Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 263.467
Filtrar
1.
Sci Total Environ ; 699: 134296, 2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-31683218

RESUMO

Hydrogen sulfide (H2S) is an air pollutant, has toxic effects on respiratory tract. However, the underlying mechanisms of H2S induced respiratory toxicity and the roles of long non-coding RNAs (lncRNA) and microRNA (miRNA) in this process remain poorly understood. To clear this, we investigated the change of tracheal tissue ultrastructure and the expression profiles of lncRNAs and miRNAs of chicken trachea exposed to H2S for 42 days. Results showed that H2S exposure triggered apoptosis, necroptosis, and differential expression of 16 lncRNAs and 18 miRNAs in broiler tracheas. The results of LMH cells stimulated by NaHS in vitro also showed the occurrence of apoptosis and necroptosis. LncRNA3037 is down-regulated and miR-15a is up-regulated in tracheal tissue and LMH cells under H2S exposure. Bioinformatics analysis and dual luciferase reporter system showed lncRNA3037 bound directly to miR-15a and negatively regulates each other. A20 and BCL2 are the target genes of miR-15a and negatively regulated by it. Overexpression of miR-15a caused apoptosis and necroptosis and its inhibition partially reversed apoptosis and necroptosis of LMH cells caused by NaHS stimulation and lncRNA3037 knockdown. Taken together, we concluded that H2S exposure mediates apoptosis and necroptosis through lncRNA3037/miR-15/A20-BCL2. These results provide new insights for unveiling the biological effects of H2S in vivo and in vitro.


Assuntos
Poluentes Atmosféricos/toxicidade , Sulfeto de Hidrogênio/toxicidade , Animais , Apoptose , Galinhas , Proteínas Proto-Oncogênicas c-bcl-2 , Transdução de Sinais , Testes de Toxicidade , Traqueia
2.
Bioelectrochemistry ; 131: 107350, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31518962

RESUMO

Curcumin (Cur), the yellow pigment of well-known turmeric (Curcuma longa L.) is effective in multiple cancers including triple negative breast cancer (TNBC). In combination with electrical pulses (EP), enhanced effects of curcumin (Cur + EP) are observed in TNBC cells. To gain insights into the mechanisms of enhanced anticancer effects of Cur + EP, we studied the proteins involved in the anticancer activity of Cur + EP in MDA-MB-231, human TNBC cells using high-throughput global proteomics. A curcumin dose of 50 µM was applied with eight, 1200 V/cm, 100 µs pulses, the most commonly used electrochemotherapy (ECT) parameter in clinics. Results show that the Cur + EP treatment reduced the clonogenic ability in MDA-MB-231 cells, with the induction of apoptosis. Proteomic analysis identified a total of 1456 proteins, of which 453 proteins were differentially regulated, including kinases, heat shock proteins, transcription factors, structural proteins, and metabolic enzymes. Eight key glycolysis proteins (ALDOA, ENO2, LDHA, LDHB, PFKP, PGM1, PGAM1 and PGK1) were downregulated in Cur + EP from Cur. There was a switch in the metabolism with upregulation of 10 oxidative phosphorylation pathway proteins and 8 tricarboxylic acid (TCA) cycle proteins in the Cur + EP sample, compared to curcumin. These results provide novel systematic insights into the mechanisms of ECT with curcumin.


Assuntos
Antineoplásicos/uso terapêutico , Curcumina/uso terapêutico , Eletroquimioterapia/métodos , Proteínas de Neoplasias/metabolismo , Proteômica , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Curcumina/farmacologia , Regulação para Baixo/efeitos dos fármacos , Feminino , Glicólise , Humanos , Fosforilação Oxidativa , Via de Pentose Fosfato/efeitos dos fármacos , Reprodutibilidade dos Testes , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia
3.
Toxicol Lett ; 318: 57-64, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31585160

RESUMO

3-Bromopyruvate (3-BrPA) is a promising agent that has been widely studied in the treatment of cancer and pulmonary hypertension. Rotenone is a pesticide commonly used on farms and was shown to have anti-cancer activity and delay fibrosis progression in chronic kidney disease in a recent study. However, there are few studies showing the toxicity of rotenone and 3-BrPA in the myocardium. To support further medical exploration, it is necessary to clarify the side effects of these compounds on the heart. This study was designed to examine the cardiotoxicity of 3-BrPA and rotenone by investigating electrical and structural cardiac remodeling in rats. Forty male rats were divided into 4 groups (n = 10 in each group) and injected intraperitoneally with 3-BrPA, rotenone or a combination of 3-BrPA and rotenone. The ventricular effective refractory period (VERP), corrected QT interval (QTc), and ventricular tachycardia/ventricular fibrillation (VT/VF) inducibility were measured. The expression of Cx43, Kir2.1, Kir6.2, DHPRα1, KCNH2, caspase3, caspase9, Bax, Bcl2, and P53 was detected. Masson's trichrome, TUNEL, HE, and PAS staining and transmission electron microscopy were used to detect pathological and ultrastructural changes. Our results showed that rotenone alone and rotenone combined with 3-BrPA significantly increased the risk of ventricular arrhythmias. Rotenone combined with 3-BrPA caused myocardial apoptosis, and rotenone alone and rotenone combined with 3-BrPA caused electrical and structural cardiac remodeling in rats.


Assuntos
Antineoplásicos/toxicidade , Ventrículos do Coração/efeitos dos fármacos , Inseticidas/toxicidade , Piruvatos/toxicidade , Rotenona/toxicidade , Taquicardia Ventricular/induzido quimicamente , Fibrilação Ventricular/induzido quimicamente , Remodelação Ventricular/efeitos dos fármacos , Potenciais de Ação/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/metabolismo , Cardiotoxicidade , Conexina 43/genética , Conexina 43/metabolismo , Frequência Cardíaca/efeitos dos fármacos , Ventrículos do Coração/metabolismo , Ventrículos do Coração/fisiopatologia , Ventrículos do Coração/ultraestrutura , Masculino , Canais de Potássio Corretores do Fluxo de Internalização/genética , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Ratos Wistar , Período Refratário Eletrofisiológico/efeitos dos fármacos , Medição de Risco , Taquicardia Ventricular/metabolismo , Taquicardia Ventricular/patologia , Taquicardia Ventricular/fisiopatologia , Fibrilação Ventricular/metabolismo , Fibrilação Ventricular/patologia , Fibrilação Ventricular/fisiopatologia
4.
J Colloid Interface Sci ; 559: 51-64, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31610305

RESUMO

Aiming at the inefficiency and toxicity in traditional antitumor therapy, a novel multifunctional nanoplatform was constructed based on hollow mesoporous carbon (HMC) to achieve triple stimuli response and dual model antitumor therapy via chemo-photothermal synergistic effect. HMC was used as an ideal nanovehicle with a high drug loading efficiency as well as a near-infrared (NIR) photothermal conversion agent for photothermal therapy. Acid-dissoluble, luminescent ZnO quantum dots (QDs) were used as the proper sealing agents for the mesopores of HMC, conjugated to HMC via disulfide linkage to prevent drug (doxorubicin, abbreviated as Dox) premature release from Dox/HMC-SS-ZnO. After cellular endocytosis, the Dox was released in a pH, GSH and NIR laser triple stimuli-responsive manner to realize accurate drug delivery. Moreover, the local hyperthermia effect induced by NIR irradiation could promote the drug release, enhance cell sensitivity to chemotherapeutic agents, and also directly kill cancer cells. As expected, Dox/HMC-SS-ZnO exhibited a high drug loading capacity of 43%, well response to triple stimuli and excellent photothermal conversion efficiency η of 29.7%. The therapeutic efficacy in 4T1 cells and multicellular tumor spheroids (MCTSs) demonstrated that Dox/HMC-SS-ZnO + NIR had satisfactory chemo-photothermal synergistic effect with a combination index (CI) of 0.532. The cell apoptosis rate of the combined treatment group was more than 95%. The biodistribution and pharmacodynamics studies showed its biosecurity to normal tissues and synergistic inhibition effect to tumor cells. These distinguished results indicated that the Dox/HMC-SS-ZnO nanoplatform is potential to realize efficient triple stimuli-responsive drug delivery and dual model chemo-photothermal synergistic antitumor therapy.


Assuntos
Antineoplásicos/química , Carbono/química , Terapia Combinada/métodos , Portadores de Fármacos/química , Nanopartículas/química , Pontos Quânticos/química , Óxido de Zinco/química , Animais , Antineoplásicos/farmacocinética , Apoptose/efeitos dos fármacos , Materiais Biocompatíveis/química , Linhagem Celular Tumoral , Permeabilidade da Membrana Celular , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/química , Liberação Controlada de Fármacos , Corantes Fluorescentes/química , Humanos , Raios Infravermelhos , Camundongos Endogâmicos BALB C , Fototerapia/métodos , Porosidade , Propriedades de Superfície , Distribuição Tecidual , Óxido de Zinco/farmacocinética
5.
Int Endod J ; 53(1): 84-96, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31429089

RESUMO

AIM: To evaluate the effect of alendronate (ALN) on the development of periapical lesions induced in ovariectomized rats. METHODOLOGY: Twenty-five rats were divided into three groups: sham (control), ovariectomy (OVX) and OVX + ALN. One day after OVX, animals from the OVX + ALN group received the medication via gavage. After 9 weeks, the first molars of all animals were submitted to periapical lesion induction. After 21 days, the animals were euthanized. Femurs were analysed for bone mineral density. The blocks of bone tissue containing the mandibular first molars were submitted to histotechnical processing and staining with haematoxylin and eosin (HE) for periapical lesion analysis under conventional microscopy. At the same time, the morphometric analysis of the periapical lesion area was performed in the fluorescence mode, as well as the histoenzimology for the quantification of osteoclasts and 4'-6-diamidino-2-phenylindole staining for the quantification of apoptotic osteocytes. In addition, the first maxillary molars were used for analysis of the gene expression of proinflammatory cytokines (IL-1ß, IL-6 and TNF-α) and osteoclastogenesis markers (RANKL/OPG). The results were submitted to ANOVA and Kruskal-Wallis tests and Tukey and Dunn post-tests (significance level of 5%). RESULTS: Ovariectomy reduced bone mineral density of the femur, and treatment with ALN was able to prevent bone loss (P < 0.001). Regarding the microscopic analysis of the periapical region, the sham and OVX + ALN groups had moderately increased periodontal ligament and inflammatory infiltrate, while the OVX group had these parameters increased intensely. The periapical lesions of the OVX group were significantly larger in area in comparison to the other groups (P < 0.001). The OVX group had the largest amount of apoptotic osteocytes, and ALN was able to prevent the apoptosis of these cells, in addition to significantly reducing IL-6 expression (P < 0.05). OVX and ALN had no effect on RANKL/OPG expression and did not influence the number of osteoclasts around the periapical lesion (P > 0.05). CONCLUSION: The hypoestrogenic condition induced by OVX aggravated bone resorption, inducing the death of osteocytes and provoking larger periapical lesions. ALN treatment inhibited osteocyte apoptosis and inflammation via IL-6, inhibiting bone resorption in periapical lesions of ovariectomized rats.


Assuntos
Conservadores da Densidade Óssea , Reabsorção Óssea , Alendronato , Animais , Apoptose , Feminino , Humanos , Inflamação , Interleucina-6 , Osteócitos , Ovariectomia , Ratos
6.
J Sci Food Agric ; 100(1): 92-101, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31435952

RESUMO

BACKGROUND: Oyster polypeptides have various biofunctions, such as anti-cancer and anti-oxidative stress, but whether it has the protective effects to primary ovarian failure (POF) remains poorly understand. To address this issue, daily gavage of oyster polypeptides was performed to investigate their protective effect, basing on d-galactose-induced POF model in C57BL/6 female mice. RESULTS: Oyster polypeptides restored the irregular estrous cycles and the abnormal serum follicle stimulating hormone (FSH), luteinizing hormone (LH) and progesterone (P) levels as well as the decreased mRNA expression level of Amh that were induced by d-galactose. The follicle development of POF mice was improved by increasing the primordial follicle ratio and decreasing the atretic follicle number after oral administration of oyster polypeptides. Moreover, in the oyster polypeptides treated mice, the total superoxide dismutase (T-SOD) activity was significantly increased, while the malondialdehyde levels were significantly decreased. The mRNA expression levels of stress-related genes (SOD2, SIRT1 and FOXO3a) were remarkably up-regulated after d-galactose induction, but the up-regulation was weakened or disappeared by the gavage of oyster polypeptides. In addition, oyster polypeptides treatment also reduced the apoptosis of the ovarian granulosa cells and down-regulated the mRNA expression levels of apoptosis-related genes (p53 and Bad but not Bcl-2). CONCLUSION: This study reveals that oyster polypeptides may protect ovary against d-galactose-induced POF by their anti-oxidative stress activity to rescue d-galactose-induced ovarian oxidative damage and therefore to prevent ovarian cells apoptosis, thereby tipping the abnormality trigged by POF to get close to the normal levels. © 2019 Society of Chemical Industry.


Assuntos
Ostreidae/química , Peptídeos/administração & dosagem , Insuficiência Ovariana Primária/tratamento farmacológico , Substâncias Protetoras/administração & dosagem , Animais , Apoptose/efeitos dos fármacos , Feminino , Galactose/efeitos adversos , Humanos , Hormônio Luteinizante/metabolismo , Malondialdeído/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Folículo Ovariano/efeitos dos fármacos , Folículo Ovariano/metabolismo , Ovário/efeitos dos fármacos , Ovário/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Insuficiência Ovariana Primária/induzido quimicamente , Insuficiência Ovariana Primária/genética , Insuficiência Ovariana Primária/metabolismo , Progesterona/metabolismo , Sirtuína 1/genética , Sirtuína 1/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo
7.
Gene ; 725: 144159, 2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-31629818

RESUMO

Hepatocellular carcinoma (HCC) is the third most common cause of cancer-related deaths worldwide due to its frequent metastasis, tumor recurrence, and lack of curative treatment. However, the underlying molecular mechanisms involved in HCC progression remain unclear. Here, we analyzed the global gene expression of spontaneous liver tumor tissue from CBA/CaJ mice by RNA-Seq and identified 10,706 and 10,374 genes in the normal and liver tumor groups, respectively. Only 9793 genes were expressed in both, 913 genes were identified in only the liver tumor group, and 581 genes were found in normal liver tissues. There were 2054 differentially expressed genes (DEGs), with 975 down-regulated genes and 1079 up-regulated genes. Gene ontology (GO) term enrichment analysis showed that 43 up-regulated genes were significantly associated with cell cycle regulation and hundreds of up-regulated genes were related to cell migration, adhesion, or metabolic processes. KEGG pathway enrichment also demonstrated that some DEGs were tightly associated with the cell cycle, extracellular matrix (ECM)-receptor interactions, as well as protein digestion and absorption pathways, indicating that the activation of these oncogenic cascades was closely related to tumor liver progression in CBA/CaJ mice. Ninety-three genes with elevated expression levels preferentially localized in microtubules, kinetochores, and spindles play an important role during mitosis and meiosis and are associated with the reorganization of the cytoskeleton in cancer cells during migration and invasion. Some ECM-related genes were significantly different in the tumor group, including collagen types I, III, IV, V, and VI, non-collagenous glycoproteins, laminin, and fibronectin. We further validated the functions of upregulated genes, such as cyclin-dependent kinase 1 (CDK1) and polo-like kinase 1 (PLK1), with regards to cell cycle regulation, apoptosis, and proliferation in normal human liver or liver tumor-derived cell lines. Our results indicated that the cell cycle dysregulation, ECM-receptor interaction, and cytoskeleton-associated genes in mouse livers may promote HCC progression and deciphering the function of the genes will help investigators understand the underlying molecular mechanism of HCC.


Assuntos
Neoplasias Hepáticas Experimentais/genética , Animais , Apoptose/genética , Proteína Quinase CDC2/metabolismo , Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Ontologia Genética , Redes Reguladoras de Genes , Neoplasias Hepáticas Experimentais/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos CBA , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Transdução de Sinais , Transcrição Genética , Transcriptoma
8.
Gene ; 725: 144167, 2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-31639434

RESUMO

Osteoporosis in advanced cholestatic and end-stage liver disease is related to low bone formation. Previous studies have demonstrated the deleterious consequences of lithocholic acid (LCA) and bilirubin on osteoblastic cells. These effects are partially or completely neutralized by ursodeoxycholic acid (UDCA). We have assessed the differential gene expression of osteoblastic cells under different culture conditions. The experiments were performed in human osteosarcoma cells (Saos-2) cultured with LCA (10 µM), bilirubin (50 µM) or UDCA (10 and 100 µM) at 2 and 24 h. Expression of 87 genes related to bone metabolism and other signalling pathways were assessed by TaqMan micro fluidic cards. Several genes were up-regulated by LCA, most of them pro-apoptotic (BAX, BCL10, BCL2L13, BCL2L14), but also MGP (matrix Gla protein), BGLAP (osteocalcin), SPP1 (osteopontin) and CYP24A1, and down-regulated bone morphogenic protein genes (BMP3 and BMP4) and DKK1 (Dickkopf-related protein 1). Parallel effects were observed with bilirubin, which up-regulated apoptotic genes and CSF2 (colony-stimulating factor 2) and down-regulated antiapoptotic genes (BCL2 and BCL2L1), BMP3, BMP4 and RUNX2. UDCA 100 µM had specific consequences since differential expression was observed, up-regulating BMP2, BMP4, BMP7, CALCR (calcitonin receptor), SPOCK3 (osteonectin), BGLAP (osteocalcin) and SPP1 (osteopontin), and down-regulating pro-apoptotic genes. Furthermore, most of the differential expression changes induced by both LCA and bilirubin were partially or completely neutralized by UDCA. Conclusion: Our observations reveal novel target genes, whose regulation by retained substances of cholestasis may provide additional insights into the pathogenesis of osteoporosis in cholestatic and end-stage liver diseases.


Assuntos
Bilirrubina/metabolismo , Osteoblastos/metabolismo , Osteoporose/genética , Apoptose/efeitos dos fármacos , Ácidos e Sais Biliares/metabolismo , Linhagem Celular Tumoral , Colestase/genética , Regulação para Baixo/efeitos dos fármacos , Perfil Genético , Humanos , Ácido Litocólico/farmacologia , Fígado/metabolismo , Fígado/fisiologia , Hepatopatias/genética , Hepatopatias/metabolismo , Hepatopatias/fisiopatologia , Osteoporose/metabolismo , Osteossarcoma/genética , Osteossarcoma/metabolismo , Regulação para Cima/efeitos dos fármacos , Ácido Ursodesoxicólico/farmacologia
9.
Chemosphere ; 238: 124585, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31437628

RESUMO

Broad-spectrum insecticides used in pest control are a risk for non-target insects. Their compatibility to the insecticide spinosad, used in agriculture and forestry as a biological control tool, needs to be evaluated. Podisus nigrispinus Dallas (Heteroptera: Pentatomidae) is a predatory bug used in the pest management of agricultural and forest systems where spinosad is also frequently applied. The aim of this study was to evaluate the toxicity, histopathology and cytotoxicity in midgut cells of P. nigrispinus exposed to spinosad. The toxicity test was performed to determine the lethal concentrations of spinosad after exposure by ingestion. The histopathology and cytotoxicity caused by spinosad were analyzed in the three midgut regions (anterior, middle and posterior) of P. nigrispinus during different exposure periods. Spinosad, at low concentrations, was toxic to P. nigrispinus [LC50 = 3.15 (3.02-3.26) µg.L-1]. Cell degeneration features such as cytoplasm vacuolization, chromatin condensation and release of cell fragments to the midgut lumen were observed in this organ. Cell death via apoptosis was found in the three midgut regions of this predator after exposure to the insecticide. Spinosad is toxic to P. nigrispinus, and causes histological and cytological damage followed by cell death in the midgut, suggesting a dangerous effect on a beneficial non-target insect.


Assuntos
Sistema Digestório/efeitos dos fármacos , Heterópteros/efeitos dos fármacos , Inseticidas/toxicidade , Macrolídeos/toxicidade , Animais , Apoptose/efeitos dos fármacos , Combinação de Medicamentos
10.
Chemosphere ; 238: 124602, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31545211

RESUMO

Polybrominated diphenyl ethers (PBDEs) have been known to exhibit neurotoxicity in rats; however, the underlying mechanism remains unknown and there is no available intervention. In this study, we aimed to investigate the role of oxidative and nitrosative stress in the neurotoxicity in the cerebral cortex and primary neurons in rats following the BDE-153 treatment. Compared to the untreated group, BDE-153 treatment significantly induced the neurotoxic effects in rats, as manifested by the increased lactate dehydrogenase (LDH) activities and cell apoptosis rates, and the decreased neurotrophic factor contents and cholinergic enzyme activities in rats' cerebral cortices and primary neurons. When compared to the untreated group, the oxidative and nitrosative stress had occurred in the cerebral cortex or primary neurons in rats following the BDE-153 treatment, as manifested by the increments in levels of reactive oxygenspecies (ROS), malondialdehyde (MDA), nitric oxide (NO), and neuronal nitric oxide synthase (nNOS) mRNA and protein expressions, along with the decline in levels of superoxide dismutase (SOD) activity, glutathione (GSH) content, and peroxiredoxin I (Prx I) and Prx II mRNA and protein expressions. In addition, the ROS scavenger N-acetyl-l-cysteine (NAC) or NO scavenger NG-Nitro-l-arginine (L-NNA) significantly rescued the LDH leakage and cell survival, reversed the neurotrophin contents and cholinergic enzymes, mainly via regaining balance between oxidation/nitrosation and antioxidation. Overall, our findings suggested that oxidative and nitrosative stresses are involved in the neurotoxicity induced by BDE-153, and that the antioxidation is a potential targeted intervention.


Assuntos
Córtex Cerebral/patologia , Éteres Difenil Halogenados/toxicidade , Síndromes Neurotóxicas/patologia , Estresse Nitrosativo/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Bifenil Polibromatos/toxicidade , Acetilcisteína/farmacologia , Animais , Antioxidantes/metabolismo , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Córtex Cerebral/efeitos dos fármacos , Glutationa/metabolismo , Éteres Difenil Halogenados/metabolismo , Masculino , Malondialdeído/metabolismo , Fatores de Crescimento Neural/metabolismo , Neurônios/efeitos dos fármacos , Neurotrofina 3/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Estresse Nitrosativo/fisiologia , Estresse Oxidativo/fisiologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos
11.
Chemosphere ; 240: 124900, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31563099

RESUMO

Spirotetramat (SPT) is a new tetronic acid derivative insecticide used to control scales and aphids; the potential for endocrine disruptor effects in fish could not be finalized with the available data. In this study, zebrafish were selected to assess the endocrine-disrupting effects. Significant decrease of plasma estradiol (E2), testosterone (T) and 11-ketotestosterone (11-KT) were observed in both male and female following the spirotetramat exposure; the vitellogenin (VTG) level in females significantly decreased. The expression of the hypothalamic-pituitary-gonad (HPG) axis genes fshr, lhr and esr1 showed significant increase in the gonads, which expression in males is higher than in females. In addition, the activities of capspase-3 and caspase-9 significantly decreased in both males and females liver, while the capspase-3 and caspase-9 were increased in male testis, the mRNA expression levels of genes expression related to the apoptosis pathway were also significantly altered after the spirotetramat exposure. Additionally, we found the parental zebrafish exposed to spirotetramat induced the development delay of its offspring. Above all, the adverse effects induced by spirotetramat suggesting that spirotetramat is a potential exogenous hazardous agent.


Assuntos
Compostos Aza/toxicidade , Inseticidas/toxicidade , Compostos de Espiro/toxicidade , Animais , Apoptose , Disruptores Endócrinos/toxicidade , Estradiol/metabolismo , Estrogênios/farmacologia , Feminino , Expressão Gênica , Gônadas/efeitos dos fármacos , Fígado/metabolismo , Masculino , Testículo/efeitos dos fármacos , Testosterona/análogos & derivados , Vitelogeninas/metabolismo , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/metabolismo
12.
Chemosphere ; 240: 124905, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31563103

RESUMO

Microcystin-LR (MCLR) was commonly regarded as a potent hepatotoxin and has been reported to cause neurotoxicity. This study was aimed to investigate how maternal MCLR exposure during pregnancy alters behavioral responses in offspring mice and the possible molecular mechanism involved in this procedure. Three doses of MCLR solutions (0, 3 or 15 µg/kg body weight) were administered subcutaneously to pregnant C57bl/6 from gestation day (GD) 6-19. Our results showed that MCLR prenatal exposure led to the impairment of learning and memory function in offspring on postnatal days (PND) 35, accompanied by endoplasmic reticulum (ER) stress and neuronal apoptosis in hippocampal CA1 regions of mice. Sixteen miRNAs in hippocampus of pups on PND 35 were significantly affected by MCLR exposure with the markedly decreased transcription of miR-181a-5p. We then found that miR-181a-5p was down-regulated, accompanied by activation of ER stress after prenatal exposure to MCLR using qPCR analysis. Furthermore, glucose-regulated protein, 78kDa/binding immunoglobulin protein (Grp78/BIP), a major ER chaperone and signaling regulator, was identified as a target of miR-181a-5p. Our study showed that miR-181a could lead to a decrease in the mRNA expression and protein levels of Grp78 by directly binding to its 3'-untranslated region (3'-UTR) in primary hippocampal neurons. Our findings indicate that the up-regulation of Grp78 mediated by inhibition of miR-181a-5p is a possible mechanism resulting in ER stress and cognitive impairment in pups following prenatal MCLR exposure.


Assuntos
Estresse do Retículo Endoplasmático/fisiologia , MicroRNAs/metabolismo , Microcistinas/toxicidade , Animais , Apoptose , Regulação para Baixo , Feminino , Hipocampo/metabolismo , Masculino , Memória , Camundongos , MicroRNAs/genética , Gravidez , Regulação para Cima
13.
Hua Xi Kou Qiang Yi Xue Za Zhi ; 37(6): 583-588, 2019 Dec 01.
Artigo em Chinês | MEDLINE | ID: mdl-31875434

RESUMO

OBJECTIVE: This study aimed to investigate the role of protein kinase D (PKD)1 in regulating the growth, apop-tosis, and drug sensitivity of the squamous carcinoma cell line SCC-25. METHODS: The SCC-25 cell line was transfected with either the control-shRNA or PKD1-shRNA plasmids. The stable transfected cells were selected, and the efficiency of PKD1 knockdown was detected by Western blot. The growth and apoptosis of SCC-25 were analyzed with a cell counting kit-8 (CCK8) and flow cytometry. The 50% inhibitory concentrations (IC50) of paclitaxel in the control and PKD1 knockdown cell lines were detected by CCK-8. The expression levels of Bax, Bcl-2, and P-gp were detected by Western blot. RESULTS: PKD1 was constitutively expressed and phosphorylated in various cancer cell lines. Inhibiting the expression of PKD1 in SCC-25 cells by RNA interference could inhibit the growth and promote the apoptosis of SCC-25 cells via downregulating Bcl-2 expression. Additionally, inhibiting PKD1 expression could downregulate the expression of P-gp, thereby decreasing both the IC50 and resistance index of paclitaxel. CONCLUSIONS: PKD1 plays an important role in regulating the biobehavior of SCC-25. It is a potential therapeutic target for oral squamous carcinoma.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Bucais , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Humanos
14.
Chin J Dent Res ; 22(4): 221-227, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31859282

RESUMO

OBJECTIVE: To evaluate whether the combination of the pan-histone deacetylase (HDAC) inhibitor, suberanilohydroxamic acid (SAHA), and the cyclooxygenase-2 (COX-2) inhibitor, celecoxib, could produce synergistic anticancer effects in human salivary adenoid cystic cancer (SACC) cells. METHODS: SACC cells were treated with the COX-2 inhibitor celecoxib or the pan-HDAC inhibitor SAHA, or a combination of celecoxib and SAHA, for 24 hours. Cell proliferation, apoptosis, migration and invasion were evaluated using the cell counting kit 8 (CCK-8) assay, and the 4',6-diamidino-2-phenylindole staining assay, transwell migration or invasion assays, respectively. The protein expression of phosphatase and tensin homolog deleted on chromosome 10 (PTEN) and protein kinase B or AKT1(PKB/AKT) were evaluated using western blot. RESULTS: The combinational treatment with SAHA and celecoxib synergistically inhibited cell proliferation, migration and invasion, and synergistically induced apoptosis, whereas the treatment with SAHA or celecoxib alone only slightly inhibited cell proliferation, migration and invasion, and slightly induced apoptosis. Meanwhile, the combinational treatment synergistically upregulated the membrane-bound PTEN (activated form) and downregulated phospho-AKT (activated form). CONCLUSION: The combination of pan-HDAC and COX-2 inhibitors produced synergistic anticancer effects at least partially via activating PTEN and inactivating AKT in the SACC cells.


Assuntos
Tonsila Faríngea , Inibidores de Histona Desacetilases , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Inibidores de Ciclo-Oxigenase 2 , Humanos
15.
Cell Physiol Biochem ; 53(S1): 52-62, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31854954

RESUMO

Kv1.3 is a voltage gated potassium channel located in the plasma membrane, as well as at intracellular levels, such as mitochondria (mitoKv1.3), nucleus and Golgi apparatus. The plasma membrane channel has been shown to be important for cell proliferation, while the mitochondrial counterpart has been related to modulation of cell death. Moreover, altered expression of Kv1.3 was observed in various tumors and Kv1.3 seems to be involved in development and progression of various cancerous forms. Recent experimental evidences have proved that pharmacological inhibition of the mitoKv1.3 succeeded in reducing up to 90% of tumor volume in vivo in orthotopic mouse model. Furthermore, mitoKv1.3 modulation could impact on cell proliferation as well as on regulation of intracellular signaling pathways. Indeed, the treatment with sub-lethal doses of mitoKv1.3 inhibitors can downregulate Wnt-ß catenin signaling by reducing mitochondrial ATP production and triggering ER-stress. In this review, we describe the role of the mitoKv1.3 in cell death, cancer and intracellular signaling. We will discuss how pharmacological modulation of mitochondrial potassium fluxes impact on mitochondrial membrane potential, reactive oxygen species production and ATP synthesis. All these changes in mitochondrial fitness are related to cell proliferation as well as to cell death and finally on cancer development and progression, so Kv1.3 (and mitoKv1.3) could be now considered a new oncological target.


Assuntos
Canal de Potássio Kv1.3/metabolismo , Mitocôndrias/metabolismo , Neoplasias/metabolismo , Animais , Apoptose , Proliferação de Células , Estresse do Retículo Endoplasmático , Canal de Potássio Kv1.3/antagonistas & inibidores , Canal de Potássio Kv1.3/genética , Neoplasias/patologia , Interferência de RNA , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
16.
Nan Fang Yi Ke Da Xue Xue Bao ; 39(11): 1329-1336, 2019 Nov 30.
Artigo em Chinês | MEDLINE | ID: mdl-31852640

RESUMO

OBJECTIVE: To explore the effects of exogenous hydrogen sulfide (H2S) on apoptosis of corpus cavernosum smooth muscle cells (CCSMCs) and erectile dysfunction (ED) in rats with bilateral cavernous nerve injury (BCNI). METHODS: Twentyfour male SD rats were randomly divided into 3 groups (n=8):sham operation group, bilateral cavernous nerve injury group (BCNI group) and H2S intervention group (BCNI+NaHS group). In BCNI and BCNI+NaHS groups, BCNI was induced by clamp injury of the bilateral cavernous nerves, and the rats were subjected to daily intraperitoneal injection of normal saline and 100 µmol/kg NaHS solution for 4 weeks, respectively. After the treatment, the intracavernous pressure (ICP) and mean arterial pressure (MAP), ) of the rats were measured. Western blotting was used to detect the expressions of cystathionine ß synthetase (CBS), cystathionine γ lyase (CSE), α-SMA, collagen-I, caspase-3, Bax and Bcl-2 in the penile cavernous tissue, and the expressions of CBS and CSE were also detected immunohistochemically. The ratio of cavernous smooth muscle to collagen was detected using Masson's Trichrome staining. The apoptosis level of CCSMC was detected by TUNEL + α-SMA immunofluorescence double staining. RESULTS: After 4 weeks of treatment, the rats in BCNI+NaHS group showed a significantly higher ICP/MAP ratio than those in BCNI group (P < 0.05). The results of Masson's Trichrome staining showed that the ratio of cavernous smooth muscle/collagen was significantly higher in BCNI + NaHS group than in BCNI group (P < 0.05). Western blotting showed a significantly higher expression of α-SMA protein but a lower expression of collagen-I protein in BCNI + NaHS group than in BCNI group (P < 0.05). TUNEL+α-SMA immunofluorescence double staining revealed a significantly lower number of apoptotic CCSMCs in BCNI+NaHS group than in BCNI group (P < 0.05). Compared with those in BCNI group, the rats in BCNI+NaHS group had significantly decreased expressions of caspase-3 and Bax proteins (P < 0.05) with significantly enhanced Bcl-2 protein expression and an increased Bcl-2/Bax ratio (P < 0.05). The expressions of CBS and CSE were significantly lower in BCNI group than in the other two groups (P < 0.05). CONCLUSIONS: Exogenous H2S enhance the expression of the classic apoptotic protein Bcl-2 and reduces apoptosis of CCSMC to improve the erectile function in rats with BCNI.


Assuntos
Disfunção Erétil , Animais , Apoptose , Modelos Animais de Doenças , Humanos , Sulfeto de Hidrogênio , Masculino , Miócitos de Músculo Liso , Ereção Peniana , Pênis , Ratos , Ratos Sprague-Dawley
17.
Nan Fang Yi Ke Da Xue Xue Bao ; 39(11): 1280-1286, 2019 Nov 30.
Artigo em Chinês | MEDLINE | ID: mdl-31852648

RESUMO

OBJECTIVE: To investigate the effect of Golgi phosphoprotein 3 (Golph3) on paclitaxel- induced apoptosis and autophagy in HeLa cells. METHODS: HeLa cells were transfected with a lentiviral vector expressing Golph3 or a small interfering RNA (siRNA) targeting Golph3 for up-regulation or down-regulation of Golph3 which was verified by Western blotting. The autophagic bodies in the cells were observed using transmission electron microscopy. The expression of autophagy markers p62 and LC3 were detected using Western blotting, and the cell apoptosis was examined by PI/Anexin V-FITC double staining and flow cytometry. The effects of blocking autophagy was evaluated by treatment of the cells with the autophagy inhibitor 3-MA. RESULTS: Transmission electron microscopy showed that the lentivirus-mediated overexpression of Golph3 significantly increased the number of autophagic bodies and interference of Golph3 expression significantly decreased autophagic bodies in HeLa cells. Western blotting showed that Golph3 overexpression caused an increased expression of LC3 and decreased the accumulation of p62 in the cells, and interference of Golph3 resulted in the reverse changes. The cell apoptosis induced by paclitaxel was significantly decreased in Golph3-overexpressing HeLa cells and increased in the cells with Golph3 knockdown (P>0.01). Treatment with 3-MA alone did not obviously affect HeLa cell apoptosis, but in cells with Golph3 knockdown, 3-MA significantly enhanced paclitaxel-induced apoptosis (P>0.01). CONCLUSIONS: Up-regulation of Golph3 promotes autophagy and inhibits paclitaxel-induced apoptosis, whereas suppression of Golph3 inhibits autophagy and enhances paclitaxel- induced apoptosis in HeLa cells.


Assuntos
Autofagia , Apoptose , Células HeLa , Humanos , Proteínas de Membrana , Paclitaxel , Fosfoproteínas
18.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 44(10): 1120-1127, 2019 Oct 28.
Artigo em Chinês | MEDLINE | ID: mdl-31857505

RESUMO

OBJECTIVE: To observe the effects of human umbilical cord mesenchymal stem cells (UC-MSCs) on the proliferation and apoptosis of human ovarian cancer cell SKOV3.
 Methods: Transwell co-culture was used to observe the targeted homing effect of UC-MSCs on ovarian cancer cells. MTT assay was used to detect the inhibitory effect of UC-MSCs conditioned medium on SKOV3 proliferation, and Annexin V-FITC/PI double staining was used to detect the apoptotic rate. Real-time PCR was used to detect the expression levels of Ki-67, Bcl-2 and Bax genes-relevant to proliferation and apoptosis of SKOV3 cells.
 Results: UC-MSCs targeted SKOV3 cells in vitro. MTT assay showed that UC-MSCs conditioned medium significantly inhibited the proliferation of SKOV3 cells (P<0.01). Annexin V-FITC/PI double staining showed that the apoptotic rate in the 75% conditioned medium group was significantly higher than that in the control group (P<0.05). Real-time PCR showed that the expression of proliferation-related gene Ki-67 decreased significantly (P<0.01). The apoptosis-related gene Bcl-2 expression was decreased dramatically (P<0.01), and Bax expression was increased significantly (P<0.01).
 Conclusion: UC-MSCs can target ovarian cancer cells in vitro, inhibit the proliferation of SKOV3 cells by regulating the expression of Ki-67, and promote the apoptosis of SKOV3 cells by regulating the expression of Bcl-2 and Bax.


Assuntos
Células-Tronco Mesenquimais , Neoplasias Ovarianas , Cordão Umbilical , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Humanos
19.
Zhongguo Zhong Yao Za Zhi ; 44(22): 4905-4911, 2019 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-31872599

RESUMO

The study aimed to illuminate the role of G protein coupled estrogen receptor( GPER) and its mediated PI3 K/AKT signaling pathway in cryptotanshinone( CPT) induced apoptosis of breast cancer SKBR-3 cells,which is GPER positive and ER negative.The apoptosis rate of SKBR-3 cells was tested by Annexin V-FITC/PI staining and apoptosis effector caspase-3 was determined by Western blot. The key proteins in PI3 K/AKT signaling pathway mediated by GPER were detected by Western blot and immunofluorescence technique. Meanwhile,the agonist G1 and antagonist G15 of GPER and antagonist LY294002 of PI3 K were employed in the test to further clarify the effect of GPER and PI3 K/AKT pathway. The results indicated that the apoptosis rate was increased from 4. 7% to46. 1% and 69. 0% after treatment with 0,5,10 µmol·L~(-1) CPT for 48 h( P<0. 01). The expression of PI3 K,AKT and p-AKT were inhibited( P<0. 05 or P<0. 01),while caspase-3 level increased obviously after treatment with CPT( P<0. 01). Importantly,inhibitory effect of PI3 K/AKT signaling pathway by CPT was further enhanced by G1 and attenuated by G15. LY294002 also induced a further inhibition of expression of AKT and p-AKT. The mean fluorescence intensity of AKT and p-AKT could be decreased by CPT. Furthermore,CPT could downregulate GPER expression in SKBR-3 cells( P<0. 01),which could be inhibited by G1 and enhanced by G15.In conclusion,CPT could induce the apoptosis of ER negative and GPER positive breast cancer SKBR-3 cells and the molecular mechanism is related to its regulatory effect of GPER and its mediated PI3 K/AKT signaling pathway.


Assuntos
Neoplasias da Mama , Medicamentos de Ervas Chinesas , Receptores Estrogênicos , Apoptose , Humanos , Proteínas Proto-Oncogênicas c-akt , Receptores Acoplados a Proteínas-G , Transdução de Sinais
20.
Zhonghua Yan Ke Za Zhi ; 55(12): 933-941, 2019 Dec 11.
Artigo em Chinês | MEDLINE | ID: mdl-31874508

RESUMO

Objective: To study the effects of human umbilical mesenchymal stem cells (HUMSCs) exosomes on the proliferation and apoptotic as well as migration of human retinal pigment epithelial cells (HRPE) in hypoxia, and explore its mechanism. Method: Direct adherent culture was adopted to cultivate umbilical cord mesenchymal stem cells and amplified to the fourth generation. Markers on the cell surface were identified by flow cytometry. Culture medium was collect without serum from the 4th generation umbilical cord mesenchymal stem cells. Exosomes were separated and extracted, then the ultrastructure was observed under electron microscope and examined expression of CD63 and CD9 protein by Western blot method with isolated and extracted exosomes. HRPE was cultivated in vitro culture, proliferation was detected at the time point of 0, 1, 2, 3, 4, 5 d with MTT assay under hypoxic condition. Meanwhile, the cell migration was quantified by Wound-Healing Assay under hypoxic condition at 0, 24, 48 and 72 h respectively combined with apoptosis test. The HRPE cells in the growth period were divided into 5 groups: the control group, the hypoxia group and the pretreated exosomes group (100, 200, 300 µg/ml). In all groups, apoptosis was observed by Annexin V/PI dual-dye flow cytometry after 48 h's incubation. Proliferation was observed by MTT assay and the migration was observed with Wound-Healing Assay. Results: Flow cytometry detection of the surface marker of HUMSCs in the 4th generation showed strong positive expression of CD105, CD73, CD90. It was suggested that HUMSCs with isolated culture had MSC specific phenotype with duction of lipids and osteoblasts in vitro. The separated exosomes were observed with spherical membranous structures in different sizes by scanning electron microscopy, and Western blot detected positive expression of CD63 and CD9. In vitro culture of HRPE detected by MTT assay for cell proliferation at the time of hypoxic 0, 1, 2, 3, 4, 5 d, the results showed that, comparing with time point 0 d, other groups had statistically significant OD values. In the first 2 days, the proliferation ability of RPE cells gradually increased as the time of hypoxia prolonged(1.862±0.135, 2.278±0.244). After 3 d, the proliferation ability of RPE cells gradually decreased(1.419±0.124, 1.599±0.156). Wound-Healing Assay results showed that the migration distance gradually increased as[(29.883±4.504), (36.200±1.928) µm] the time of hypoxia increased from 0 to 72 h. The cells were fully covering at the point of 72 h [(1.223±0.194), (0.430±0.299) µm]. Apoptosis test results showed that the number of apoptotic cells was different(3.628%±1.348%, 20.123%±1.183%) with the extension of hypoxia Oxygen before 2 d from 0 to 72 h. At the time of d3, there were more apoptotic cells(42.290%±3.217%). There is a significant difference from pre-2d.RPE cells were divided into 5 groups: the control group, the hypoxia group and the pretreated exosomes group (100, 200, 300 µg/ml).After 48 h hypoxia incubation, MTT assay results showed that, compared with the control group (1.870±0.499), the number of cell proliferation was significantly increased (t=-3.116, P<0.05), while compared with the hypoxia group(2.616±0.307), the proliferation number of exosomes was significantly reduced [(2.041±0.115), (1.931±0.205), (1.929±0.025); t=-4.920, -4.540, -5.286, P<0.01], and there was no significant difference between groups with different doses of the exosomes (F=1.181,P>0.05). Annexin V/PI dual-dye flow cytometry was used to observe the apoptosis results. Compared with the control group 1.180%±0.689%, the number of apoptosis in hypoxia group was significantly increased (19.273%±1.194%, t=-32.141, P<0.01), while compared with the hypoxia group, the number of apoptosis in the exosomes was significantly decreased (12.318%±1.087%, 11.878%±1.348%, 11.090%±1.716%; t=-10.547, -10.057, 9.589, P<0.01). There was no significant difference between the groups with different doses of exosomes (F=1.173, P>0.05). Wound-Healing Assay results showed that, compared with the control group(68.047±2.851) µm, the migration distance of the hypoxia group was significantly increased [(13.470±2.255)µm, t=36.778, P<0.01] while compared with the hypoxia group, the migration distance of the exosomes was reduced (33.110±1.774, 24.650±1.175, 26.440±1.674; t=11.766, 10.770, 11.311, P<0.01), and there was no significant difference between the groups of the exosomes (F=1.179, P>0.05). Conclusion: Human umbilical cord mesenchymal stem cells can effectively inhibit the apoptosis and migration of HRPE cells in hypoxia. It provides a theoretical basis for the research and treatment of RPE related diseases. (Chin J Ophthalmol, 2019, 55: 933-941).


Assuntos
Apoptose , Proliferação de Células , Exossomos , Hipóxia , Células-Tronco Mesenquimais , Retina , Células Cultivadas , Células Epiteliais , Humanos , Retina/citologia , Retina/metabolismo , Pigmentos da Retina , Cordão Umbilical
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA