RESUMO
Many organisms have evolved specialized immune pattern-recognition receptors, including nucleotide-binding oligomerization domain-like receptors (NLRs) of the STAND superfamily that are ubiquitous in plants, animals, and fungi. Although the roles of NLRs in eukaryotic immunity are well established, it is unknown whether prokaryotes use similar defense mechanisms. Here, we show that antiviral STAND (Avs) homologs in bacteria and archaea detect hallmark viral proteins, triggering Avs tetramerization and the activation of diverse N-terminal effector domains, including DNA endonucleases, to abrogate infection. Cryo-electron microscopy reveals that Avs sensor domains recognize conserved folds, active-site residues, and enzyme ligands, allowing a single Avs receptor to detect a wide variety of viruses. These findings extend the paradigm of pattern recognition of pathogen-specific proteins across all three domains of life.
Assuntos
Archaea , Proteínas Arqueais , Bactérias , Proteínas de Bactérias , Imunidade Inata , Proteínas NLR , Receptores de Reconhecimento de Padrão , Proteínas Virais , Animais , Archaea/imunologia , Archaea/virologia , Proteínas Arqueais/química , Proteínas Arqueais/classificação , Proteínas Arqueais/genética , Bactérias/imunologia , Bactérias/virologia , Proteínas de Bactérias/química , Proteínas de Bactérias/classificação , Proteínas de Bactérias/genética , Bacteriófagos , Microscopia Crioeletrônica , Proteínas NLR/química , Proteínas NLR/genética , Filogenia , Receptores de Reconhecimento de Padrão/química , Receptores de Reconhecimento de Padrão/classificação , Receptores de Reconhecimento de Padrão/genética , Proteínas Virais/química , Proteínas Virais/genéticaRESUMO
Today, the number of known viruses infecting methanogenic archaea is limited. Here, we report on a novel lytic virus, designated Blf4, and its host strain Methanoculleus bourgensis E02.3, a methanogenic archaeon belonging to the Methanomicrobiales, both isolated from a commercial biogas plant in Germany. The virus consists of an icosahedral head 60 nm in diameter and a long non-contractile tail of 125 nm in length, which is consistent with the new isolate belonging to the Siphoviridae family. Electron microscopy revealed that Blf4 attaches to the vegetative cells of M. bourgensis E02.3 as well as to cellular appendages. Apart from M. bourgensis E02.3, none of the tested Methanoculleus strains were lysed by Blf4, indicating a narrow host range. The complete 37 kb dsDNA genome of Blf4 contains 63 open reading frames (ORFs), all organized in the same transcriptional direction. For most of the ORFs, potential functions were predicted. In addition, the genome of the host M. bourgensis E02.3 was sequenced and assembled, resulting in a 2.6 Mbp draft genome consisting of nine contigs. All genes required for a hydrogenotrophic lifestyle were predicted. A CRISPR/Cas system (type I-U) was identified with six spacers directed against Blf4, indicating that this defense system might not be very efficient in fending off invading Blf4 virus.
Assuntos
Vírus de Archaea/genética , Vírus de Archaea/metabolismo , Methanomicrobiaceae/virologia , Archaea/virologia , Vírus de Archaea/classificação , Sequência de Bases/genética , Genoma Viral/genética , Especificidade de Hospedeiro/genética , Methanomicrobiaceae/genética , Methanomicrobiaceae/metabolismo , Methanomicrobiales/genética , Methanomicrobiales/virologia , Filogenia , Análise de Sequência de DNA/métodos , Vírus/genéticaRESUMO
In this article, we - the Bacterial Viruses Subcommittee and the Archaeal Viruses Subcommittee of the International Committee on Taxonomy of Viruses (ICTV) - summarise the results of our activities for the period March 2020 - March 2021. We report the division of the former Bacterial and Archaeal Viruses Subcommittee in two separate Subcommittees, welcome new members, a new Subcommittee Chair and Vice Chair, and give an overview of the new taxa that were proposed in 2020, approved by the Executive Committee and ratified by vote in 2021. In particular, a new realm, three orders, 15 families, 31 subfamilies, 734 genera and 1845 species were newly created or redefined (moved/promoted).
Assuntos
Vírus de Archaea/classificação , Bacteriófagos/classificação , Sociedades Científicas/organização & administração , Archaea/virologia , Bactérias/virologiaRESUMO
The continental subsurface houses a major portion of life's abundance and diversity, yet little is known about viruses infecting microbes that reside there. Here, we use a combination of metagenomics and virus-targeted direct-geneFISH (virusFISH) to show that highly abundant carbon-fixing organisms of the uncultivated genus Candidatus Altiarchaeum are frequent targets of previously unrecognized viruses in the deep subsurface. Analysis of CRISPR spacer matches display resistances of Ca. Altiarchaea against eight predicted viral clades, which show genomic relatedness across continents but little similarity to previously identified viruses. Based on metagenomic information, we tag and image a putatively viral genome rich in protospacers using fluorescence microscopy. VirusFISH reveals a lytic lifestyle of the respective virus and challenges previous predictions that lysogeny prevails as the dominant viral lifestyle in the subsurface. CRISPR development over time and imaging of 18 samples from one subsurface ecosystem suggest a sophisticated interplay of viral diversification and adapting CRISPR-mediated resistances of Ca. Altiarchaeum. We conclude that infections of primary producers with lytic viruses followed by cell lysis potentially jump-start heterotrophic carbon cycling in these subsurface ecosystems.
Assuntos
Archaea/genética , Vírus de Archaea/genética , Genoma Viral/genética , Metagenoma/genética , Metagenômica/métodos , Archaea/classificação , Archaea/virologia , Vírus de Archaea/metabolismo , Vírus de Archaea/fisiologia , Biofilmes/crescimento & desenvolvimento , Ecossistema , Genômica/métodos , Interações Hospedeiro-Patógeno/genética , Lisogenia/genética , Microscopia de Fluorescência , Filogenia , RNA Ribossômico 16S/genética , Especificidade da Espécie , Ativação Viral/genéticaRESUMO
Members of the family Thaspiviridae have linear dsDNA genomes of 27 to 29 kbp and are the first viruses known to infect mesophilic ammonia-oxidizing archaea of the phylum Thaumarchaeota. The spindle-shaped virions of Nitrosopumilus spindle-shaped virus 1 possess short tails at one pole and measure 64±3 nm in diameter and 112±6 nm in length. This morphology is similar to that of members of the families Fuselloviridae and Halspiviridae. Virus replication is not lytic but leads to growth inhibition of the host. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Thaspiviridae, which is available at ictv.global/report/thaspiviridae.
Assuntos
Archaea/virologia , Vírus de Archaea/classificação , Vírus de DNA/classificação , Vírus de Archaea/genética , Vírus de Archaea/fisiologia , Vírus de Archaea/ultraestrutura , Vírus de DNA/genética , Vírus de DNA/fisiologia , Vírus de DNA/ultraestrutura , Genoma Viral , Especificidade de Hospedeiro , Vírion/ultraestrutura , Replicação ViralRESUMO
Bacteriophages have important roles in the ecology of the human gut microbiome but are under-represented in reference databases. To address this problem, we assembled the Metagenomic Gut Virus catalogue that comprises 189,680 viral genomes from 11,810 publicly available human stool metagenomes. Over 75% of genomes represent double-stranded DNA phages that infect members of the Bacteroidia and Clostridia classes. Based on sequence clustering we identified 54,118 candidate viral species, 92% of which were not found in existing databases. The Metagenomic Gut Virus catalogue improves detection of viruses in stool metagenomes and accounts for nearly 40% of CRISPR spacers found in human gut Bacteria and Archaea. We also produced a catalogue of 459,375 viral protein clusters to explore the functional potential of the gut virome. This revealed tens of thousands of diversity-generating retroelements, which use error-prone reverse transcription to mutate target genes and may be involved in the molecular arms race between phages and their bacterial hosts.
Assuntos
Vírus de DNA/genética , Microbioma Gastrointestinal/genética , Genoma Viral/genética , Archaea/virologia , Bactérias/virologia , Bacteriófagos/genética , Catálogos como Assunto , Vírus de DNA/classificação , DNA Viral/genética , Fezes/microbiologia , Variação Genética , Humanos , Metagenômica , Filogenia , Proteínas Virais/genéticaRESUMO
The International Committee on Taxonomy of Viruses (ICTV) has recently adopted a comprehensive, hierarchical system of virus taxa. The highest ranks in this hierarchy are realms, each of which is considered monophyletic but apparently originated independently of other realms. Here, we announce the creation of a new realm, Adnaviria, which unifies archaeal filamentous viruses with linear A-form double-stranded DNA genomes and characteristic major capsid proteins unrelated to those encoded by other known viruses.
Assuntos
Vírus de Archaea/classificação , Vírus de Archaea/genética , Vírus de DNA/classificação , Vírus de DNA/genética , Archaea/virologia , Proteínas do Capsídeo/genética , DNA Viral/genética , Genoma Viral/genética , Filogenia , Replicação ViralRESUMO
Bacteriophages or phages are viruses that infect bacterial cells (for the scope of this review we will also consider viruses that infect Archaea). The constant threat of phage infection is a major force that shapes evolution of microbial genomes. To withstand infection, bacteria had evolved numerous strategies to avoid recognition by phages or to directly interfere with phage propagation inside the cell. Classical molecular biology and genetic engineering had been deeply intertwined with the study of phages and host defenses. Nowadays, owing to the rise of phage therapy, broad application of CRISPR-Cas technologies, and development of bioinformatics approaches that facilitate discovery of new systems, phage biology experiences a revival. This review describes variety of strategies employed by microbes to counter phage infection. In the first part defense associated with cell surface, roles of small molecules, and innate immunity systems relying on DNA modification were discussed. The second part focuses on adaptive immunity systems, abortive infection mechanisms, defenses associated with mobile genetic elements, and novel systems discovered in recent years through metagenomic mining.
Assuntos
Archaea/virologia , Bactérias/virologia , Bacteriófagos/fisiologia , Sistemas CRISPR-Cas , Interações Hospedeiro-Patógeno , Archaea/genética , Archaea/fisiologia , Bactérias/genética , Fenômenos Fisiológicos BacterianosRESUMO
This Special Issue celebrates viruses of microbes: those viruses that infect archaea, bacteria and microbial eukaryotes [...].
Assuntos
Archaea/virologia , Bactérias/virologia , Eucariotos/virologia , Fenômenos Fisiológicos Virais , Vírus , Interações Hospedeiro-Patógeno , MicrobiologiaRESUMO
Bacteriophages or phages are viruses that infect bacterial cells (for the scope of this review we will also consider viruses that infect Archaea). Constant threat of phage infection is a major force that shapes evolution of the microbial genomes. To withstand infection, bacteria had evolved numerous strategies to avoid recognition by phages or to directly interfere with phage propagation inside the cell. Classical molecular biology and genetic engineering have been deeply intertwined with the study of phages and host defenses. Nowadays, owing to the rise of phage therapy, broad application of CRISPR-Cas technologies, and development of bioinformatics approaches that facilitate discovery of new systems, phage biology experiences a revival. This review describes variety of strategies employed by microbes to counter phage infection, with a focus on novel systems discovered in recent years. First chapter covers defense associated with cell surface, role of small molecules, and innate immunity systems relying on DNA modification.
Assuntos
Archaea/virologia , Bactérias/virologia , Bacteriófagos , Archaea/genética , Archaea/metabolismo , Archaea/fisiologia , Bactérias/genética , Bactérias/metabolismo , Fenômenos Fisiológicos Bacterianos , Sistemas CRISPR-Cas , Interações entre Hospedeiro e MicrorganismosRESUMO
The importance of gene expression regulation in viruses based upon G-quadruplex may point to its potential utilization in therapeutic targeting. Here, we present analyses as to the occurrence of putative G-quadruplex-forming sequences (PQS) in all reference viral dsDNA genomes and evaluate their dependence on PQS occurrence in host organisms using the G4Hunter tool. PQS frequencies differ across host taxa without regard to GC content. The overlay of PQS with annotated regions reveals the localization of PQS in specific regions. While abundance in some, such as repeat regions, is shared by all groups, others are unique. There is abundance within introns of Eukaryota-infecting viruses, but depletion of PQS in introns of bacteria-infecting viruses. We reveal a significant positive correlation between PQS frequencies in dsDNA viruses and corresponding hosts from archaea, bacteria, and eukaryotes. A strong relationship between PQS in a virus and its host indicates their close coevolution and evolutionarily reciprocal mimicking of genome organization.
Assuntos
Biologia Computacional/métodos , DNA/genética , Quadruplex G , Genoma Viral , Proteínas Virais/genética , Archaea/virologia , Bactérias/virologia , Regulação da Expressão Gênica , Genoma , Humanos , Vírus/genéticaRESUMO
The bacterial and archaeal cell surface is decorated with filamentous surface structures that are used for different functions, such as motility, DNA exchange and biofilm formation. Viruses hijack these structures and use them to ride to the cell surface for successful entry. In this review, we describe currently known mechanisms for viral attachment, translocation, and entry via filamentous surface structures. We describe the different mechanisms used to exploit various surface structures bacterial and archaeal viruses. This overview highlights the importance of filamentous structures at the cell surface for entry of prokaryotic viruses.
Assuntos
Archaea/virologia , Vírus de Archaea/fisiologia , Bactérias/virologia , Bacteriófagos/fisiologia , Citoesqueleto/virologia , Proteínas de Fímbrias , Fímbrias Bacterianas/virologia , Flagelos/virologiaRESUMO
As one of the largest biotechnological applications, activated sludge (AS) systems in wastewater treatment plants (WWTPs) harbor enormous viruses, with 10-1,000-fold higher concentrations than in natural environments. However, the compositional variation and host-connections of AS viruses remain poorly explored. Here, we report a catalogue of ~50,000 prokaryotic viruses from six WWTPs, increasing the number of described viral species of AS by 23-fold, and showing the very high viral diversity which is largely unknown (98.4-99.6% of total viral contigs). Most viral genera are represented in more than one AS system with 53 identified across all. Viral infection widely spans 8 archaeal and 58 bacterial phyla, linking viruses with aerobic/anaerobic heterotrophs, and other functional microorganisms controlling nitrogen/phosphorous removal. Notably, Mycobacterium, notorious for causing AS foaming, is associated with 402 viral genera. Our findings expand the current AS virus catalogue and provide reference for the phage treatment to control undesired microorganisms in WWTPs.
Assuntos
Ciclo do Carbono , Células Procarióticas/virologia , Esgotos/virologia , Viroma/genética , Vírus/genética , Purificação da Água/métodos , Archaea/classificação , Archaea/genética , Archaea/virologia , Bactérias/classificação , Bactérias/genética , Bactérias/virologia , Metabolismo Energético/genética , Genes Virais/genética , Variação Genética , Interações Hospedeiro-Patógeno , Fases de Leitura Aberta/genética , Células Procarióticas/metabolismo , Análise de Sequência de DNA/métodos , Esgotos/microbiologia , Vírus/classificação , Vírus/metabolismoRESUMO
To provide protection against viral infection and limit the uptake of mobile genetic elements, bacteria and archaea have evolved many diverse defence systems. The discovery and application of CRISPR-Cas adaptive immune systems has spurred recent interest in the identification and classification of new types of defence systems. Many new defence systems have recently been reported but there is a lack of accessible tools available to identify homologs of these systems in different genomes. Here, we report the Prokaryotic Antiviral Defence LOCator (PADLOC), a flexible and scalable open-source tool for defence system identification. With PADLOC, defence system genes are identified using HMM-based homologue searches, followed by validation of system completeness using gene presence/absence and synteny criteria specified by customisable system classifications. We show that PADLOC identifies defence systems with high accuracy and sensitivity. Our modular approach to organising the HMMs and system classifications allows additional defence systems to be easily integrated into the PADLOC database. To demonstrate application of PADLOC to biological questions, we used PADLOC to identify six new subtypes of known defence systems and a putative novel defence system comprised of a helicase, methylase and ATPase. PADLOC is available as a standalone package (https://github.com/padlocbio/padloc) and as a webserver (https://padloc.otago.ac.nz).
Assuntos
Antibiose/genética , Archaea/genética , Proteínas Arqueais/genética , Bactérias/genética , Proteínas de Bactérias/genética , Bacteriófagos/genética , Software , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Archaea/classificação , Archaea/metabolismo , Archaea/virologia , Proteínas Arqueais/metabolismo , Bactérias/classificação , Bactérias/metabolismo , Bactérias/virologia , Proteínas de Bactérias/metabolismo , Bacteriófagos/crescimento & desenvolvimento , Sistemas CRISPR-Cas , DNA Helicases/genética , DNA Helicases/metabolismo , Metilases de Modificação do DNA/genética , Metilases de Modificação do DNA/metabolismo , Cadeias de Markov , Filogenia , Terminologia como AssuntoRESUMO
A challenge in virology is quantifying relative virulence (VR) between two (or more) viruses that exhibit different replication dynamics in a given susceptible host. Host growth curve analysis is often used to mathematically characterize virus-host interactions and to quantify the magnitude of detriment to host due to viral infection. Quantifying VR using canonical parameters, like maximum specific growth rate (µmax), can fail to provide reliable information regarding virulence. Although area-under-the-curve (AUC) calculations are more robust, they are sensitive to limit selection. Using empirical data from Sulfolobus Spindle-shaped Virus (SSV) infections, we introduce a novel, simple metric that has proven to be more robust than existing methods for assessing VR. This metric (ISC) accurately aligns biological phenomena with quantified metrics to determine VR. It also addresses a gap in virology by permitting comparisons between different non-lytic virus infections or non-lytic versus lytic virus infections on a given host in single-virus/single-host infections.
Assuntos
Virologia/métodos , Vírus/patogenicidade , Archaea/crescimento & desenvolvimento , Archaea/virologia , Área Sob a Curva , Fuselloviridae/crescimento & desenvolvimento , Fuselloviridae/patogenicidade , Interações Hospedeiro-Patógeno , Modelos Biológicos , Virulência , Replicação Viral , Vírus/crescimento & desenvolvimentoRESUMO
The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas (CRISPR-associated proteins) system represents, in prokaryotes, an adaptive and inheritable immune response against invading DNA. The discovery of anti-CRISPR proteins (Acrs), which are inhibitors of CRISPR-Cas, mainly encoded by phages and prophages, showed a co-evolution history between prokaryotes and phages. In the past decade, the CRISPR-Cas systems together with the corresponding Acrs have been turned into a genetic-engineering tool. Among the six types of CRISPR-Cas characterized so far, type II CRISPR-Cas system is the most popular in biotechnology. Here, we discuss about the discovery, the reported inhibitory mechanisms, and the applications in both gene editing and gene transcriptional regulation of type II Acrs. Moreover, we provide insights into future potential research and feasible applications.
Assuntos
Archaea/genética , Bactérias/genética , Bacteriófagos/genética , Sistemas CRISPR-Cas , Edição de Genes/métodos , Prófagos/genética , Archaea/imunologia , Archaea/virologia , Bactérias/imunologia , Bactérias/virologia , Bacteriófagos/metabolismo , Coevolução Biológica , Biotecnologia/instrumentação , Biotecnologia/tendências , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Humanos , Prófagos/metabolismo , /metabolismo , Biologia Sintética/instrumentação , Biologia Sintética/tendênciasRESUMO
Many bacterial and archaeal organisms use clustered regularly interspaced short palindromic repeats-CRISPR associated (CRISPR-Cas) systems to defend themselves from mobile genetic elements. These CRISPR-Cas systems are classified into six types based on their composition and mechanism. CRISPR-Cas enzymes are widely used for genome editing and offer immense therapeutic opportunity to treat genetic diseases. To realize their full potential, it is important to control the timing, duration, efficiency and specificity of CRISPR-Cas enzyme activities. In this Review we discuss the mechanisms of natural CRISPR-Cas regulatory biomolecules and engineering strategies that enhance or inhibit CRISPR-Cas immunity by altering enzyme function. We also discuss the potential applications of these CRISPR regulators and highlight unanswered questions about their evolution and purpose in nature.
Assuntos
Archaea/genética , Bactérias/genética , Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Regulação da Expressão Gênica em Archaea , Regulação Bacteriana da Expressão Gênica , Antibiose/genética , Archaea/metabolismo , Archaea/virologia , Bactérias/metabolismo , Bactérias/virologia , Bacteriófagos/genética , Bacteriófagos/crescimento & desenvolvimento , Bacteriófagos/metabolismo , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , Edição de Genes/métodos , Engenharia Genética/métodos , Humanos , Sequências Repetitivas Dispersas , /metabolismoRESUMO
Leucine-rich repeats (LRRs) are present in over 563,000 proteins from viruses to eukaryotes. LRRs repeat in tandem and have been classified into fifteen classes in which the repeat unit lengths range from 20 to 29 residues. Most LRR proteins are involved in protein-protein or ligand interactions. The amount of genome sequence data from viruses is increasing rapidly, and although viral LRR proteins have been identified, a comprehensive sequence analysis has not yet been done, and their structures, functions, and evolution are still unknown. In the present study, we characterized viral LRRs by sequence analysis and identified over 600 LRR proteins from 89 virus species. Most of these proteins were from double-stranded DNA (dsDNA) viruses, including nucleocytoplasmic large dsDNA viruses (NCLDVs). We found that the repeating unit lengths of 11 types are one to five residues shorter than those of the seven known corresponding LRR classes. The repeating units of six types are 19 residues long and are thus the shortest among all LRRs. In addition, two of the LRR types are unique and have not been observed in bacteria, archae or eukaryotes. Conserved strongly hydrophobic residues such as Leu, Val or Ile in the consensus sequences are replaced by Cys with high frequency. Phylogenetic analysis indicated that horizontal gene transfer of some viral LRR genes had occurred between the virus and its host. We suggest that the shortening might contribute to the survival strategy of viruses. The present findings provide a new perspective on the origin and evolution of LRRs.
Assuntos
DNA/genética , Leucina/genética , Sequências Repetitivas de Aminoácidos/genética , Vírus/genética , Archaea/virologia , Bactérias/virologia , Sequência Consenso/genética , Eucariotos/virologia , Filogenia , Proteínas Virais/genéticaRESUMO
Bacteria and archaea are frequently attacked by viruses and other mobile genetic elements and rely on dedicated antiviral defense systems, such as restriction endonucleases and CRISPR, to survive. The enormous diversity of viruses suggests that more types of defense systems exist than are currently known. By systematic defense gene prediction and heterologous reconstitution, here we discover 29 widespread antiviral gene cassettes, collectively present in 32% of all sequenced bacterial and archaeal genomes, that mediate protection against specific bacteriophages. These systems incorporate enzymatic activities not previously implicated in antiviral defense, including RNA editing and retron satellite DNA synthesis. In addition, we computationally predict a diverse set of other putative defense genes that remain to be characterized. These results highlight an immense array of molecular functions that microbes use against viruses.