Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 429
Filtrar
1.
Ecotoxicol Environ Saf ; 227: 112907, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34673410

RESUMO

As a pollutant, Cd causes severe impact to the environment and damages living organisms. It can be uptaken from the environment by the natural resistance-associated macrophage protein (Nramp) in plants. However, the ion absorption function of Nramp transporter genes in Spirodela polyrhiza has not been reported. In this study, SpNramp1, SpNramp2, and SpNramp3 from S. polyrhiza were cloned and their functions were analyzed in S. polyrhiza and yeast. Growth parameters and physicochemical indices of wild-type and transgenic lines were measured under Cd stress. Results revealed that SpNramp1, SpNramp2, and SpNramp3 were identified as plasma membrane-localized transporters, and their roles in transporting Cd were verified in yeast. In S. polyrhiza, SpNramp1 overexpression significantly increased the content of Cd, Fe, Mn, and fresh weight. SpNramp2 overexpression increased Mn and Cd. SpNramp3 overexpression increased Fe and Mn concentrations. These results indicate that SpNramp1, SpNramp2, and SpNramp3 had a different preference for ion absorption. Two S. polyrhiza transgenic lines (OE1 and OE3) were obtained. One of them (OE1) showed a stronger accumulation ability, and the other one (OE3) exhibited tolerance capacity to Cd. This study provides new insight into the functions of SpNramp1, SpNramp2, and SpNramp3 and obtains important enrichment lines (OE1) for manipulating Cd accumulation, phytoremediation, and ecological safety.


Assuntos
Araceae , Proteínas de Transporte de Cátions , Araceae/metabolismo , Biodegradação Ambiental , Cádmio/metabolismo , Cádmio/toxicidade , Proteínas de Transporte de Cátions/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
Cells ; 10(6)2021 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-34204703

RESUMO

This study addresses the unique functional features of duckweed via comparison of Lemna gibba grown under controlled conditions of 50 versus 1000 µmol photons m-2 s-1 and of a L. minor population in a local pond with a nearby population of the biennial weed Malva neglecta. Principal component analysis of foliar pigment composition revealed that Malva was similar to fast-growing annuals, while Lemna was similar to slow-growing evergreens. Overall, Lemna exhibited traits reminiscent of those of its close relatives in the family Araceae, with a remarkable ability to acclimate to both deep shade and full sunlight. Specific features contributing to duckweed's shade tolerance included a foliar pigment composition indicative of large peripheral light-harvesting complexes. Conversely, features contributing to duckweed's tolerance of high light included the ability to convert a large fraction of the xanthophyll cycle pool to zeaxanthin and dissipate a large fraction of absorbed light non-photochemically. Overall, duckweed exhibited a combination of traits of fast-growing annuals and slow-growing evergreens with foliar pigment features that represented an exaggerated version of that of terrestrial perennials combined with an unusually high growth rate. Duckweed's ability to thrive under a wide range of light intensities can support success in a dynamic light environment with periodic cycles of rapid expansion.


Assuntos
Aclimatação/fisiologia , Araceae/crescimento & desenvolvimento , Folhas de Planta/química , Folhas de Planta/metabolismo , Araceae/metabolismo , Luz , Pigmentos Biológicos/química , Pigmentos Biológicos/metabolismo
3.
Nutrients ; 13(6)2021 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-34070816

RESUMO

BACKGROUND: Polyphenols are secondary metabolites produced by plants to defend themselves from environmental stressors. We explored the effect of Wolffia globosa 'Mankai', a novel cultivated strain of a polyphenol-rich aquatic plant, on the metabolomic-gut clinical axis in vitro, in-vivo and in a clinical trial. METHODS: We used mass-spectrometry-based metabolomics methods from three laboratories to detect Mankai phenolic metabolites and examined predicted functional pathways in a Mankai artificial-gut bioreactor. Plasma and urine polyphenols were assessed among the 294 DIRECT-PLUS 18-month trial participants, comparing the effect of a polyphenol-rich green-Mediterranean diet (+1240 mg/polyphenols/day, provided by Mankai, green tea and walnuts) to a walnuts-enriched (+440 mg/polyphenols/day) Mediterranean diet and a healthy controlled diet. RESULTS: Approximately 200 different phenolic compounds were specifically detected in the Mankai plant. The Mankai-supplemented bioreactor artificial gut displayed a significantly higher relative-abundance of 16S-rRNA bacterial gene sequences encoding for enzymes involved in phenolic compound degradation. In humans, several Mankai-related plasma and urine polyphenols were differentially elevated in the green Mediterranean group compared with the other groups (p < 0.05) after six and 18 months of intervention (e.g., urine hydroxy-phenyl-acetic-acid and urolithin-A; plasma Naringenin and 2,5-diOH-benzoic-acid). Specific polyphenols, such as urolithin-A and 4-ethylphenol, were directly involved with clinical weight-related changes. CONCLUSIONS: The Mankai new plant is rich in various unique potent polyphenols, potentially affecting the metabolomic-gut-clinical axis.


Assuntos
Araceae/metabolismo , Araceae/microbiologia , Dieta Mediterrânea , Microbioma Gastrointestinal/efeitos dos fármacos , Metabolômica/métodos , Polifenóis/sangue , Polifenóis/urina , Adulto , Humanos , Israel , Juglans/metabolismo , Juglans/microbiologia , Espectrometria de Massas , Valor Nutritivo , Polifenóis/administração & dosagem , Chá/metabolismo , Chá/microbiologia
4.
Ecotoxicol Environ Saf ; 221: 112415, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34171691

RESUMO

In order to understand the mechanisms of arsenic (As) accumulation and detoxification in aquatic plants exposed to different As species, a hydroponic experiment was conducted and the three aquatic plants (Hydrilla verticillata, Pistia stratiotes and Eichhornia crassipes) were exposed to different concentrations of As(III), As(V) and dimethylarsinate (DMA) for 10 days. The biomass, the surface As adsorption and total As adsorption of three plants were determined. Furthermore, As speciation in the culture solution and plant body, as well as the arsenate reductase (AR) activities of roots and shoots, were also analyzed. The results showed that the surface As adsorption of plants was far less than total As absorption. Compared to As(V), the plants showed a lower DMA accumulation. P. stratiotes showed the highest accumulation of inorganic arsenic but E. crassipes showed the lowest at the same As treatment. E. crassipes showed a strong ability to accumulate DMA. Results from As speciation analysis in culture solution showed that As(III) was transformed to As(V) in all As(III) treatments, and the oxidation rates followed as the sequence of H. verticillata>P. stratiotes>E. crassipes>no plant. As(III) was the predominant species in both roots (39.4-88.3%) and shoots (39-86%) of As(III)-exposed plants. As(V) and As(III) were the predominant species in roots (37-94%) and shoots (31.1-85.6%) in As(V)-exposed plants, respectively. DMA was the predominant species in both roots (23.46-100%) and shoots (72.6-100%) in DMA-exposed plants. The As(III) contents and AR activities in the roots of P. stratiotes and in the shoots of H. verticillata were significantly increased when exposed to 1 mg·L-1 or 3 mg·L-1 As(V). Therefore, As accumulation mainly occurred via biological uptake rather than physicochemical adsorption, and AR played an important role in As detoxification in aquatic plants. In the case of As(V)-exposed plants, their As tolerance was attributed to the increase of AR activities.


Assuntos
Araceae , Arseniato Redutases/metabolismo , Arsênio , Ácido Cacodílico , Eichhornia , Hydrocharitaceae , Proteínas de Plantas/metabolismo , Poluentes Químicos da Água , Adsorção , Araceae/química , Araceae/metabolismo , Arsênio/química , Arsênio/metabolismo , Ácido Cacodílico/química , Ácido Cacodílico/metabolismo , Eichhornia/química , Eichhornia/metabolismo , Hydrocharitaceae/química , Hydrocharitaceae/metabolismo , Hidroponia , Raízes de Plantas/química , Raízes de Plantas/metabolismo , Brotos de Planta/química , Brotos de Planta/metabolismo , Poluentes Químicos da Água/química , Poluentes Químicos da Água/metabolismo
5.
Sci Rep ; 11(1): 10889, 2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34035402

RESUMO

With growing human culture and industrialization, many pollutants are being introduced into aquatic ecosystems. In recent years, dyes have become a major water pollutant used in the manufacture of paints and other production purposes. In this research, the potential of duckweed (Lemna gibba) plant was investigated spectrophotometrically as an obvious bioagent for the biological decolorization of the organic dye C.I. Basic Green 4 (Malachite Green, BG4). Photosynthetic efficiency analysis showed that the photosynthetic apparatus of L. gibba is very tolerant to BG4. Significant induction of reactive oxygen species (ROS) scavenging enzymes was observed after 24h of biodecolorization process in L. gibba treated with 15 and 30 mg/l BG4. The experimental results showed that L. gibba has a strong ability to extract BG4 from contaminated water and the best results were obtained at 25-30°C and pH 8.0. We conclude that duckweed L. gibba can be used as a potent decolorization organism for BG4.


Assuntos
Araceae/crescimento & desenvolvimento , Corantes de Rosanilina/análise , Poluentes Químicos da Água/análise , Araceae/metabolismo , Biodegradação Ambiental , Fotossíntese , Espécies Reativas de Oxigênio/metabolismo , Espectrofotometria
6.
Cells ; 10(3)2021 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-33801135

RESUMO

Cyanotoxins are harmful to aquatic and water-related organisms. In this study, Lemna trisulca was tested as a phytoremediation agent for three common cyanotoxins produced by bloom-forming cyanobacteria. Cocultivation of L. trisulca with Dolichospermum flos-aquae in BG11 medium caused a release of the intracellular pool of anatoxin-a into the medium and the adsorption of 92% of the toxin by the plant-after 14 days, the total amount of toxin decreased 3.17 times. Cocultivation with Raphidopsis raciborskii caused a 2.77-time reduction in the concentration of cylindrospermopsin (CYN) in comparison to the control (62% of the total pool of CYN was associated with the plant). The greatest toxin limitation was noted for cocultivation with Microcystis aeruginosa. After two weeks, the microcystin-LR (MC-LR) concentration decreased more than 310 times. The macrophyte also influenced the growth and development of cyanobacteria cells. Overall, 14 days of cocultivation reduced the biomass of D. flos-aquae, M. aeruginosa, and R. raciborskii by 8, 12, and 3 times, and chlorophyll a concentration in comparison to the control decreased by 17.5, 4.3, and 32.6 times, respectively. Additionally, the macrophyte stabilized the electrical conductivity (EC) and pH values of the water and affected the even uptake of cations and anions from the medium. The obtained results indicate the biotechnological potential of L. trisulca for limiting the development of harmful cyanobacterial blooms and their toxicity.


Assuntos
Alcaloides/isolamento & purificação , Araceae/metabolismo , Toxinas Marinhas/isolamento & purificação , Microcistinas/isolamento & purificação , Tropanos/isolamento & purificação , Poluentes Químicos da Água/isolamento & purificação , Biodegradação Ambiental , Biomassa , Clorofila A/metabolismo , Cianobactérias/metabolismo , Condutividade Elétrica , Concentração de Íons de Hidrogênio , Íons , Cinética , Fotossíntese
7.
PLoS One ; 16(4): e0250118, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33930032

RESUMO

Many phytochemicals can affect the growth and development of plants and insects which can be used as biological control agents. In this study, different concentrations of crude, hexane, chloroform, butanol, and aqueous extracts of Euphorbia nivulia Buch.-Ham., an endemic plant of the Cholistan desert in South Punjab of Pakistan, were analysed for their chemical constituents. Their various concentrations were also tested for their phytotoxic and insecticidal potential against duckweed, Lemna minor L., and the dusky cotton bug, Oxycarenus hyalinipennis Costa. various polyphenols, i.e., quercetin, gallic acid, caffeic acid, syringic acid, coumaric acid, ferulic acid, and cinnamic acid were detected in different concentrations with different solvents during the phytochemical screening of E. nivulia. In the phytotoxicity test, except for 100 µg/mL of the butanol extract gave 4.5% growth regulation, no phytotoxic lethality could be found at 10 and 100 µg/mL of all the extracts. The highest concentration, 1000 µg/mL, of the chloroform, crude, and butanol extracts showed 100, 63.1, and 27.1% of growth inhibition in duckweed, respectively. In the insecticidal bioassay, the highest O. hyalinipennis mortalities (87 and 75%) were recorded at 15% concentration of the chloroform and butanol extracts of E. nivulia. In contrast, the lower concentrations of the E. nivulia extracts caused the lower mortalities. Altogether, these findings revealed that E. nivulia chloroform extracts showed significant phytotoxicity while all the extracts showed insecticidal potential. This potential can be, further, refined to be developed for bio-control agents.


Assuntos
Euphorbia/química , Euphorbia/metabolismo , Extratos Vegetais/farmacologia , Alcaloides , Animais , Araceae/efeitos dos fármacos , Araceae/metabolismo , Artemia/efeitos dos fármacos , Euphorbia/fisiologia , Hemípteros/efeitos dos fármacos , Heterópteros/efeitos dos fármacos , Hexanos , Inseticidas/farmacologia , Paquistão , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/metabolismo
8.
Environ Toxicol Pharmacol ; 85: 103635, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33716093

RESUMO

Lumefantrine is used to treat uncomplicated malaria caused by pure or mixed Plasmodium falciparum infections and as a prophylactic against recrudescence following artemether therapy. However, the pharmaceutical is released into the aquatic environment from industrial effluents, hospital discharges, and human excretion. This study assessed the effects of lumefantrine on the growth and physiological responses of the microalgae Chlorella vulgaris and Raphidocelis subcapitata (formerly known as Selenastrum capricornutum and Pseudokirchneriella subcapitata) and the aquatic macrophyte Lemna minor. The microalgae and macrophyte were exposed to 200-10000 µg l-1 and 16-10000 µg l-1 lumefantrine, respectively. Lumefantrine had a variable effect on the growth of the aquatic plants investigated. There was a decline in the growth of R. subcapitata and L. minor post-exposure to the drug. Contrarily, there was stimulation in the growth of Chlorella vulgaris. All experimental plants had a significant increase in lipid peroxidation, which was accompanied by an increase in malondialdehyde content. Peroxidase activity of L. minor increased only at low lumefantrine concentrations, while the opposite occurred at higher levels of the drug. Incubation in lumefantrine contaminated medium significantly up-regulated the activity of R. subcapitata cultures. Glutathione S-transferase of L. minor exposed to lumefantrine treatments had substantially higher activities than the controls. Our findings suggest lumefantrine could have adverse but variable effects on the growth and physiology of the studied aquatic plants.


Assuntos
Antimaláricos/toxicidade , Araceae/efeitos dos fármacos , Chlorella vulgaris/efeitos dos fármacos , Clorófitas/efeitos dos fármacos , Lumefantrina/toxicidade , Microalgas/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Araceae/crescimento & desenvolvimento , Araceae/metabolismo , Chlorella vulgaris/crescimento & desenvolvimento , Chlorella vulgaris/metabolismo , Clorofila/metabolismo , Clorófitas/crescimento & desenvolvimento , Clorófitas/metabolismo , Glutationa Transferase/metabolismo , Peroxidação de Lipídeos , Malondialdeído/metabolismo , Microalgas/crescimento & desenvolvimento , Microalgas/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Peroxidase/metabolismo , Proteínas de Plantas/metabolismo
9.
Biomolecules ; 11(1)2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33450858

RESUMO

Recently, plant bioreactors have flourished into an exciting area of synthetic biology because of their product safety, inexpensive production cost, and easy scale-up. Duckweed is the smallest and fastest-growing aquatic plant, and has advantages including simple processing and the ability to grow high biomass in smaller areas. Therefore, duckweed could be used as a new potential bioreactor for biological products such as vaccines, antibodies, pharmaceutical proteins, and industrial enzymes. Duckweed has made a breakthrough in biosynthesis as a chassis plant and is being utilized for the production of plenty of biological products or bio-derivatives with multiple uses and high values. This review summarizes the latest progress on genetic background, genetic transformation system, and bioreactor development of duckweed, and provides insights for further exploration and application of duckweed.


Assuntos
Araceae/metabolismo , Reatores Biológicos , Pesquisa/tendências , Araceae/genética , Araceae/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Transformação Genética
10.
Molecules ; 26(2)2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33451084

RESUMO

The application of layered double hydroxide (LDH) nanomaterials as catalysts has attracted great interest due to their unique structural features. It also triggered the need to study their fate and behavior in the aquatic environment. In the present study, Zn-Fe nanolayered double hydroxides (Zn-Fe LDHs) were synthesized using a co-precipitation method and characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and nitrogen adsorption-desorption analyses. The toxicity of the home-made Zn-Fe LDHs catalyst was examined by employing a variety of aquatic organisms from different trophic levels, namely the marine photobacterium Vibrio fischeri, the freshwater microalga Pseudokirchneriella subcapitata, the freshwater crustacean Daphnia magna, and the duckweed Spirodela polyrhiza. From the experimental results, it was evident that the acute toxicity of the catalyst depended on the exposure time and type of selected test organism. Zn-Fe LDHs toxicity was also affected by its physical state in suspension, chemical composition, as well as interaction with the bioassay test medium.


Assuntos
Hidróxidos/toxicidade , Ferro/toxicidade , Nanopartículas/toxicidade , Zinco/toxicidade , Aliivibrio fischeri/efeitos dos fármacos , Aliivibrio fischeri/metabolismo , Animais , Araceae/efeitos dos fármacos , Araceae/metabolismo , Clorofíceas/efeitos dos fármacos , Clorofíceas/metabolismo , Daphnia/efeitos dos fármacos , Daphnia/metabolismo , Hidróxidos/química , Ferro/química , Nanopartículas/química , Estresse Oxidativo/efeitos dos fármacos , Tamanho da Partícula , Espécies Reativas de Oxigênio/metabolismo , Água/química , Zinco/química
11.
Food Chem ; 343: 128392, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33191012

RESUMO

Duckweeds have long been consumed as vegetables in several South Asian countries. In this study of the chemical constituents of duckweed Landoltia punctata, a new compound, apigenin 6-C-[ß-D-apiofuranosyl-(1 â†’ 2)]-ß-D-glucopyranoside (1), and a previously LC-MS identified compound, quercetin 3-O-ß-D-apiofuranoside (3), as well as three known compounds, luteolin 6-C-[ß-D-apiofuranosyl-(1 â†’ 2)]-ß-D-glucopyranoside (2), apigenin 6-C-ß-D-glucopyranoside (4), and luteolin 7-O-neohespirodise (5), were isolated and identified on the basis of MS and NMR spectroscopic analyses and chemical derivations. In total, 24 flavonoids were identified in L. punctata 0001 by UPLC-ESI-QTOF-MS2. In DPPH and ABTS assays, 3 exhibited significant antioxidant activity with IC50 values of 4.03 ± 1.31 µg/mL and 14.9 ± 2.28 µg/mL, respectively. In in vivo antioxidant activity assays, 1 significantly increased the survival rate of juglone-exposed Caenorhabditis elegans by 2 to 3-fold, and by 75% following thermal damage. Compounds 1-5 exhibited moderate scavenging capacities of intracellular reactive oxygen species in C. elegans exposed to H2O2.


Assuntos
Antioxidantes/química , Araceae/química , Flavonoides/análise , Animais , Antioxidantes/farmacologia , Araceae/metabolismo , Caenorhabditis elegans/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Flavonoides/farmacologia , Peróxido de Hidrogênio/farmacologia , Naftoquinonas/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Espectrometria de Massas por Ionização por Electrospray
12.
Plant Cell Environ ; 44(3): 900-914, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33300188

RESUMO

Flavonoids may mediate UV protection in plants either by screening of harmful radiation or by minimizing the resulting oxidative stress. To help distinguish between these alternatives, more precise knowledge of flavonoid distribution is needed. We used confocal laser scanning microscopy (cLSM) with the "emission fingerprinting" feature to study the cellular and subcellular distribution of flavonoid glucosides in the giant duckweed (Spirodela polyrhiza), and investigated the fitness effects of these compounds under natural UV radiation and copper sulphate addition (oxidative stress) using common garden experiments indoors and outdoors. cLSM "emission fingerprinting" allowed us to individually visualize the major dihydroxylated B-ring-substituted flavonoids, luteolin 7-O-glucoside and luteolin 8-C-glucoside, in cross-sections of the photosynthetic organs. While luteolin 8-C-glucoside accumulated mostly in the vacuoles and chloroplasts of mesophyll cells, luteolin 7-O-glucoside was predominantly found in the vacuoles of epidermal cells. In congruence with its cellular distribution, the mesophyll-associated luteolin 8-C-glucoside increased plant fitness under copper sulphate addition but not under natural UV light treatment, whereas the epidermis-associated luteolin 7-O-glucoside tended to increase fitness under both stresses across chemically diverse genotypes. Taken together, we demonstrate that individual flavonoid glucosides have distinct cellular and subcellular locations and promote duckweed fitness under different abiotic stresses.


Assuntos
Organismos Aquáticos/metabolismo , Araceae/metabolismo , Flavonoides/metabolismo , Glucosídeos/metabolismo , Organismos Aquáticos/fisiologia , Araceae/fisiologia , Flavonoides/fisiologia , Fluorescência , Microscopia Confocal , Estresse Oxidativo , Estresse Fisiológico , Raios Ultravioleta
13.
Ecotoxicol Environ Saf ; 207: 111553, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33254410

RESUMO

Duckweed (Landoltia punctata) is an ideal species to restore cadmium (Cd)-polluted waters due to its fast growth and easy harvesting. To understand its tolerance and detoxification mechanism, the Cd stress responses, subcellular Cd distribution and chemically bound Cd forms (especially protein-bound Cd) were surveyed in this study. L. punctata, a potential Cd bioremediation plant, was cultured hydroponically with Cd concentrations of 0.0, 0.5, 2.0, and 5.0 mg L-1 for 5 days. The results showed that the Cd content in L. punctata increased significantly as the Cd content increased. The majority of Cd was localized in the soluble fraction (23-55%) and the cell wall fraction (21-54%), and only 14-23% of Cd was located in cell organelles. Analysis of the Cd chemical forms demonstrated that the largest portion of Cd was found in 1 M NaCl extracts, followed by d-H2O and 2% HAc extracts, indicating that Cd was mainly bound to different proteins. Albumin- and globulin-bound Cd forms were predominant, together accounting for over 80% of the total protein-bound Cd in L. punctata. These results indicate that cell wall immobilization and vacuolar dissociation of Cd are possible primary strategies for Cd biosorption and detoxification in L. punctata, which occur mainly through chemical forms changes, especially the binding of Cd to proteins.


Assuntos
Araceae/metabolismo , Cádmio/metabolismo , Poluentes Químicos da Água/metabolismo , Biodegradação Ambiental , Cádmio/toxicidade , Tolerância a Medicamentos , Raízes de Plantas/metabolismo , Poluentes Químicos da Água/toxicidade
14.
Int J Mol Sci ; 21(24)2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33333747

RESUMO

Lipoxygenases (LOXs) (EC 1.13.11.12) catalyze the oxygenation of fatty acids and produce oxylipins, including the plant hormone jasmonic acid (JA) and its methyl ester, methyl jasmonate (MeJA). Little information is available about the LOX gene family in aquatic plants. We identified a novel LOX gene family comprising nine LOX genes in the aquatic plant Spirodela polyrhiza (greater duckweed). The reduced anatomy of S. polyrhiza did not lead to a reduction in LOX family genes. The 13-LOX subfamily, with seven genes, predominates, while the 9-LOX subfamily is reduced to two genes, an opposite trend from known LOX families of other plant species. As the 13-LOX subfamily is associated with the synthesis of JA/MeJA, its predominance in the Spirodela genome raises the possibility of a higher requirement for the hormone in the aquatic plant. JA-/MeJA-based feedback regulation during culture aging as well as the induction of LOX gene family members within 6 h of salt exposure are demonstrated.


Assuntos
Acetatos/farmacologia , Araceae/metabolismo , Ciclopentanos/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Lipoxigenase/genética , Lipoxigenase/metabolismo , Oxilipinas/farmacologia , Sais/farmacologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Araceae/efeitos dos fármacos , Araceae/genética , Araceae/crescimento & desenvolvimento , Bases de Dados Genéticas , Regulação da Expressão Gênica de Plantas/genética , Pressão Osmótica/efeitos dos fármacos , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
15.
Aquat Toxicol ; 229: 105579, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33075615

RESUMO

Effective phytoremediation by aquatic plant such as duckweed could be applied to solve Cd pollution. In the present study, the impact of Graphene oxide (GO) on the accumulation of Cd in duckweed has been studied. The response of duckweed was also investigated, concluding growth, Cd2+ flux, and gene expression response. Results showed that GO promoted the accumulation of Cd in duckweed. After 6 h of Cd enrichment in duckweed, Cd content was about 1.4 times that of the control group at fronds and 1.25 times that of the control group at roots, meanwhile, Cd content in the water system was 0.67 times that of the control group. The Cd2+ influx increased significantly. 4471 genes were up-regulated and 3230 genes were down-regulated significantly as duckweed treated with GO under Cd treatment. Moreover, phagosome pathway was downregulated, some key proteins: Stx7, Rab7 and Tubastatin B (TUBB) were significantly downregulated with GO addition under Cd stress. Scanning electron microscope (SEM) observation showed that GO and Cd were attached on the cell surface of duckweed as white crystal. GO could be applied in phytoremediation by duckweed of Cd in aquatic system.


Assuntos
Araceae/metabolismo , Cádmio/metabolismo , Grafite/toxicidade , Estresse Fisiológico , Absorção Fisiológica/efeitos dos fármacos , Araceae/efeitos dos fármacos , Araceae/crescimento & desenvolvimento , Araceae/ultraestrutura , Autofagia/efeitos dos fármacos , Autofagia/genética , Biodegradação Ambiental/efeitos dos fármacos , Permeabilidade da Membrana Celular/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ontologia Genética , Fagossomos/efeitos dos fármacos , Fagossomos/metabolismo , Fenótipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Raízes de Plantas/ultraestrutura , Estresse Fisiológico/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade
16.
Ecotoxicol Environ Saf ; 206: 111380, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33011511

RESUMO

Duckweed is a potential alternative protein source for food and feed. However, little is known about the nitrate accumulation in this plant. A high nitrate level in vegetables can indirectly lead to an elevated intake of nitrites and N-nitroso compounds, increasing the risk of diseases for humans and animals. This research hypothesizes that the nitrate accumulation of Lemna minor differs between growing media. Additionally, it evaluates whether legal safety levels of nitrate for human and animal intake are exceeded. The duckweed was grown on (i) rainwater, and (ii) three synthetic media containing different nutrient levels. Furthermore, (iii) biological effluent of swine manure treatment and (iv) aquaculture effluent from pikeperch production were used, as these are potential media for closing nutrient loops in the agriculture sector. It was found that nitrate levels increased with the increasing availability of macronutrients in the water, and pH showed a particularly strong negative correlation with the nitrate levels in the plant. Nevertheless, nitrate content never exceeded 530 mg NO3 kg-1 fresh weight. To conclude, Lemna minor's nitrate content was below safety limits for human consumption in all tested growing media; however, a potential risk for ruminants was observed as these are more sensitive to nitrate conversions in their gastro-intestinal track.


Assuntos
Araceae/metabolismo , Proteínas na Dieta/análise , Nitratos/metabolismo , Verduras/metabolismo , Agricultura , Animais , Meios de Cultura/química , Meios de Cultura/metabolismo , Proteínas na Dieta/efeitos adversos , Humanos , Concentração de Íons de Hidrogênio , Nitratos/análise , Águas Residuárias/química
17.
Bull Environ Contam Toxicol ; 105(5): 777-783, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33044567

RESUMO

The capacity of Lemna minor to remediate toxic heavy metals from wastewater is reasonably well documented. In view of the pivotal role of this species in the environmental clean-up, here we evaluated the bioaccumulation potential of L. minor for cadmium (Cd), lead (Pb), and nickel (Ni) through a controlled experiment. L. minor tolerated the metals Cd, Ni, and Pb up to 0.5, 5, and 8 mg/L, respectively, and beyond these concentrations the toxicity symptoms appeared. Bio-concentration factor varied at different concentrations of heavy metals tested. Overall, L. minor showed good phytoremediation potential for all the three tested heavy metals (Cd, Ni, and Pb), though in relative terms it was more effective in extracting Ni and Cd, as compared to Pb, both in single and mixed concentrations. In view of the growing pollution in Kashmir Himalayan aquatic habitats the phytoremediation by invasive species such as L. minor promises to be one of the best choices than other native plants for cleaning up of polluted soils/water because of its fast growth rate, high abundance, easy handling, and wide distribution in Kashmir Himalayan aquatic ecosystems.


Assuntos
Organismos Aquáticos/metabolismo , Araceae/metabolismo , Bioacumulação , Metais Pesados/metabolismo , Águas Residuárias/química , Organismos Aquáticos/crescimento & desenvolvimento , Araceae/crescimento & desenvolvimento , Biodegradação Ambiental , Cádmio/análise , Cádmio/metabolismo , Ecossistema , Índia , Lagos , Chumbo/análise , Chumbo/metabolismo , Metais Pesados/análise , Níquel/análise , Níquel/metabolismo
18.
Ecotoxicol Environ Saf ; 203: 111025, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32888593

RESUMO

We investigated individual and combined effects of environmentally representative concentrations of amoxicillin (AMX; 2 µg l-1), enrofloxacin (ENR; 2 µg l-1), and oxytetracycline (OXY; 1 µg l-1) on the aquatic macrophyte Lemna minor. While the concentrations of AMX and ENR tested were not toxic, OXY decreased plant growth and cell division. OXY induced hydrogen peroxide (H2O2) accumulation and related oxidative stress through its interference with the activities of mitochondria electron transport chain enzymes, although those deleterious effects could be ameliorated by the presence of AMX and/or ENR, which prevented the overaccumulation of ROS by increasing catalase enzyme activity. L. minor plants accumulated significant quantities of AMX, ENR and OXY from the media, although competitive uptakes were observed when plants were submitted to binary or tertiary mixtures of those antibiotics. Our results therefore indicate L. minor as a candidate for phytoremediation of service waters contaminated by AMX, ENR, and/or OXY.


Assuntos
Amoxicilina/toxicidade , Araceae/efeitos dos fármacos , Enrofloxacina/toxicidade , Oxitetraciclina/toxicidade , Fotossíntese/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Amoxicilina/análise , Amoxicilina/metabolismo , Araceae/crescimento & desenvolvimento , Araceae/metabolismo , Biodegradação Ambiental , Catalase/metabolismo , Relação Dose-Resposta a Droga , Interações Medicamentosas , Enrofloxacina/análise , Enrofloxacina/metabolismo , Peróxido de Hidrogênio/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Oxitetraciclina/análise , Oxitetraciclina/metabolismo , Poluentes Químicos da Água/análise
19.
Environ Toxicol Pharmacol ; 79: 103431, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32479818

RESUMO

Pharmaceutical drugs are among the most used chemicals, for human and veterinary medicines, aquaculture and agriculture. Pharmaceuticals are biologically active molecules, having also environmental persistence, thereby exerting biological effects on non-target species. Among the most used pharmaceuticals, one may find salicylic acid (SA), a non-steroid anti-inflammatory drugs (NSAIDs), and acetazolamide (ACZ), a diuretic drug that acts by inhibiting the activity of carbonic anhydrase (CA). In this work, single and combined effects of SA and ACZ were assessed in the aquatic macrophyte Lemna gibba L., focusing on physiological parameters, namely photosynthetic pigments, (chlorophyll a, b and total (Chl a, b and TChl) as well as carotenoids (Car)). In addition, chemical biomarkers, namely, glutathione S-transferases (GSTs), catalase (CAT) and carbonic anhydrase (CA) activities, were also determined. The highest concentrations of ACZ, caused a decrease in the contents of all chlorophylls; this effect was however reverted by SA exposure. Both ACZ and SA levels caused a decrease in CA activity. Nevertheless, when in combination, this inhibition was not observed in plants exposed to the lowest concentration of these drugs. In conclusion, both pharmaceuticals have the capacity to cause alterations in L. gibba enzymatic activity and photosynthetic pigments content. Additionally, SA seems to exert a protective effect on this species against deleterious effects caused by ACZ.


Assuntos
Acetazolamida/toxicidade , Anti-Inflamatórios não Esteroides/farmacologia , Araceae/efeitos dos fármacos , Diuréticos/toxicidade , Ácido Salicílico/farmacologia , Poluentes Químicos da Água/toxicidade , Araceae/metabolismo , Anidrases Carbônicas/metabolismo , Carotenoides/metabolismo , Catalase/metabolismo , Clorofila/metabolismo , Interações Medicamentosas , Água Doce , Glutationa Transferase/metabolismo
20.
Artigo em Inglês | MEDLINE | ID: mdl-32585366

RESUMO

Pharmaceuticals are a large and diverse group of compounds used to treat, prevent and diagnose disease. Among these, a group that has been recently detected in the aquatic environment is that of the azole compounds, commonly used as antifungals. Clotrimazole (CLO) is a nonbiodegradable persistent azole compound, with broad-spectrum antifungal activity for which virtually no toxicological data are available, especially towards aquatic plants. The few existent data point to a documented interference with cytochrome P450 system of exposed organisms. Therefore, the aim of this paper was to evaluate the ecotoxicological effects of the fungicide CLO on two aquatic macrophyte species, namely, Lemna minor and Lemna gibba. To attain this purpose, an acute assay (96 h) was performed with both species being exposed to CLO, in a concentration range of 0 to 5 µg L-1. The analyzed endpoints were levels of chlorophyll a and b, total, carotenoids, catalase (CAT) and glutathione -s-transferases activities (GSTs). In general, CLO exposure caused some minor alterations in L. minor and L. gibba pigment contents. Antioxidant enzymes exhibited a different pattern in both species, since the highest concentrations of CLO caused an increase on CAT activity, and a decrease on GSTs activity in L. minor, and the opposite in L. gibba, reflected by a decrease on CAT activity and an increase on GSTs activity in all tested concentrations. These results demonstrate that CLO exposure resulted in potential deleterious effects on macrophytes, namely with the involvement of the antioxidant defense mechanisms that were likely deployed to cope with pro-oxidative conditions established by CLO.


Assuntos
Antifúngicos/toxicidade , Araceae/efeitos dos fármacos , Clotrimazol/toxicidade , Poluentes Químicos da Água/toxicidade , Antioxidantes/metabolismo , Araceae/crescimento & desenvolvimento , Araceae/metabolismo , Catalase/metabolismo , Ecotoxicologia , Glutationa Transferase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...