Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Syst Evol Microbiol ; 70(9): 4874-4882, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32821037

RESUMO

A polyphasic study was undertaken to establish the position of a Streptomyces strain, isolate PRKS01-65T, recovered from sand dune soil collected at Parangkusumo, Yogyakarta Province, Java, Indonesia. A combination of chemotaxonomic, cultural and morphological properties confirmed its position in the genus of Streptomyces. Comparative 16S rRNA gene sequence analyses showed that the isolate was most closely related to Streptomyces leeuwenhoekii C34T (99.9 % similarity) and loosely associated with the type strains of Streptomyces chiangmaiensis (98.7 % similarity) and Streptomyces glomeratus (98.9 % similarity). Multilocus sequence analyses based on five conserved housekeeping gene alleles confirmed the close relationship between the isolate and S. leeuwenhoekii C34T, although both strains belonged to a well-supported clade that encompassed the type strains of S. glomeratus, Streptomyces griseomycini, Streptomyces griseostramineus, Streptomyces labedae, Streptomyces lomondensis and Streptomyces spinoverrucosus. A comparison of the draft genome sequence generated for the isolate with corresponding whole genome sequences of its closest phylogenomic neighbours showed that it formed a well-separated lineage with S. leeuwenhoekii C34T. These strains can also be distinguished using a combination of phenotypic properties and by average nucleotide identity and digital DNA-DNA hybridization similarities of 94.3 and 56 %, values consistent with their classification in different species. Based on this wealth of data it is proposed that isolate PRKS01-65T (=NCIMB 15211T=CCMM B1302T=ICEBB-03T) be classified as Streptomyces harenosi sp. nov. The genome of the isolate contains several biosynthetic gene clusters with the potential to produce new natural products.


Assuntos
Filogenia , Areia/microbiologia , Microbiologia do Solo , Streptomyces/classificação , Genes Bacterianos , Indonésia , Família Multigênica , RNA Ribossômico 16S/genética , Streptomyces/isolamento & purificação
2.
Int J Syst Evol Microbiol ; 70(4): 2435-2439, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32559833

RESUMO

A bacterial strain, designated GEM5T, was isolated from sand soil samples from the Qinghai-Tibet Plateau. The polyphasic study confirmed the affiliation of the isolate with the genus Massilia. GEM5T had Gram-stain-negative, non-spore-forming and rod-shaped cells and grew at 4-30 °C, pH 6-8 and with 0-2 % (w/v) NaCl. Its cell wall contained ribose. Q8 was the predominant respiratory quinone, and summed feature 3 (C16 : 1ω6c/ω7c) and C16 : 0 were the major components of the fatty acids. The polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, an unidentified phospholipid, an unidentified aminolipid and four unidentified lipids. The DNA G+C content was 65.1 mol%. The phylogenetic analysis based on the 16S rRNA gene showed a stable clade being formed by GEM5T, Massilia timonae CCUG 45783T (97.94 %) and Massilia oculi CCUG 43427AT (97.58 %). The average nucleotide identity (ANIb) values between GEM5T and M. timonae CCUG 45783T, M.oculi CCUG 43427AT were 91.3 and 91.7 %, respectively. On the basis of the morphological, physiological and chemotaxonomic pattern, it was proposed that strain GEM5T (=JCM 32744T=CICC 24458T) should be classified as representing a member of the genus Massilia with the name Massilia arenae sp. nov.


Assuntos
Oxalobacteraceae/classificação , Filogenia , Areia/microbiologia , Microbiologia do Solo , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Hibridização de Ácido Nucleico , Oxalobacteraceae/isolamento & purificação , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Tibet , Ubiquinona/química
3.
Int J Syst Evol Microbiol ; 70(5): 3497-3503, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32379018

RESUMO

A novel rod-shaped and Gram-stain-negative bacterium, designated strain RZ05T, was isolated from a sand sample collected from the intertidal zone of the Yellow Sea, PR China. Results of phylogenetic analysis based on 16S rRNA gene sequences revealed that strain RZ05T clusters within the genus Maribacter, a member of the family Flavobacteriaceae, and has the highest sequence similarity to Maribacter polysiphoniae KCTC 22021T (97.8 %), followed by Maribacter arenosus KCTC 52191T (97.2 %). Cells of this strain were observed to be aerobic, oxidase- and catalase-positive, motile by gliding and formed yellow colonies. Growth occurred at 7-40 °C (optimum, 30 °C), at pH 6.5-9.5 (optimum, pH 7.0) and with 0.5-6 % (optimum, 2 %) NaCl. Its polar lipid profile included phosphatidylethanolamine, two unidentified glycolipids, one unidentified aminolipid and four unidentified lipids. The major cellular fatty acids were iso-C15 : 0, iso-C15 : 1 G, iso-C17 : 0 3-OH, iso-C16 : 0 3-OH, iso-C15 : 0 3-OH, summed feature 9 (10-methyl C16 : 0/iso-C17 : 1 ω9c) and summed feature 3 (iso-C15 : 0 2-OH/C16 : 1 ω7c/C16 : 1 ω6c). The only respiratory quinone was menaquinone 6 (MK-6). The genome of strain RZ05T was 4.65 Mbp with a G+C content of 38.9 mol%. The average nucleotide identity and in silico DNA-DNA hybridization values between strain RZ05T and its most closely related type strain M. polysiphoniae KCTC 22021T were 80.3 and 26.3  %, respectively. The results of phylogenetic, phenotypic and chemotaxonomic analyses indicated that strain RZ05T represents a novel species of the genus Maribacter, for which the name Maribacter luteus sp. nov. is proposed. The type strain is RZ05T (=KCTC 62834T=MCCC 1K03617T).


Assuntos
Filogenia , Areia/microbiologia , Água do Mar/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , China , DNA Bacteriano/genética , Ácidos Graxos/química , Flavobacteriaceae/classificação , Hibridização de Ácido Nucleico , Fosfatidiletanolaminas/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vitamina K 2/análogos & derivados , Vitamina K 2/química
4.
Sci Rep ; 10(1): 6662, 2020 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-32313127

RESUMO

The environment affects the composition and function of soil microbiome, which indirectly influences the quality of plants. In this study, 16S amplicon sequencing was used to reveal the differences in soil microbial community composition of Cistanche deserticola in three ecotypes (saline-alkali land, grassland and sandy land). Through the correlation analysis of microbial community abundance, phenylethanoid glycoside contents and ecological factors, the regulatory relationship between microbial community and the quality variation of C. deserticola was expounded. The metabolic function profile of soil microbiome was predicted using Tax4Fun. Data showed that the soil microbial communities of the three ecotypes were significantly different (AMOVA, P < 0.001), and the alpha diversity of grassland soil microbial community was the highest. Core microbiome analysis demonstrated that the soil microbial communities of C. deserticola were mostly have drought, salt tolerance, alkali resistance and stress resistance, such as Micrococcales and Bacillales. The biomarkers, namely, Oceanospirillales (saline-alkali land), Sphingomonadales (grassland) and Propionibacteriales (sandy land), which can distinguish three ecotype microbial communities, were excavated through LEfSe and random forest. Correlation analysis results demonstrated that 2'-acetylacteoside is positively correlated with Oceanospirillales in saline-alkali land soil. The metabolic function profiles displayed highly enriched metabolism (carbohydrate and amino acid metabolisms) and environmental information processing (membrane transport and signal transduction) pathways. Overall, the composition and function of soil microbiomes were found to be important factors to the quality variation of C. deserticola in different ecotypes. This work provided new insight into the regulatory relationship amongst the environment, soil microbial community and plant quality variation.


Assuntos
Bacillales/classificação , Cistanche/microbiologia , Micrococcaceae/classificação , Oceanospirillaceae/classificação , Propionibacteriaceae/classificação , Microbiologia do Solo , Sphingomonadaceae/classificação , Bacillales/genética , Bacillales/isolamento & purificação , Técnicas de Tipagem Bacteriana , China , Cistanche/fisiologia , Secas , Ecótipo , Variação Genética , Glicosídeos/biossíntese , Pradaria , Concentração de Íons de Hidrogênio , Micrococcaceae/genética , Micrococcaceae/isolamento & purificação , Oceanospirillaceae/genética , Oceanospirillaceae/isolamento & purificação , Filogenia , Propionibacteriaceae/genética , Propionibacteriaceae/isolamento & purificação , RNA Ribossômico 16S/genética , Salinidade , Tolerância ao Sal/genética , Areia/microbiologia , Solo/química , Sphingomonadaceae/genética , Sphingomonadaceae/isolamento & purificação
5.
Int J Syst Evol Microbiol ; 70(4): 2682-2689, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32141810

RESUMO

Three aerobic, rod-shaped actinobacterial strains, designated MMS17-SY117T, MMS17-SY207-3T and MMS17-SY213T, were isolated from soil and their taxonomic positions were analysed using a polyphasic approach. The isolates showed best growth at 30 °C, pH 7 and 0-1 % (w/v) NaCl. On the basis of 16S rRNA gene sequence similarity, the isolates were affiliated to the genus Nocardioides, and the closest species to MMS17-SY117T, MMS17-SY207-3T and MMS17-SY213T were Nocardioides aestuarii JC2056T (97.76%), Nocardioides currus IB-3T (97.41%) and Nocardioides exalbidus RC825T (98.71%), respectively. Each isolate formed a distinct cluster within the Nocardioides clade in the phylogenetic tree. The orthologous average nucleotide identity and digital DNA-DNA hybridization values were in the range of 74.4-85.7 % and 16.6-39.2 %, respectively, with the type strains of related species. The major polar lipids in all three strains were phosphatidylinositol, phosphatidylglycerol and diphosphatidylglycerol. The predominant fatty acids were iso-C16 : 0 and C17 : 1 ω8c. MK-8(H4) was the major isoprenoid quinone and ll-DAP was the major diamino acid. Galactose, glucose and rhamnose were present in the whole-cell hydrolysate, and MMS17-SY213T also contained mannose and ribose. The DNA G+C contents of MMS17-SY117T, MMS17-SY207-3T and MMS17-SY213T were 72.2, 70.4 and 71.5 mol%, respectively. The phylogenetic, phenotypic and chemotaxonomic data supported the classification of each strain as representing a new species of Nocardioides, for which the names Nocardioides euryhalodurans sp. nov. (MMS17-SY117T=KCTC 49175T=JCM 32831T), Nocardioides seonyuensis sp. nov. (MMS17-SY207-3T=KCTC 49176T=JCM 32832T) and Nocardioides eburneiflavus sp. nov. (MMS17-SY213T=KCTC 49177T=JCM 32833T) are proposed accordingly.


Assuntos
Actinobacteria/classificação , Filogenia , Microbiologia do Solo , Actinobacteria/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácido Diaminopimélico/química , Ácidos Graxos/química , Hibridização de Ácido Nucleico , Fosfolipídeos/química , RNA Ribossômico 16S/genética , República da Coreia , Areia/microbiologia , Análise de Sequência de DNA , Vitamina K 2/análogos & derivados , Vitamina K 2/química
6.
Int J Syst Evol Microbiol ; 70(3): 1639-1643, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32125262

RESUMO

A Gram-stain-negative, aerobic, rod-shaped bacterium with peritrichous flagella, designated strain HB161719T, was isolated from coastal sand collected from Tanmen Port in Hainan, PR China. The isolate was found to grow with 2-11 % (w/v) NaCl, at 15-45 °C and pH 6.0-10.0, with an optima of 2-3 % NaCl, 37 °C and pH 7.0, respectively. Chemotaxonomic analysis showed that Q-8 was detected as the sole respiratory quinone and that iso-C15 : 0 and summed features 3, 8 and 9 were the major cellular fatty acids. The G+C content of the genomic DNA was 58.2 mol%. Analysis of the 16S rRNA gene sequence of the strain showed an affiliation with the genus Microbulbifer, sharing 98.7, 98.4, 97.8 and 97.8 % sequence similarities to the closest relatives of Microbulbifer okinawensis ABABA23T, Microbulbifer pacificus SPO729T, Microbulbifer taiwanensis CC-LN1-12T and Microbulbifer gwangyangensis GY2T, respectively. Low DNA-DNA hybridization values showed that it formed a distinct genomic species. The combined phenotypic and molecular features supported that strain HB161719T represents a novel species of the genus Microbulbifer, for which the name Microbulbifer harenosus sp. nov. is proposed. The type strain is HB161719T (=CGMCC 1.13584T=JCM 32688T).


Assuntos
Alteromonadaceae/classificação , Filogenia , Areia/microbiologia , Alginatos/metabolismo , Alteromonadaceae/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases , China , DNA Bacteriano/genética , Ácidos Graxos/química , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Ubiquinona/química
7.
PLoS One ; 15(2): e0229387, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32106250

RESUMO

Studies of microbial community structure in intertidal and supratidal beach sands along the California and Gulf of Mexico coasts have begun to reveal geographical patterns in microbial diversity through the use of next generation sequencing technology. Only a few studies have targeted communities along the Eastern seaboard, leaving a variety of microbial ecosystems uncharacterized. In this study, we examine the microbial community structure within three South Carolina beaches along the Grand Strand via sequencing of the V4 region of the 16S rRNA gene to discern relationships between diversity and temporal or regional factors. Gammaproteobacteria, Planctomycetes, Acidobacteria, and Actinobacteria dominated the composition of these beaches. Diversity analyses revealed that highly diverse communities were similar in overall composition and diversity but showed different levels of community structure stability over time. The community structure in Pawleys Island sands showed no significant change over time, while Garden City experienced significant shifts between each sampling date. Community structure also differed between beaches and, to a lesser degree, sampling date. These data provide evidence of the high microbial diversity within these beach sands and suggest that even though beaches of the same geographic region can show similarity in composition and diversity at a particular timepoint, the nature of their community structure and underlying diversity may differ comparatively and over time.


Assuntos
Bactérias/genética , Biodiversidade , Microbiota , Areia/microbiologia , Microbiologia do Solo , Microbiologia da Água , Bactérias/classificação , Praias , DNA Bacteriano/genética , Sequenciamento de Nucleotídeos em Larga Escala , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , South Carolina
8.
Int J Syst Evol Microbiol ; 70(3): 1516-1521, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31935177

RESUMO

An alginate lyase-excreting bacterium, designated strain HB161718T, was isolated from coastal sand collected from Tanmen Port in Hainan, PR China. Cells were Gram-stain-negative rods and motile with a single polar flagellum. Its major isoprenoid quinone was ubiquinone 8 (Q-8), and its cellular fatty acid profile mainly consisted of C16 : 1 ω7c and/or C16 : 1 ω6c, C18 : 1 ω6c and/or C18 : 1 ω7c, C16 : 0, C17 : 0 10-methyl and C16 : 0 N alcohol. The G+C content of the genomic DNA was 44.1 mol%. 16S rRNA gene sequence analysis suggested that strain HB161718T belonged to the genus Alteromonas, sharing 99.5, 99.4, 99.2, 98.9 and 98.5 % sequence similarities to its closest relatives, Alteromonas macleodii JCM 20772T, Alteromonas gracilis 9a2T, Alteromonas australica H17T, Alteromonas marina SW-47T and Alteromonas mediterranea DET, respectively. The low values of DNA-DNA hybridization and average nucleotide identity showed that it formed a distinct genomic species. The combined phenotypic and molecular features supported the conclusion that strain HB161718T represents a novel species of the genus Alteromonas, for which the name Alteromonas portus sp. nov. is proposed. The type strain is HB161718T (=CGMCC 1.13585T=JCM 32687T).


Assuntos
Alteromonas/classificação , Filogenia , Polissacarídeo-Liase , Areia/microbiologia , Alteromonas/enzimologia , Alteromonas/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases , China , DNA Bacteriano/genética , Ácidos Graxos/química , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Ubiquinona/química
9.
J Infect Public Health ; 13(1): 51-57, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31272853

RESUMO

BACKGROUND: Dermatophytes are keratinophilic fungi, considered etiological agents of cutaneous mycoses in man and animals. The objective of this work was to isolate dermatophytic and non-dermatophytic fungi in recreational sandboxes (rainy and dry periods) in public day-care centers located in the city of Cuiabá-MT (Middle-west of Brazil). METHODS: Samples (n=200) were collected from the superficial layer of the sandboxes at a depth of 2-5cm in 10 public nurseries in Cuiabá-MT. Hair baits measuring 1-2cm were autoclaved and dispersed in 50g of the sample in sterile plates, incubated at 28°C, moistened with chloramphenicol solution (50mg/L). After 6 weeks the baits were inoculated on Sabouraud agar plus 50mg/L chloramphenicol and 500mg/L cycloheximide. The fungi were identified according to macroscopic and micromorphological characteristics. RESULTS: From the collected sand samples, 1318 colonies and 56 species of fungi belonging to 22 genera were isolated. The most important genera were Paecilomyces spp. (30.42%), Penicillium spp. (19.12%), Fusarium spp. (11.46%) and Aspergillus spp. (11.15%). Dermatophytes were recovered in 50% of day-care centers in a total of 29 identified colonies, the Trichophyton genus (86.2%) being the most frequently isolated. CONCLUSIONS: The dermatophytes in the recreational areas of day-care centers can pose a risk to the health of its users, especially for children and the employees. Work with this profile is very important to guide actions related to health surveillance.


Assuntos
Creches , Fungos/patogenicidade , Microbiologia do Solo , Arthrodermataceae/isolamento & purificação , Arthrodermataceae/patogenicidade , Aspergillus/patogenicidade , Brasil/epidemiologia , Criança , Dermatomicoses/epidemiologia , Fungos/classificação , Fungos/isolamento & purificação , Humanos , Umidade , Parques Recreativos , Chuva , Areia/microbiologia , Estações do Ano
10.
Int J Syst Evol Microbiol ; 70(1): 246-250, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31617843

RESUMO

A Gram-stain-negative, aerobic, non-motile and ovoid- or rod-shaped bacterial strain, designated HSMS-39T, was isolated from marine sand sampled at Hongsung, Republic of Korea. Strain HSMS-39T grew optimally at 30 °C and in the presence of 1.0-2.0 % (w/v) NaCl. Phylogenetic trees based on 16S rRNA gene sequences showed that strain HSMS-39T fell within the clade comprising the type strains of Lewinella species, clustering with the type strain of Lewinella marina showing 16S rRNA gene sequence similarity of 99.1 %. It exhibited 16S rRNA gene sequence similarities of less than 95.5 % to the type strains of the other Lewinella species. Strain HSMS-39T contained MK-7 as the predominant menaquinone and iso-C17 : 1ω9c, iso-C15 : 0 and summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c) as the major fatty acids. The major polar lipids of strain HSMS-39T were phosphatidylethanolamine and one unidentified phospholipid. The DNA G+C content of strain HSMS-39T was 60.0 mol%. The mean DNA-DNA relatedness value between strain HSMS-39T and the type strain of L. marina was 15 %. The average nucleotide identity value between strain HSMS-39Tand the type strain of L. marina was 81.87 %. The phylogenetic and genetic data and differential phenotypic properties indicated that strain HSMS-39T is separated from other recognized species of the genus Lewinella. On the basis of the polyphasic data, strain HSMS-39T is considered to represent a novel species of the genus Lewinella, for which the name Lewinella litorea sp. nov. is proposed. The type strain is HSMS-39T (=KACC 19866T=NBRC 113585T).


Assuntos
Bacteroidetes/classificação , Filogenia , Areia/microbiologia , Técnicas de Tipagem Bacteriana , Bacteroidetes/isolamento & purificação , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Hibridização de Ácido Nucleico , Fosfolipídeos/química , RNA Ribossômico 16S/genética , República da Coreia , Água do Mar/microbiologia , Análise de Sequência de DNA , Vitamina K 2/análogos & derivados , Vitamina K 2/química
11.
Int J Syst Evol Microbiol ; 70(1): 631-635, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31661043

RESUMO

A Gram-stain-positive, aerobic bacterium, designated CPCC 204705T, was isolated from a desert soil sample, collected from the Badain Jaran desert. Growth of strain CPCC 204705T was observed at pH 6.0-8.0 and 15-37 °C, with optimal growth at 28 °C and pH 7.0. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain CPCC 204705T belonged to the genus Cellulomonas, showing the highest similarity (98.54 %) of 16S rRNA gene sequence to Cellulomonas oligotrophica JCM 17534T. The peptidoglycan type was A4ß, containing d-ornithine and d-glutamic acids as diagnostic amino acids. Rhamnose and galactose were detected in the whole-cell hydrolysate as diagnostic sugars. The major cellular fatty acids were anteiso-C15 : 0, anteiso-C15 : 1A, C14 : 0 and C16 : 0. The major menaquinone was MK-9 (H4) and the polar lipid system contained diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol mannoside, one unidentified lipid, one unidentified aminolipid and two unidentified aminophospholipids. The DNA-DNA hybridization value between strain CPCC 204705T and C. oligotrophica JCM 17534T was 7.1±0.4 %, and the value of average nucleotide identity between these two strains was 79.8 %. The DNA G+C content of strain CPCC 204705T was 75.4 mol%. Based on the results of physiological experiments, chemotaxonomic data, phylogenetic analysis and DNA-DNA hybridization value, strain CPCC 204705T should be classified as a novel Cellulomonas species. The name Cellulomonas telluris sp. nov. is proposed, with strain CPCC 204705T (=DSM 105430T=KCTC 39974T) as the type strain.


Assuntos
Celulase , Cellulomonas/classificação , Clima Desértico , Filogenia , Areia/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , Cellulomonas/enzimologia , Cellulomonas/isolamento & purificação , China , DNA Bacteriano/genética , Ácidos Graxos/química , Hibridização de Ácido Nucleico , Peptidoglicano/química , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vitamina K 2/análogos & derivados , Vitamina K 2/química
12.
Int J Syst Evol Microbiol ; 70(2): 766-772, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31671050

RESUMO

A novel actinomycete, designated strain NEAU-Ht49T, was isolated from sea sand sampled in Sanya and characterized by using a polyphasic approach. The 16S rRNA gene sequence analysis showed that strain NEAU-Ht49T was most closely related to Actinomadura rhizosphaerae SDA37T (98.8 %), Actinomadura logoneensis NEAU-G17T (98.6 %), Actinomadura oligospora ATCC 43269T (98.6 %) and Actinomadura gamaensis NEAU-Gz5T (98.6 %). The results of phylogenetic analysis based on the 16S rRNA gene sequences indicated that strain NEAU-Ht49T formed a cluster with A. rhizosphaerae SDA37T, A. logoneensis NEAU-G17T, A. oligospora ATCC 43269T, A. gamaensis NEAU-Gz5T and Actinomadura rupiterrae CS5-AC15T (96.4 %). Meso-diaminopimelic acid was detected in its cell walls and glucose, madurose, mannose and ribose were detected in whole-cell hydrolysate. The polar lipids were found to consist of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol, phosphatidylinositolmannoside and two unidentified lipids. The majoy menaquinone was MK-10(H6) and the minor menaquinones were MK-9(H4) and MK-9(H8). The major fatty acids were C16 : 0, C18 : 1ω9c, 10-methyl C18 : 0 and iso-C16 : 0. Moreover, morphological and chemotaxonomic characteristics of properties of strain NEAU-Ht49T also confirmed the affiliation of the isolate to the genus Actinomadura. However, DNA-DNA relatedness, physiological and biochemical data showed that strain NEAU-Ht49T could be distinguished from its closest relatives. Therefore, strain NEAU-Ht49T represents a novel species of the genus Actinomadura, for which the name Actinomadura harenae sp. nov. is proposed, with strain NEAU-Ht49T (=CGMCC 4.7499T=JCM 32659T) as the type strain.


Assuntos
Actinomycetales/classificação , Filogenia , Areia/microbiologia , Actinomycetales/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases , Parede Celular/química , China , DNA Bacteriano/genética , Ácido Diaminopimélico/química , Ácidos Graxos/química , Hibridização de Ácido Nucleico , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vitamina K 2/química
13.
Int J Syst Evol Microbiol ; 70(2): 909-914, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31714202

RESUMO

A Gram-stain-negative, aerobic, non-spore-forming, motile by gliding and rod-shaped bacterial strain, designated HSMS-1T, was isolated from a marine sand collected from the Yellow Sea, Republic of Korea, and identified by a polyphasic taxonomic approach. The neighbour-joining phylogenetic tree of 16S rRNA gene sequences showed that HSMS-1T fell within the clade comprising the type strains of species of the genus Gramella. HSMS-1T exhibited 16S rRNA gene sequence similarity values of 99.0 and 98.7 % to the type strains of Gramella echinicola and Gramella sediminilitoris and of 93.3-98.5 % to the type strains of the other species of the genus Gramella. The ANI and dDDH values between HSMS-1T and the type strains of G. echinicola, Gramella gaetbulicola, Gramella forsetii, Gramella salexigens, Gramella portivictoriae and Gramella flava were 72.6-79.3 % and 17.4-22.2 %, respectively. Mean DNA-DNA relatedness value between HSMS-1T and the type strain of G. sediminilitoris was 18 %. HSMS-1T contained MK-6 as the predominant menaquinone and iso-C15 : 0, anteiso-C15 : 0, iso-C17 : 0 3-OH and iso-C16 : 0 as the major fatty acids. The major polar lipid of HSMS-1T was phosphatidylethanolamine. The DNA G+C content of HSMS-1T from genomic sequence data was 39.2 %. Distinguishing phenotypic properties, along with the phylogenetic and genetic distinctiveness, revealed that HSMS-1T is separated from recognized species of the genus Gramella. On the basis of the data presented, strain HSMS-1T is considered to represent a novel species of the genus Gramella, for which the name Gramella sabulilitoris sp. nov. is proposed. The type strain is HSMS-1T(=KACC 19899T=NBRC 113648T).


Assuntos
Flavobacteriaceae/classificação , Filogenia , Areia/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Flavobacteriaceae/isolamento & purificação , Hibridização de Ácido Nucleico , Fosfatidiletanolaminas/química , RNA Ribossômico 16S/genética , República da Coreia , Água do Mar/microbiologia , Análise de Sequência de DNA , Vitamina K 2/análogos & derivados , Vitamina K 2/química
14.
Int J Syst Evol Microbiol ; 70(2): 1166-1171, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31769751

RESUMO

A novel actinobacterium, designated strain 16Sb5-5T, was isolated from a sand sample collected in the Taklamakan desert in Xinjiang Uygur Autonomous Region, China. The strain was examined by a polyphasic approach to clarify its taxonomic position. Cells of the isolate were Gram-staining-positive, aerobic, non-motile and short-rod shaped. Strain 16Sb5-5T grew optimally at 37 °C, pH 7.0 and with 0‒2 % (w/v) NaCl. The cell-wall peptidoglycan was of the A3γ type and contained alanine, glycine, glutamic acid and ll-diaminopimelic acid (ll-DAP). Ribose, arabinose and glucose were detected in the whole-cell hydrolysates. The predominant menaquinone was MK-9(H4). The polar lipid profile consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine, an unidentified phospholipid, three unidentified glycolipids and three unidentified lipids. The major whole-cell fatty acids were anteiso-C15 : 0 and iso-C15 : 0. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain 16Sb5-5T was closely related to Desertihabitans aurantiacus CPCC 204711T (99.8 % similarity) and formed a robust clade with D. aurantiacus in the phylogenetic trees. In silico genomic comparisons showed that strain 16Sb5-5T exhibited ANI values of 94.8-94.9 % and GGDC value of 59.5 % to D. aurantiacus CPCC 204711T. The genomic G+C content was 73.3 mol%. On the basis of phylogenetic, phenotypic and chemotaxonomic analyses, strain 16Sb5-5T could be distinguishable from its closest phylogenetic relative and represents a novel species of the genus Desertihabitans, for which the name Desertihabitans brevis sp. nov. is proposed. The type strain is 16Sb5-5T (=KCTC 49116T=CGMCC 1.16553T). The description of the genus Desertihabitans has also been emended.


Assuntos
Clima Desértico , Filogenia , Areia/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , Parede Celular/química , China , DNA Bacteriano/genética , Ácido Diaminopimélico/química , Ácidos Graxos/química , Glicolipídeos/química , Peptidoglicano/química , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vitamina K 2/análogos & derivados , Vitamina K 2/química
15.
Int J Syst Evol Microbiol ; 70(2): 1186-1191, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31860433

RESUMO

A Gram-stain-negative, non-motile, coccobacillus-shaped bacterium, designated CPCC 101021T, was isolated from a sandy soil sample collected from Badain Jaran desert, China. Its 16S rRNA gene sequence was closely related to those of members of the genus Roseomonas, showing high similarities with Roseomonas hibiscisoli THG-N2.22T (98.0 %), Roseomonas oryzae KCTC 42542T (97.9 %), Roseomonas rhizosphaerae YW11T (97.9 %) and Roseomonas suffusca S1T (97.8 %). In the phylogenetic tree based on 16S rRNA gene sequences, strain CPCC 101021T formed a distinct subclade with R. oryzae KCTC 42542T within the genus Roseomonas. Growth of the isolate occurred at 15-37 °C and pH 6.0-8.5, with optimal growth at 30 °C and pH 7.0. The major cellular fatty acids were C18 : 1ω7c, summed feature 8 (C16 : 1ω7c/C16 : 1ω6c), summed feature 3 (C16 : 1ω6c/C16 : 1ω7c) and C16 : 0ω6c. Q-10 was detected as the main component in the respiratory quinone system, with Q-9 as a minor component. Diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, an unidentified phospholipid, an unidentified aminolipid and an unidentified glycolipid were found in the polar lipid profile. The genomic DNA G+C content was 68.7 mol%. The average nucleotide identity was 84.6 % when comparing the draft genome sequences of strain CPCC 101021T with R. oryzae KCTC 42542T. On the basis of genotypic, chemotaxonomic and phenotypic characteristics, strain CPCC 101021T is proposed to represent a novel species of the genus Roseomonas with the name Roseomonas vastitatis sp. nov. Strain CPCC 101021T (=J1A743T=KCTC 62043T) is the type strain of the species.


Assuntos
Clima Desértico , Methylobacteriaceae/classificação , Filogenia , Areia/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , China , DNA Bacteriano/genética , Ácidos Graxos/química , Glicolipídeos/química , Methylobacteriaceae/isolamento & purificação , Hibridização de Ácido Nucleico , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Ubiquinona/análogos & derivados , Ubiquinona/química
16.
Int J Syst Evol Microbiol ; 70(2): 721-731, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31833829

RESUMO

Strain F21T, a marine, aerobic, Gram-negative, rod-shaped bacterium, was isolated from seashore sand sampled in Pohang, Republic of Korea. Cells of strain F21T were non-motile, catalase-positive, oxidase-positive, non-spore-forming and formed pinkish-red colonies on marine agar. The strain grew optimally at 37°C, pH 7 and in the presence of 2-3 % NaCl (w/v). Analysis of the 16S rRNA gene sequence of strain F21T revealed that it belonged to the genus Algoriphagus, family Cyclobacteriaceae, with similarity values of 98.1 and 96.8 % to Algoriphagus marincola DSM 16067T and Algoriphagus ornithinivorans IMSNU 14014T, respectively. When comparing the genome sequence of F21 T with those of the type strains of six species of the genus Algoriphagus, the values obtained were below the thresholds for analyses of average nucleotide identity (71.8-92.7 %) and in silico DNA-DNA hybridization using the Genome-to-Genome Distance Calculator (14.7-75.2 %). The DNA G+C content of strain F21T was 42.0 mol%. The chemotaxonomic characteristics of F21T included MK-7 as the predominant isoprenoid quinone, iso-C15 : 0, iso-C17 : 0 3-OH and summed feature 3 (C16 : 1ω6c and/or C16 : 1ω7c) as major cellular fatty acids, and phosphatidylcholine and phosphatidylethanolamine as major polar lipids. On the basis of phenotypic and chemotaxonomic properties, phylogenetic distinctiveness, and genomic data, we named strain F21T as Algoriphagus aquimaris sp. nov. and proposed that strain F21T (=KEMB 2250-007T= KCTC 72106T=JCM 33187T) in the genus Algoriphagus represents a novel species.


Assuntos
Bacteroidetes/classificação , Filogenia , Areia/microbiologia , Técnicas de Tipagem Bacteriana , Bacteroidetes/isolamento & purificação , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Hibridização de Ácido Nucleico , Fosfolipídeos/química , Pigmentação , RNA Ribossômico 16S/genética , República da Coreia , Água do Mar/microbiologia , Análise de Sequência de DNA , Vitamina K 2/análogos & derivados , Vitamina K 2/química
17.
Curr Microbiol ; 77(2): 327-333, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31820041

RESUMO

A novel gram-negative, aerobic, non-spore-forming, rod-shaped, and non-nitrogen-fixing bacterium, named SPY-1T, was isolated from biological soil crusts collected at Mu Us Sandy Land, China. Based on 16S rRNA sequence similarity, strain SPY-1T was most closely related to Neorhizobium alkalisoli CCTCC AB 2014138T (98.7%), Neorhizobium huautlense CGMCC 1.2538T (98.6%), Neorhizobium galegae DSM 11542T (98.4%), Rhizobium wenxiniae 166T (97.9%), and Rhizobium smilacinae CCTCC AB 2013016T (97.5%). Phylogenetic analysis based on 16S rRNA sequencing and multilocus sequence analysis of partial sequences of atpD-glnII-glnA-recA-ropD-thrC housekeeping genes both indicated that strain SPY-1T was a member of the genus Rhizobium. The draft genome of strain SPY-1T was 4.75 Mb in size, and the G + C content was 60.0%. The average nucleotide identity (ANI) values to N. alkalisoli CCTCC AB 2014138T and R. smilacinae CCTCC AB 2013016T were both 84.0%. The digital DNA-DNA hybridization (dDDH) values to N. alkalisoli CCTCC AB 2014138T and R. smilacinae CCTCC AB 2013016T were 20.9% and 20.2%, respectively. The major cellular fatty acids were summed feature 8 (C18:1ω7c and/or C18:1ω6c) and C16:0. Based on the data from chemotaxonomic, phylogenetic, and phenotypic evidence, strain SPY-1T represents a novel species in the genus Rhizobium, for which the name Rhizobium deserti sp. nov. is proposed. The type strain is SPY-1T (= ACCC 61627T = JCM 33732T).


Assuntos
Filogenia , Rhizobium/classificação , Microbiologia do Solo , Técnicas de Tipagem Bacteriana , Composição de Bases , China , DNA Bacteriano/genética , Ácidos Graxos/química , Genes Bacterianos , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Rhizobium/isolamento & purificação , Areia/microbiologia , Análise de Sequência de DNA
18.
Antonie Van Leeuwenhoek ; 112(11): 1645-1653, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31218499

RESUMO

A bacterial strain designated RZ03T was isolated from an intertidal sand sample from the Yellow Sea in China and characterised using a polyphasic taxonomic approach. Cells of strain RZ03T were observed to be Gram-stain negative, aerobic, and oxidase and catalase positive rods showing gliding motility and forming yellow colonies. Growth was found to occur at 7-30 °C (optimum, 25 °C), at pH 5.5-9.5 (optimum, pH 6.5-7.0) and with 0.5-5% NaCl (optimum, 1.5-2%). Phylogenetic analysis based on 16S rRNA gene sequences indicates that strain RZ03T clusters within members of the genus Flavivirga of the family Flavobacteriaceae and is closely related to the type strains Flavivirga amylovorans JCM 17112T and Flavivirga jejuensis JCM 17113T (97.9% and 97.5% similarity, respectively). The predominant cellular fatty acids are iso-C15:0, iso-C15:1 G, iso-C17:0 3-OH and iso-C15:0 3-OH and the major respiratory quinone is MK-6. Polar lipids include phosphatidylethanolamine, three unidentified aminolipids, an unidentified phospholipid and four unidentified lipids. The genome of strain RZ03T is 4.88 Mbp with a G+C content of 32.2 mol%. A total of 4152 genes are predicted, with 4052 protein-coding genes, 51 RNA genes and 49 pseudogenes. This polyphasic study suggests that strain RZ03T represents a novel species in the genus Flavivirga, for which the name Flavivirga rizhaonensis is proposed. The type strain is RZ03T(= KCTC 62833T = MCCC 1K03615T).


Assuntos
Organismos Aquáticos , Flavobacteriaceae/classificação , Flavobacteriaceae/isolamento & purificação , Areia/microbiologia , Composição de Bases , Flavobacteriaceae/química , Flavobacteriaceae/genética , Genoma Bacteriano , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
19.
Appl Environ Microbiol ; 85(17)2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31227556

RESUMO

Biosand filtration systems are widely used for drinking water treatment, from household-level, intermittently operated filters to large-scale continuous municipal systems. While it is well-established that microbial activity within the filter is essential for the removal of potential pathogens and other contaminants, the microbial ecology of these systems and how microbial succession relates to their performance remain poorly resolved. We determined how different source waters influence the composition, temporal dynamics, and performance of microbial communities in intermittently operated biosand filters. We operated lab-scale biosand filters, adding daily inputs from two contrasting water sources with differing nutrient concentrations and found that total coliform removal increased and became less variable after 4 weeks, regardless of water source. Total effluent biomass was also lower than total influent biomass for both water sources. Bacterial community composition, assessed via cultivation-independent DNA sequencing, varied by water source, sample type (influent, effluent, or sand), and time. Despite these differences, we identified specific taxa that were consistently removed, including common aquatic and wastewater bacteria. In contrast, taxa consistently more abundant in the sand and effluent included predatory, intracellular, and symbiotic bacteria.IMPORTANCE Although microbial activities are known to contribute to the effectiveness of biosand filtration for drinking water treatment, we have a limited understanding of what microbial groups are most effectively removed, colonize the sand, or make it through the filter. This study tracked the microbial communities in the influent, sand, and effluent of lab-scale, intermittently operated biosand filters over 8 weeks. These results represent the most detailed and time-resolved investigation of the microbial communities in biosand filters typical of those implemented at the household level in many developing countries. We show the importance of the microbial food web in biosand filtration, and we identified taxa that are preferentially removed from wastewater-impacted water sources. We found consistent patterns in filter effectiveness from source waters with differing nutrient loads and, likewise, identified specific bacterial taxa that were consistently more abundant in effluent waters, taxa that are important targets for further study and posttreatment.


Assuntos
Fenômenos Fisiológicos Bacterianos , Filtração , Areia/microbiologia , Águas Residuárias/microbiologia , Purificação da Água/instrumentação , Cadeia Alimentar
20.
PLoS One ; 14(4): e0206777, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30939175

RESUMO

A chronosequence approach, i.e., a comparison of spatially distinct plots with different stages of succession, is commonly used for studying microbial community dynamics during paedogenesis. The successional traits of prokaryotic communities following sand fixation processes have previously been characterized for arid and semi-arid regions, but they have not been considered for the tundra zone, where the environmental conditions are unfavourable for the establishment of complicated biocoenoses. In this research, we characterized the prokaryotic diversity and abundance of microbial genes found in a typical tundra and wooded tundra along a gradient of increasing vegetation-unfixed aeolian sand, semi-fixed surfaces with mosses and lichens, and mature soil under fully developed plant cover. Microbial communities from typical tundra and wooded tundra plots at three stages of sand fixation were compared using quantitative polymerase chain reaction (qPCR) and high-throughput sequencing of 16S rRNA gene libraries. The abundances of ribosomal genes increased gradually in both chronosequences, and a similar trend was observed for the functional genes related to the nitrogen cycle (nifH, bacterial amoA, nirK and nirS). The relative abundance of Planctomycetes increased, while those of Thaumarchaeota, Cyanobacteria and Chloroflexi decreased from unfixed sands to mature soils. According to ß-diversity analysis, prokaryotic communities of unfixed sands were more heterogeneous compared to those of mature soils. Despite the differences in the plant cover of the two mature soils, the structural compositions of the prokaryotic communities were shaped in the same way. Thus, sand fixation in the tundra zone increases archaeal, bacterial and fungal abundances, shifts and unifies prokaryotic communities structure.


Assuntos
Archaea , Bactérias , Areia/microbiologia , Microbiologia do Solo , Tundra , Archaea/classificação , Archaea/genética , Archaea/crescimento & desenvolvimento , Bactérias/classificação , Bactérias/genética , Bactérias/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA