibit Tau hyperphosphorylation, thereby alleviating downstream neuroapoptosis and regulating the polarization of microglia from the pro-inflammatory M1 phenotype to the anti-inflammatory M2 phenotype. Overall, this study highlights the therapeutic potential of a smart nanomedicine with the capability of reversing neuroapoptosis and neuroinflammation for AD treatment.


Assuntos
Doença de Alzheimer , Apoptose , Barreira Hematoencefálica , Azul de Metileno , Nanomedicina , Doenças Neuroinflamatórias , Animais , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Apoptose/efeitos dos fármacos , Células PC12 , Doenças Neuroinflamatórias/tratamento farmacológico , Ratos , Camundongos , Nanomedicina/métodos , Azul de Metileno/farmacologia , Azul de Metileno/uso terapêutico , Masculino , Espécies Reativas de Oxigênio/metabolismo , Camundongos Endogâmicos C57BL
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 324: 124987, 2025 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-39163774

RESUMO

While numerous methods exist for diagnosing tumors through the detection of miRNA within tumor cells, few can simultaneously achieve both tumor diagnosis and treatment. In this study, a novel graphene oxide (GO)-based DNA nanodevice (DND), initiated by miRNA, was developed for fluorescence signal amplification imaging and photodynamic therapy in tumor cells. After entering the cells, tumor-associated miRNA drives DND to Catalyzed hairpin self-assembly (CHA). The CHA reaction generated a multitude of DNA Y-type structures, resulting in a substantial amplification of Ce6 fluorescence release and the generation of numerous singlet oxygen (1O2) species induced by laser irradiation, consequently inducing cell apoptosis. In solution, DND exhibited high selectivity and sensitivity to miRNA-21, with a detection limit of 11.47 pM. Furthermore, DND discriminated between normal and tumor cells via fluorescence imaging and specifically generated O21 species in tumor cells upon laser irradiation, resulting in tumor cells apoptosis. The DND offer a new approach for the early diagnosis and timely treatment of malignant tumors.


Assuntos
DNA , Grafite , MicroRNAs , Fotoquimioterapia , Nanomedicina Teranóstica , Fotoquimioterapia/métodos , Humanos , MicroRNAs/análise , Grafite/química , Nanomedicina Teranóstica/métodos , DNA/química , Apoptose/efeitos dos fármacos , Imagem Óptica , Linhagem Celular Tumoral , Oxigênio Singlete/metabolismo , Oxigênio Singlete/química , Neoplasias/tratamento farmacológico , Neoplasias/diagnóstico por imagem
4.
J Ethnopharmacol ; 336: 118723, 2025 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-39181285

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Mountain-cultivated Panax ginseng C.A.Mey. (MCG) with high market price and various properties was valuable special local product in Northeast of Asia. MCG has been historically used to mitigate heart failure (HF) for thousand years, HF is a clinical manifestation of deficiency of "heart-qi" in traditional Chinese medicine. However, there was little report focus on the activities of extracted residue of MCG. AIM OF THE STUDY: A novel glycopeptide (APMCG-1) was isolated from step ethanol precipitations of alkaline protease-assisted extract from MCG residue. MATERIALS AND METHODS: The molecular weight and subunit structure of APMCG-1 were determined by FT-IR, HPLC and GPC technologies, as well as the H9c2 cells, Tg (kdrl:EGFP) zebrafish were performed to evaluated the protective effect of APMCG-1. RESULTS: APMCG-1 was identified as a glycopeptide containing seven monosaccharides and seven amino acids via O-lined bonds. Further, in vitro, APMCG-1 significantly decreased reactive oxygen species production and lactate dehydrogenase contents in palmitic acid (PA)-induced H9c2 cells. APMCG-1 also attenuated endoplasmic reticulum stress and mitochondria-mediated apoptosis in H9c2 cells via the PI3K/AKT signaling pathway. More importantly, APMCG-1 reduced the blood glucose, lipid contents, the levels of heart injury, oxidative stress and inflammation of 5 days post fertilization Tg (kdrl:EGFP) zebrafish with type 2 diabetic symptoms in vivo. CONCLUSIONS: APMCG-1 protects PA-induced H9c2 cells while reducing cardiac dysfunction in zebrafish with type 2 diabetic symptoms. The present study provides a new insight into the development of natural glycopeptides as heart-related drug therapies.


Assuntos
Diabetes Mellitus Tipo 2 , Glicopeptídeos , Insuficiência Cardíaca , Panax , Peixe-Zebra , Animais , Panax/química , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/prevenção & controle , Diabetes Mellitus Tipo 2/tratamento farmacológico , Ratos , Linhagem Celular , Glicopeptídeos/farmacologia , Glicopeptídeos/química , Apoptose/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Cardiotônicos/farmacologia , Cardiotônicos/química , Cardiotônicos/isolamento & purificação , Cardiotônicos/uso terapêutico , Miócitos Cardíacos/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos
5.
J Ethnopharmacol ; 336: 118735, 2025 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-39182701

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Melastoma dodecandrum Lour. (MD), a traditional Chinese medicine used by the She ethnic group, has been used to treat cerebral ischemia-reperfusion (CIR) injury due to its efficacy in promoting blood circulation and removing blood stasiss; however, the therapeutic effects and mechanisms of MD in treating CIR injury remain unclear. AIM: To investigate the protective effects of MD on CIR injury, in addition to its impact on oxidative stress, endoplasmic reticulum (ER) stress, and cell apoptosis. MATERIALS AND METHODS: The research was conducted using both cell experiments and animal experiments. The CCK-8 method, immunofluorescence staining, and flow cytometry were used to analyze the effects of MD-containing serum on oxygen-glucose deprivation/reperfusion (OGD/R)-induced PC12 cell viability, reactive oxygen species (ROS) clearance, anti-inflammatory, neuroprotection and inhibition of apoptosis. Furthermore, 2,3,5-Triphenyl tetrazolium chloride staining, hematoxylin and eosin staining, Nissl staining, and immunohistochemistry were used to detect infarct size, pathological changes, Nissl corpuscula and neuronal protein expression in middle cerebral artery occlusion (MCAO) rats. Polymerase chain reaction and Western Blotting were conducted in cell and animal experiments to detect the expression levels of ER stress-related genes and proteins. RESULTS: The MD extract enhanced the viability of PC12 cells under OGD/R modeling, reduced ROS and IL-6 levels, increased MBP levels, and inhibited cell apoptosis. Furthermore, MD improved the infarct area in MCAO rats, increased the number of Nissl bodies, and regulated neuronal protein levels including Microtubule-Associated Protein 2 (MAP-2), Myelin Basic Protein (MBP), Glial Fibrillary Acidic Protein (GFAP), and Neurofilament 200 (NF200). Additionally, MD could regulate the expression levels of oxidative stress proteins malondialdehyde (MDA), nitric oxide (NO), superoxide dismutase (SOD), and catalase (CAT). Both cell and animal experiments demonstrated that MD could inhibit ER stress-related proteins (GRP78, ATF4, ATF6, CHOP) and reduce cell apoptosis. CONCLUSION: This study confirmed that the therapeutic mechanism of the MD extract on CIR injury was via the inhibition of oxidative stress and the ER stress pathway, in addition to the inhibition of apoptosis.


Assuntos
Apoptose , Estresse do Retículo Endoplasmático , Fármacos Neuroprotetores , Estresse Oxidativo , Ratos Sprague-Dawley , Traumatismo por Reperfusão , Animais , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/prevenção & controle , Estresse Oxidativo/efeitos dos fármacos , Ratos , Células PC12 , Masculino , Fármacos Neuroprotetores/farmacologia , Apoptose/efeitos dos fármacos , Infarto da Artéria Cerebral Média/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Isquemia Encefálica/tratamento farmacológico , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico
6.
J Ethnopharmacol ; 336: 118704, 2025 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-39182703

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Viral pneumonia is the leading cause of death after SARS-CoV-2 infection. Despite effective at early stage, long-term treatment with glucocorticoids can lead to a variety of adverse effects and limited benefits. The Chinese traditional herb Pogostemonis Herba is the aerial part of Pogostemon Cablin (Blanco) Benth., which has potent antiviral, antibacterial, anti-inflammatory, and anticancer effects. It was used widely for treating various throat and respiratory diseases, including COVID-19, viral infection, cough, allergic asthma, acute lung injury and lung cancer. AIM OF THE STUDY: To investigate the antiviral and anti-inflammatory effects of chemical compounds from Pogostemonis Herba in SARS-CoV-2-infected hACE2-overexpressing mouse macrophage RAW264.7 cells and hACE2 transgenic mice. MATERIALS AND METHODS: The hACE2-overexpressing RAW264.7 cells were exposed with SARS-CoV-2. The cell viability was detected by CCK8 assay and cell apoptotic rate was by flow cytometric assay. The expressions of macrophage M1 phenotype markers (TNF-α and IL-6) and M2 markers (IL-10 and Arg-1) as well as the viral loads were detected by qPCR. The mice were inoculated intranasally with SARS-CoV-2 omicron variant to induce viral pneumonia. The levels of macrophages, neutrophils, and T cells in the lung tissues of infected mice were analyzed by full spectrum flow cytometry. The expressions of key proteins were detected by Western blot assay. RESULTS: Diosmetin-7-O-ß-D-glucopyranoside (DG) presented the strongest anti-SARS-CoV-2 activity. Intervention with DG at the concentrations of 0.625-2.5 µM not only reduced the viral replication, cell apoptosis, and the productions of inflammatory cytokines (IL-6 and TNF-α) in SARS-CoV-2-infected RAW264.7 cells, but also reversed macrophage polarity from M1 to M2 phenotype. Furthermore, treatment with DG (25-100 mg/kg) alleviated acute lung injury, and reduced macrophage infiltration in SARS-COV-2-infected mice. Mechanistically, DG inhibited SARS-COV-2 gene expression and HK3 translation via targeting YTHDF1, resulting in the inactivation of glycolysis-mediated NF-κB pathway. CONCLUSIONS: DG exerted the potent antiviral and anti-inflammatory activities. It reduced pneumonia in SARS-COV-2-infected mice via inhibiting the viral replication and accelerating M2 macrophage polarization via targeting YTHDF1, indicating its potential for COVID-19 treatment.


Assuntos
Antivirais , Tratamento Farmacológico da COVID-19 , COVID-19 , Macrófagos , SARS-CoV-2 , Replicação Viral , Animais , Camundongos , Células RAW 264.7 , Replicação Viral/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/virologia , SARS-CoV-2/efeitos dos fármacos , Antivirais/farmacologia , Camundongos Transgênicos , Pogostemon/química , Citocinas/metabolismo , Apoptose/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Pulmão/virologia , Pulmão/patologia , Glucosídeos/farmacologia , Glucosídeos/isolamento & purificação , Flavonoides/farmacologia , Flavonoides/isolamento & purificação , Flavonoides/uso terapêutico , Enzima de Conversão de Angiotensina 2/metabolismo , Anti-Inflamatórios/farmacologia , Masculino , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/virologia , Humanos
7.
J Ethnopharmacol ; 336: 118706, 2025 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-39186989

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Ganoderma lucidum (G. lucidum) has been widely used as adjuvant of anti-tumor therapy for variety tumors. The bioactive ingredients of G. lucidum mainly include triterpenes, such as Ganoderic acid A, Ganoderic acid B, Ganoderenic acid A, Ganoderenic acid B, Ganoderenic acid D, and Ganoderic acid X. However, the effects and underlying mechanisms of G. lucidum are often challenging in hepatocellular carcinoma (HCC) treatment. AIM OF THE STUDY: To explore the potential role and mechanism of enhancer-associated lncRNAs (en-lncRNAs) in G. lucidum treated HCC through the in vivo and in vitro experiments. MATERIALS AND METHODS: Hepa1-6-bearing C57 BL/6 mice model were established to evaluate the therapeutic efficacy of G. lucidum treated HCC. Ki67 and TUNEL staining were used to detect the tumor cell proliferation and apoptosis in vivo. The Mouse lncRNA 4*180K array was implemented to identify the differentially expressed (DE) lncRNAs and mRNAs of G. lucidum treated tumor mice. The constructed lncRNA-mRNA co-expression network and bioinformatics analysis were used to selected core en-lncRNAs and its neighboring genes. The UPLC-MS method was used to identify the triterpenes of G. lucidum, and the in vitro experiments were used to verify which triterpene monomers regulated en-lncRNAs in tumor cells. Finally, a stable knockdown/overexpression cell lines were used to confirm the relationship between en-lncRNA and neighboring gene. RESULTS: Ki67 and TUNEL staining demonstrated G. lucidum significantly inhibited tumor growth, suppressed cell proliferation and induced apoptosis in vivo. Transcriptomic analysis revealed the existence of 126 DE lncRNAs high correlated with 454 co-expressed mRNAs in G. lucidum treated tumor mice. Based on lncRNA-mRNA network and qRT-PCR validation, 6 core lncRNAs were selected and considered high correlated with G. lucidum treatment. Bioinformatics analysis revealed FR036820 and FR121302 might act as enhancers, and qRT-PCR results suggested FR121302 might enhance Popdc2 mRNA level in HCC. Furthermore, 6 main triterpene monomers of G. lucidum were identified by UPLC-MS method, and in vitro experiments showed FR121302 and Popdc2 were significantly suppressed by Ganoderenic acid A and Ganoderenic acid B, respectively. The knock/overexpression results demonstrated that FR121302 activating and enhancing Popdc2 expression levels, and Ganoderenic acid A and Ganoderenic acid B dramatically suppressed FR121302 and decreased Popdc2 level in Hepa1-6 cells. CONCLUSIONS: Enhancer-associated lncRNA plays a crucial role as an enhancer during hepatocarcinogenesis, and triterpenes of G. lucidum significantly inhibited tumor cell proliferation and induced apoptosis by regulating en-lncRNAs. Our study demonstrated Ganoderenic acid A and Ganoderenic acid B suppressed en-lncRNA FR121302 may be one of the critical strategies of G. lucidum inhibit hepatocellular carcinoma growth.


Assuntos
Apoptose , Carcinoma Hepatocelular , Proliferação de Células , Neoplasias Hepáticas , Camundongos Endogâmicos C57BL , RNA Longo não Codificante , Reishi , Triterpenos , Animais , Triterpenos/farmacologia , Triterpenos/isolamento & purificação , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/genética , Reishi/química , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Camundongos , Linhagem Celular Tumoral , Masculino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/isolamento & purificação
8.
J Ethnopharmacol ; 336: 118728, 2025 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-39186990

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The Chinese traditional medicine frankincense, which can promote blood circulation, is often used to treat skin lesions, including frostbite. AIM OF THE STUDY: To explore the properties of frankincense oil extract (FOE) and its active ingredients and their effect on frostbite wound recovery as an approach to understand the mechanism associated with microcirculation-improvement therapy. MATERIALS AND METHODS: The microcirculation-improving effects of FOE and its active ingredients were evaluated using liquid nitrogen-induced frostbite animal models. The rewarming capacity of FOE on the skin was determined through infrared detection, and frostbite wound healing was evaluated following haematoxylin and eosin (H&E) staining and fibre analysis. Moreover, related factors were examined to determine the anti-apoptotic, anti-inflammatory, and microcirculatory properties of FOE and its active ingredients on affected tissue in the context of frostbite. RESULTS: FOE and its active ingredients rapidly rewarmed wound tissue after frostbite by increasing the temperature. Moreover, these treatments improved wound healing and restored skin structure through collagen and elastin fibre remodelling. In addition, they exerted anti-apoptotic effects by decreasing the number of apoptotic cells, reducing caspase-3 expression, and eliciting anti-inflammatory effects by decreasing COX-2 and ß-catenin expression. They also improved microcirculatory disorders by decreasing HIF-1α expression and increasing CD31 expression. CONCLUSIONS: FOE and its active components can effectively treat frostbite by enhancing microcirculation, inhibiting the infiltration of inflammatory cells, decreasing cell apoptosis, and exerting antinociceptive effects. These findings highlight FOE as a new treatment option for frostbite, providing patients with an effective therapeutic strategy.


Assuntos
Congelamento das Extremidades , Microcirculação , Cicatrização , Congelamento das Extremidades/tratamento farmacológico , Animais , Microcirculação/efeitos dos fármacos , Masculino , Cicatrização/efeitos dos fármacos , Pele/efeitos dos fármacos , Pele/irrigação sanguínea , Pele/patologia , Apoptose/efeitos dos fármacos , Ratos , Modelos Animais de Doenças , Camundongos , Administração Tópica , Ratos Sprague-Dawley , Óleos de Plantas/farmacologia , Óleos de Plantas/uso terapêutico , Extratos Vegetais/farmacologia
9.
Gene ; 932: 148900, 2025 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-39209180

RESUMO

Gastric cancer (GC) is one of the leading causes of cancer-related deaths worldwide because of its high morbidity and the absence of effective therapies. Even though paclitaxel is a powerful anticancer chemotherapy drug, recent studies have indicated its ineffectiveness against GC cells. Long non-coding RNA (lncRNA) PVT1 has a high expression in GC cells and increases the progression of tumors via inducing drug resistance. In the present study, the effects of the siRNA-mediated lncRNA PVT1 gene silencing along with paclitaxel treatment on the rate of apoptosis, growth, and migration of AGS GC cells were investigated. AGS cells were cultured and then transfected with siRNA PVT1 using electroporation. The MTT test was used to examine the effect of treatments on the viability of cultured cells. Furthermore, the flow cytometry method was used to evaluate the impact of treatments on the cell cycle process and apoptosis induction in GC cells. Finally, the mRNA expression of target genes was assessed using the qRT-PCR method. The results showed that lncRNA PVT1 gene suppression, along with paclitaxel treatment, reduces the viability of cancer cells and significantly increases the apoptosis rate of cancer cells and the number of cells arrested in the G2/M phase compared to the control group. Based on the results of qRT-PCR, combined treatment significantly decreased the expression of MMP3, MMP9, MDR1, MRP1, Bcl-2, k-Ras, and c-Myc genes and increased the expression of the Bax gene compared to the control group. The results of our study showed that lncRNA PVT1 gene targeting, together with paclitaxel treatment, induces apoptosis, inhibits growth, alleviates drug resistance, and reduces the migratory capability of GC cells. Therefore, there is a need for further investigations to evaluate the feasibility and effectiveness of this approach in vivo in animal models.


Assuntos
Apoptose , Resistencia a Medicamentos Antineoplásicos , Inativação Gênica , Paclitaxel , RNA Longo não Codificante , Neoplasias Gástricas , RNA Longo não Codificante/genética , Paclitaxel/farmacologia , Humanos , Neoplasias Gástricas/genética , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/patologia , Linhagem Celular Tumoral , Apoptose/efeitos dos fármacos , Apoptose/genética , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Antineoplásicos Fitogênicos/farmacologia , RNA Interferente Pequeno/genética
10.
Gene ; 932: 148904, 2025 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-39218415

RESUMO

BACKGROUND: Cervical cancer, primarily caused by HPV infection, remains a global health concern. Current treatments face challenges including drug resistance and toxicity. This study investigates combining E5-siRNA with chemotherapy drugs, Oxaliplatin and Ifosfamide, to enhance treatment efficacy in HPV-16 positive cervical cancer cells, targeting E5 oncoprotein to overcome limitations of existing therapies. METHODS: The CaSki cervical cancer cell line was transfected with E5-siRNA, and subsequently treated with Oxaliplatin/Ifosfamide. Quantitative real-time PCR was employed to assess the expression of related genes including p53, MMP2, Nanog, and Caspases. Cell apoptosis, cell cycle progression, and cell viability were evaluated using Annexin V/PI staining, DAPI staining, and MTT test, respectively. Furthermore, stemness ability was determined through a colony formation assay, and cell motility was assessed by wound healing assay. RESULTS: E5-siRNA transfection significantly reduced E5 mRNA expression in CaSki cells compared to the control group. The MTT assay revealed that monotherapy with E5-siRNA, Oxaliplatin, or Ifosfamide had moderate effects on cell viability. However, combination therapy showed synergistic effects, reducing the IC50 of Oxaliplatin from 11.42 × 10-8 M (45.36 µg/ml) to 6.71 × 10-8 M (26.66 µg/ml) and Ifosfamide from 12.52 × 10-5 M (32.7 µg/ml) to 8.206 × 10-5 M (21.43 µg/ml). Flow cytometry analysis demonstrated a significant increase in apoptosis for combination treatments, with apoptosis rates rising from 11.02 % (Oxaliplatin alone) and 16.98 % (Ifosfamide alone) to 24.8 % (Oxaliplatin + E5-siRNA) and 34.9 % (Ifosfamide + E5-siRNA). The sub-G1 cell population increased from 15.7 % (Oxaliplatin alone) and 18 % (Ifosfamide alone) to 21.9 % (Oxaliplatin + E5-siRNA) and 27.1 % (Ifosfamide + E5-siRNA), indicating cell cycle arrest. The colony formation assay revealed a substantial decrease in the number of colonies following combination treatment. qRT-PCR analysis showed decreased expression of stemness-related genes CD44 and Nanog, and migration-related genes MMP2 and CXCL8 in the combination groups. Apoptosis-related genes Casp-3, Casp-9, and pP53 showed increased expression following combination therapy, while BAX expression increased and BCL2 expression decreased relative to the control. CONCLUSION: The study demonstrates that combining E5-siRNA with Oxaliplatin or Ifosfamide enhances the efficacy of chemotherapy in HPV-16 positive cervical cancer cells. This synergistic approach effectively targets multiple aspects of cancer cell behavior, including proliferation, apoptosis, migration, and stemness. The findings suggest that this combination strategy could potentially allow for lower chemotherapy doses, thereby reducing toxicity while maintaining therapeutic efficacy. This research provides valuable insights into targeting HPV E5 as a complementary approach to existing therapies focused on E6 and E7 oncoproteins, opening new avenues for combination therapies in cervical cancer treatment.


Assuntos
Apoptose , Papillomavirus Humano 16 , Ifosfamida , Oxaliplatina , RNA Interferente Pequeno , Neoplasias do Colo do Útero , Humanos , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/virologia , Oxaliplatina/farmacologia , Feminino , RNA Interferente Pequeno/genética , Linhagem Celular Tumoral , Ifosfamida/farmacologia , Apoptose/efeitos dos fármacos , Papillomavirus Humano 16/genética , Infecções por Papillomavirus/tratamento farmacológico , Infecções por Papillomavirus/genética , Infecções por Papillomavirus/virologia , Sobrevivência Celular/efeitos dos fármacos , Proteínas Oncogênicas Virais/genética , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Antineoplásicos/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos
11.
Biomaterials ; 312: 122733, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39106819

RESUMO

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) demonstrates unique characteristics in anticancer therapies as it selectively induces apoptosis in cancer cells. However, most cancer cells are TRAIL-resistant. Odanacatib (ODN), a cathepsin K inhibitor, is considered a novel sensitizer for cancer treatment. Combination therapy between TRAIL and sensitizers is considered a potent platform that improves TRAIL-based anticancer therapies beyond TRAIL monotherapy. Herein, we developed ODN loaded poly(lactic-co-glycolic) nanoparticles conjugated to GST-TRAIL (TRAIL-ODN-PLGA-NPs) to target and treat TRAIL-resistant cancer. TRAIL-ODN-PLGA-NPs demonstrated a significant increase in cellular uptake via death receptors (DR5 and DR4) on surface of cancer cells. TRAIL-ODN-PLGA-NPs exposure destroyed more TRAIL-resistant cells compared to a single treatment with free drugs. The released ODN decreased the Raptor protein, thereby increasing damage to mitochondria by elevating reactive oxygen species (ROS) generation. Additionally, Bim protein stabilization improved TRAIL-resistant cell sensitization to TRAIL-induced apoptosis. The in vivo biodistribution study revealed that TRAIL-ODN-PLGA-NPs demonstrated high location and retention in tumor sites via the intravenous route. Furthermore, TRAIL-ODN-PLGA-NPs significantly inhibited xenograft tumor models of TRAIL-resistant Caki-1 and TRAIL-sensitive MDA-MB-231 cells.The inhibition was associated with apoptosis activation, Raptor protein stabilizing Bim protein downregulation, Bax accumulation, and mitochondrial ROS generation elevation. Additionally, TRAIL-ODN-PLGA-NPs affected the tumor microenvironment by increasing tumor necrosis factor-α and reducing interleukin-6. In conclusion, we evealed that our formulation demonstrated synergistic effects against TRAIL compared with the combination of free drug in vitro and in vivo models. Therefore, TRAIL-ODN-PLGA-NPs may be a novel candidate for TRAIL-induced apoptosis in cancer treatment.


Assuntos
Antineoplásicos , Compostos de Bifenilo , Resistencia a Medicamentos Antineoplásicos , Nanopartículas , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ligante Indutor de Apoptose Relacionado a TNF , Animais , Feminino , Humanos , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Compostos de Bifenilo/uso terapêutico , Compostos de Bifenilo/farmacologia , Compostos de Bifenilo/química , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Camundongos Nus , Nanopartículas/química , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Espécies Reativas de Oxigênio/metabolismo , Distribuição Tecidual , Ligante Indutor de Apoptose Relacionado a TNF/uso terapêutico , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia
12.
Food Chem ; 462: 141003, 2025 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-39208735

RESUMO

Recently, the increasing incidence of malignant melanoma has become a major public health concern owing to its poor prognosis and impact on quality of life. Consuming foods with potent antitumor compounds can help prevent melanoma and maintain skin health. Fucoxanthin (FX), a naturally occurring carotenoid found in brown algae, possesses antitumor properties. However, its bioavailability, safety risks, and in vivo effects and mechanisms against melanoma remain unclear. This research focused on evaluating the safety and prospective antimelanoma impact of simulated gastrointestinal digestion products (FX-ID) on HaCaT and A375 cells.The results indicate that FX-ID exerts negative effects on mitochondria in A375 cells, increases Bax expression, releases Cytochrome C, and activates cleaved caspase-3, ultimately promoting apoptosis. Additionally, FX-ID influences the mitogen-activated protein kinase (MAPK) pathway by enhancing cyclooxygenase-2 (COX-2) and nuclear factor kappa B (NF-κB) levels, consequently facilitating apoptosis and inflammation without significantly impacting HaCaT cells. These findings provide insight into inhibitory mechanism of FX-ID against melanoma, guiding the development of functional foods for prevention.


Assuntos
Apoptose , Queratinócitos , Melanoma , Xantofilas , Humanos , Melanoma/metabolismo , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Apoptose/efeitos dos fármacos , Xantofilas/farmacologia , Xantofilas/química , Linhagem Celular Tumoral , NF-kappa B/metabolismo , NF-kappa B/genética , Digestão , Modelos Biológicos , Ciclo-Oxigenase 2/metabolismo , Ciclo-Oxigenase 2/genética , Antineoplásicos/farmacologia , Antineoplásicos/química , Phaeophyceae/química , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Caspase 3/metabolismo , Caspase 3/genética
13.
Sci Rep ; 14(1): 20313, 2024 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-39218968

RESUMO

Sepsis-induced cardiomyopathy (SIC) is described as a reversible myocardial depression that occurs in patients with septic shock. Increasing evidence shows that microRNA-194-5p (miR-194-5p) participates in the regulation of oxidative stress, mitochondrial dysfunction, and apoptosis and its expression is associated with the occurrence and progression of cardiovascular disease; however, the effects of miR-194-5p in SIC are still unclear. This study explores whether miR-194-5p could modulate SIC by affecting oxidative stress, mitochondrial function, and apoptosis. Experimental septic mice were induced by intraperitoneal injection of lipopolysaccharide (LPS) in C57BL/6J mice. The biological role of miR-194-5p in SIC in vivo was investigated using cardiac echocardiography, ELISA, western blot, qRT-PCR, transmission electron microscopy, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, bioinformatics analysis, and dual-luciferase reporter gene assay. Our major finding is that miR-194-5p antagomir mitigates sepsis-induced cardiac dysfunction, inflammation, oxidative stress, apoptosis and mitochondrial dysfunction in the hearts of septic mice, while miR-194-5p agomir triggers the opposite effects. Furthermore, dual-specificity phosphatase 9 (DUSP9) is a direct target of miR-194-5p and the cardioprotective effects of miR-194-5p antagomir on cardiac dysfunction, inflammation, apoptosis, mitochondrial dysfunction and oxidative stress are abolished through inhibiting DUSP9. Therefore, miR-194-5p inhibition could mitigate SIC via DUSP9 in vivo and the novel miR-194-5p/DUSP9 axis might be the potential treatment targets for SIC patients.


Assuntos
Apoptose , Cardiomiopatias , Fosfatases de Especificidade Dupla , Camundongos Endogâmicos C57BL , MicroRNAs , Estresse Oxidativo , Sepse , Animais , Masculino , Camundongos , Antagomirs/farmacologia , Antagomirs/metabolismo , Cardiomiopatias/etiologia , Cardiomiopatias/metabolismo , Cardiomiopatias/patologia , Cardiomiopatias/genética , Modelos Animais de Doenças , Regulação para Baixo , Fosfatases de Especificidade Dupla/metabolismo , Fosfatases de Especificidade Dupla/genética , Lipopolissacarídeos , MicroRNAs/genética , MicroRNAs/metabolismo , Sepse/complicações , Sepse/metabolismo , Sepse/genética
14.
Autoimmunity ; 57(1): 2387076, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39229919

RESUMO

OBJECTIVE: This study aims to explore the effect of NONHSAT042241 on the function of rheumatoid arthritis -fibroblast-like synoviocyte (RA-FLS) and the underlying mechanisms. METHODS: RA-FLS was treated with NONHSAT042241 overexpression and NONHSAT042241 knockdown lentiviruses. Cell counting kit-8 (CCK-8) assay, colony formation assay, flow cytometry, Transwell assay, western-blot, ELISA, and qRT-PCR were used to measure the changes of cell proliferation, apoptosis, invasion, secretion of inflammatory cytokines and matrix metalloproteinases (MMPs). Fluorescent in situ hybridization (FISH) assay, RNA pull-down assay, mass spectrometry (MS) and RNA immunoprecipitation (RIP) were used to find the target proteins that bond to NONHSAT042241, and western-blot was used to detect the expression of related proteins of Wnt/ß-catenin signaling pathway. RESULTS: Overexpression of NONHSAT042241 inhibited the proliferation of RA-FLS (p < 0.05), invasion, secretion of pro-inflammatory factors (IL-1and IL-6) and MMPs (MMP-1 and MMP-3) (p < 0.05), and elevated the level of pro-apoptotic factors (Bax and cleaved caspase3), while NONHSAT042241 knockdown had the opposite effect. NONHSAT042241 can directly bind to hnRNP D, and down-regulated the expression of ß-catenin (p < 0.05), p-GSK-3ß (p < 0.05), Cyclin D1 (p < 0.05), PCNA (p < 0.05), and thus reduced the cell proliferation. CONCLUSION: NONHSAT042241 may inhibit FLS-mediated rheumatoid synovial proliferation, inflammation and aggression. The underlying mechanisms may be that NONHSAT042241 inhibits the activity of Wnt/ß-catenin signaling.


Assuntos
Artrite Reumatoide , Proliferação de Células , Inflamação , RNA Longo não Codificante , Sinoviócitos , Via de Sinalização Wnt , Humanos , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Artrite Reumatoide/genética , Sinoviócitos/metabolismo , Sinoviócitos/patologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Inflamação/metabolismo , Membrana Sinovial/metabolismo , Membrana Sinovial/patologia , Membrana Sinovial/imunologia , Apoptose , beta Catenina/metabolismo , Células Cultivadas
15.
Hereditas ; 161(1): 33, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39256826

RESUMO

BACKGROUND: Acute pulmonary embolism (APE) is a major type of venous thromboembolism (VTE) with a high risk of mortality and disability. There is a lack of biomarkers for APE to indicate deteriorating development and predict adverse outcomes. This study evaluated the significance of miR-150-5p in APE aiming to explore a novel potential biomarker for APE. METHODS: The study enrolled APE (n = 137) and deep wein thrombosis (DVT, n = 67) patients and collected plasma samples from all study subjects. The expression of miR-150-5p was analyzed by PCR and its significance in screening APE and pulmonary arterial hypertension (PAH) was assessed by receiver operating curve (ROC) and logistic analyses. The study established oxidized low-density lipoprotein (ox-LDL)-induced human venous endothelial cells (HUVECs). Through cell transfection combined with cell counting kit-8 (CCK8), flow cytometry, and enzyme-linked immunosorbent assay (ELISA), the effect of miR-150-5p on ox-LDL-induced HUVEC injury was evaluated. RESULTS: Significant downregulation of miR-150-5p was observed in the plasma of APE patients compared with DVT patients (P < 0.0001). The plasma miR-150-5p levels in APE patients occurred PAH was much lower than in patients without PAH (P < 0.0001). Reducing miR-150-5p distinguished APE patients from DVT patients (AUC = 0.912) and was identified as a risk factor for the occurrence of PAH in APE patients (OR = 0.385, P = 0.010). In HUVECs, oxidized low-density lipoprotein (ox-LDL) caused inhibited cell proliferation, enhanced apoptosis, increased pro-inflammatory cytokines, reactive oxygen species (ROS), malondialdehyde (MDA), and decreased superoxide dismutase (SOD). Overexpressing miR-150-5p could promote proliferation, inhibit apoptosis, and alleviate inflammation and oxidative stress of ox-LDL-treated HUVECs. CONCLUSIONS: Downregulated plasma miR-150-5p served as a diagnostic biomarker for APE and predicted the predisposition of PAH in APE patients. Overexpressing miR-150-5p could alleviate ox-LDL-induced endothelial cell injury in HUVECs.


Assuntos
Biomarcadores , Lipoproteínas LDL , MicroRNAs , Embolia Pulmonar , Humanos , Lipoproteínas LDL/sangue , MicroRNAs/genética , MicroRNAs/sangue , Embolia Pulmonar/genética , Embolia Pulmonar/sangue , Embolia Pulmonar/diagnóstico , Masculino , Feminino , Pessoa de Meia-Idade , Biomarcadores/sangue , Células Endoteliais da Veia Umbilical Humana , Apoptose , Hipertensão Arterial Pulmonar/genética , Células Endoteliais/metabolismo , Adulto , Estresse Oxidativo , Idoso
16.
Curr Microbiol ; 81(11): 352, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39261309

RESUMO

This study aimed to screen the bioactive components in Streptococcus equinus WC1 (SE-WC1) and Limosilactobacillus reuteri GM4 (LR-GM4) and estimate the therapeutic role in Ehrlich solid tumors (EST) mice model. Forty-four male albino EST mice were assigned into 7 groups and treated daily for 2 weeks, including the EST group, the EST mice that received SE-WC1 at a low or a high dose (0.5 ml *106 or 0.5 ml *108 cfu), the EST mice that received LR-GM4 at the low or the high dose (0.5 ml *106 or 0.5 ml *108 cfu), and the EST mice that received SE-WC1 plus LR-GM4 at the low or the high dose. Tumors were harvested, weighed, examined, and used for the determination of apoptosis-related gene expression. Samples of the intestine, liver, and kidney were gathered for histological examination. The GC-MS identified 24 and 36 bioactive compounds in SE-WC1 and LR-GM4, respectively. The main compound in SE-WC1 was lupeol; however, the main compound in LR-GM4 was retinaldehyde. EST mice showed disturbances in Bcl-2, Bax, and p53 mRNA expression along with histological changes in the intestine, liver, and kidney. Administration of both bacterial strains reduced the tumor weight, alleviated the disturbances in the gene expression, and improved the histological structure of the intestine, liver, and kidney in a dose-dependent. Moreover, LR-GM4 was more effective than SE-WC1 due to its higher content of bioactive compounds. It could be concluded that these strains of probiotics are promising for the treatment of solid tumors.


Assuntos
Carcinoma de Ehrlich , Limosilactobacillus reuteri , Probióticos , Animais , Probióticos/administração & dosagem , Camundongos , Masculino , Carcinoma de Ehrlich/metabolismo , Carcinoma de Ehrlich/terapia , Limosilactobacillus reuteri/metabolismo , Streptococcus/metabolismo , Streptococcus/genética , Metabolismo Secundário , Apoptose/efeitos dos fármacos , Modelos Animais de Doenças , Fígado/metabolismo
17.
Sci Rep ; 14(1): 21236, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39261565

RESUMO

Ulinastatin, a broad-spectrum inflammatory inhibitor widely employed in the management of severe pancreatitis and sepsis, has not been extensively investigated for its therapeutic potential in bacterial meningitis. This study aims to assess the neuroprotective effects of ulinastatin on bacterial meningitis and elucidate its underlying mechanism. The rat model of bacterial meningitis was established by intracerebral injection of Escherichia coli. 3-week-old SD rats were randomly divided into 5 groups with 8 rats in each group, including control group, E.coli group, E.coli + UTI group (ulinastatin 50000IU/kg), E.coli + UTI + PMA group (ulinastatin 50000IU/kg + PMA 200 ug/kg), and E.coli + PMA group(PMA 200 ug/kg). Behavioral changes were assessed by Loeffler neurobehavioral score. Histomorphologic changes and apoptosis were assessed by hematoxylin and eosin staining, Nissl staining and TUNEL staining. Immunohistochemistry and immunofluorescence and western blotting were used to detect the expression levels of zonula occludens-1 (ZO-1) and phosphorylation protein kinase C (PKCα).It was found that ulinastatin treatment in Escherichia coli meningitis rats improved neurological function, alleviated meningeal inflammatory infiltration, reduced neuronal death, promoted the integrity of the blood-brain barrier structure. Moreover, phorbol myristate acetate (PMA, a protein kinase C activator), blocked the effective action of ulinastatin. These findings suggest that ulinastatin had neuroprotective effects on bacterial meningitis by inhibiting PKCα phosphorylation and reducing ZO-1 degradation, demonstrating that ulinastatin may be a promising strategy in the treatment of bacterial meningitis.


Assuntos
Glicoproteínas , Fármacos Neuroprotetores , Proteína Quinase C-alfa , Proteína da Zônula de Oclusão-1 , Animais , Masculino , Ratos , Apoptose/efeitos dos fármacos , Modelos Animais de Doenças , Escherichia coli/efeitos dos fármacos , Glicoproteínas/farmacologia , Meningite devida a Escherichia coli/tratamento farmacológico , Meningite devida a Escherichia coli/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Fosforilação/efeitos dos fármacos , Proteína Quinase C-alfa/metabolismo , Ratos Sprague-Dawley , Proteína da Zônula de Oclusão-1/metabolismo
18.
J Nanobiotechnology ; 22(1): 554, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39261890

RESUMO

BACKGROUND: Myocardial infarction (MI) is the main contributor to most cardiovascular diseases (CVDs), and the available post-treatment clinical therapeutic options are limited. The development of nanoscale drug delivery systems carrying natural small molecules provides biotherapies that could potentially offer new treatments for reactive oxygen species (ROS)-induced damage in MI. Considering the stability and reduced toxicity of gold-phenolic core-shell nanoparticles, this study aims to develop ellagic acid-functionalized gold nanoparticles (EA-AuNPs) to overcome these limitations. RESULTS: We have successfully synthesized EA-AuNPs with enhanced biocompatibility and bioactivity. These core-shell gold nanoparticles exhibit excellent ROS-scavenging activity and high dispersion. The results from a label-free imaging method on optically transparent zebrafish larvae models and micro-CT imaging in mice indicated that EA-AuNPs enable a favorable excretion-based metabolism without overburdening other organs. EA-AuNPs were subsequently applied in cellular oxidative stress models and MI mouse models. We found that they effectively inhibit the expression of apoptosis-related proteins and the elevation of cardiac enzyme activities, thereby ameliorating oxidative stress injuries in MI mice. Further investigations of oxylipin profiles indicated that EA-AuNPs might alleviate myocardial injury by inhibiting ROS-induced oxylipin level alterations, restoring the perturbed anti-inflammatory oxylipins. CONCLUSIONS: These findings collectively emphasized the protective role of EA-AuNPs in myocardial injury, which contributes to the development of innovative gold-phenolic nanoparticles and further advances their potential medical applications.


Assuntos
Ácido Elágico , Ouro , Nanopartículas Metálicas , Infarto do Miocárdio , Estresse Oxidativo , Espécies Reativas de Oxigênio , Peixe-Zebra , Animais , Ouro/química , Nanopartículas Metálicas/química , Infarto do Miocárdio/tratamento farmacológico , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Ácido Elágico/farmacologia , Ácido Elágico/química , Estresse Oxidativo/efeitos dos fármacos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Masculino , Apoptose/efeitos dos fármacos , Modelos Animais de Doenças , Humanos , Camundongos Endogâmicos C57BL
19.
Cell Commun Signal ; 22(1): 437, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39261954

RESUMO

Squalene (SQ) is a well-known antioxidant and anti-inflammatory agent that provides promising anti-aging and UV-protective roles on human skin. However, its strong hydrophobic nature, accompanied by issues such as poor solubility and limited tissue permeation, has created challenges for scientists to investigate its untapped potential in more complex conditions, including cancer progression. The present study assessed the potent anti-metastatic properties of a newly synthesized amphiphilic ethylene glycol SQ derivative (SQ-diEG) in melanoma, the most fatal skin cancer. In vitro and in vivo experiments have discovered that SQ-diEG may exert its potential on melanoma malignancy through the mitochondria-mediated caspase activation apoptotic signaling pathway. The potent anti-metastatic effect of SQ-diEG was observed in vitro using highly proliferative and aggressive melanoma cells. Administration of SQ-diEG (25 mg/kg) significantly decreased the tumor burden on the lung and inhibited the metastasis-associated proteins and gene markers in B16F10 lung colonization mice model. Furthermore, global gene profiling also revealed a promising role of SQ-diEG in tumor microenvironment. We anticipated that the amphiphilic nature of the SQ compound bearing ethylene glycol oligomers could potentially augment its ability to reach the pathology site, thus enhancing its therapeutic potential in melanoma.


Assuntos
Melanoma , Esqualeno , Animais , Camundongos , Esqualeno/química , Esqualeno/farmacologia , Humanos , Linhagem Celular Tumoral , Melanoma/patologia , Melanoma/tratamento farmacológico , Camundongos Endogâmicos C57BL , Apoptose/efeitos dos fármacos , Melanoma Experimental/patologia , Melanoma Experimental/tratamento farmacológico , Metástase Neoplásica , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/secundário , Éteres/farmacologia , Éteres/química , Proliferação de Células/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/tratamento farmacológico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química
20.
Cell Mol Biol (Noisy-le-grand) ; 70(8): 96-103, 2024 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-39262258

RESUMO

Resveratrol, a potent anticancer bioactive compound, has been shown to trigger apoptosis in numerous cancer cells. Although Notch signaling promotes breast cancer apoptosis, it is unclear whether resveratrol induces apoptosis in MCF-7 cells via influencing the Notch pathway. This study aimed to evaluate the effect of resveratrol on modulating Notch signaling targets and provide critical information for employing resveratrol in breast cancer therapy. Thus, in this study, we have deciphered the effect of resveratrol against three potent genes (Notch1, Jagged1, and DLL4) of the notch signaling pathway. For mechanistic studies, in silico, and in vitro analysis was executed to investigate the apoptotic-inducing potential of resveratrol against three selected oncogenes involved in the progression of breast cancer. Docking analysis revealed the inhibitory potential of resveratrol against all three selected targets of the Notch pathway (Notch1: -5.0; Jagged-1: -5.9; DLL4: -5.8). In vitro, findings further displayed a significant reduction in cell viability in resveratrol-treated MCF-7 cancer cells, which were concomitantly related to the downregulation of Notch-1, Jagged-1, and DLL4. Moreover, the antiproliferative efficacy of resveratrol was correlated with apoptosis and modulation in the expression of Bax, Bcl-2, cyclin D1, CDK4, p21, and caspase-3 activation. Taken together, these experimental findings suggested that apoptotic inducing potential of resveratrol was mediated through a novel mechanism involving suppression of the Notch signaling pathway.


Assuntos
Apoptose , Neoplasias da Mama , Proteína Jagged-1 , Resveratrol , Transdução de Sinais , Humanos , Resveratrol/farmacologia , Apoptose/efeitos dos fármacos , Células MCF-7 , Transdução de Sinais/efeitos dos fármacos , Proteína Jagged-1/metabolismo , Proteína Jagged-1/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Feminino , Receptor Notch1/metabolismo , Receptor Notch1/genética , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/genética , Estilbenos/farmacologia , Receptores Notch/metabolismo , Receptores Notch/genética , Simulação de Acoplamento Molecular , Sobrevivência Celular/efeitos dos fármacos , Caspase 3/metabolismo , Caspase 3/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA