Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.284
Filtrar
1.
J Hazard Mater ; 444(Pt A): 130401, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36403451

RESUMO

In-situ thermal desorption (ISTD) has attracted increasing attention owing to the efficient removal of organic contaminants from contaminated sites. However, it is poorly understood that whether and to what extent contamination degradation occurs upon oxygenation of reduced Fe-bearing clay minerals (RFC) in the subsurface during ISTD. In this study, we evaluated the mechanism of contaminant degradation upon oxygenation of reduced clay minerals during the ISTD. Reduced nontronite (rNAu-2) and montmorillonite (rSWy-3) were selected as RFC models. Results showed that thermal treatment during ISTD could significantly enhance phenol degradation, which increased from 25.8 % at 10 °C to 74.4 % at 70 °C in rNAu-2 and from 17.7 % at 10 °C to 49.8 % at 70 °C in rSWy-3. Correspondingly, the cumulative •OH at steady-state ([•OH]ss) increased by 3.7 and 1.5 times, respectively. The acceleration of Fe(II) oxidation with increasing temperature could be mainly responsible for [•OH]ss generation, which degrades phenol. Moreover, thermal treatment improved the fast oxidation of trioctahedral entities Fe(II)Fe(II)Fe(II) (TOF) and the slow oxidation of dioctahedral entities Fe(II)Fe(II) (DTF1), AlFe(II) (DAF1), and Fe(II)Fe(III) (DTF2). Our study suggests that the overlooked degradation progress of phenol by oxygenation of RFC during ISTD, and it could be favorable for contaminant degradation during remediation.


Assuntos
Radical Hidroxila , Fenol , Argila , Compostos Férricos , Fenóis , Minerais
2.
Environ Pollut ; 316(Pt 2): 120649, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36375574

RESUMO

Microplastics (MPs) are emerging as a class of pollutants that are a potential threat to biological and human health. Aggregation and settling are crucial to controlling MPs transport and environmental fate. However, the influence of clay minerals in the aqueous environment on the aggregation-settling processes of larger size MPs and its mechanisms remain unclear. In this study, homoaggregation of pristine and aged polyethylene microplastics (PEs) and heteroaggregation-settling of PEs with typical clay minerals (chlorite, illite, kaolinite, montmorillonite) under different hydrochemical conditions (NaCl, CaCl2, MgCl2) were systematically investigated. The results showed that the cation type has a greater influence on the homoaggregation system. In detail, the aged PEs is more stable than pristine PEs in monovalent electrolyte solutions, but not in divalent electrolytes. In heteroaggregation systems, electrostatic repulsion dominates the interaction of PEs (pristine, aged) with clay minerals. However, the settling ratio of PEs (pristine, aged) contributed by clay minerals is not very dependent on the clay mineral type. Conversely, high NaCl concentrations are more conducive to the heteroaggregation-settling of PEs, which can be explained by the DLVO theory. The findings of this study provide new insights into the environmental fate and distribution of MPs in natural waters.


Assuntos
Microplásticos , Polietileno , Humanos , Idoso , Argila , Plásticos , Cloreto de Sódio , Minerais
3.
J Hazard Mater ; 443(Pt B): 130100, 2023 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-36334574

RESUMO

Soil particle size fractions (PSFs) are important for arsenic (As) partitioning, migration, and speciation transformation. However, information is lacking about the environmental fate of As and its distribution on different PSFs. In the present study, two types of soils from mining areas were divided into four PSFs, including coarse sand (2-0.25 mm), fine sand (0.25-0.05 mm), silt (0.05-0.002 mm), and clay (< 0.002 mm) fractions. The results showed that As was enriched in the coarse sand, which was primarily affected by the content of organic carbon (OC), followed by iron (Fe), aluminum (Al), and manganese (Mn) (hydr)oxides. The elevated total As (TAs), As(III), organic As, Fe(II), and dissolved organic carbon (DOC) concentrations were mainly originated from the clay fraction. The intensified humification degree of DOM and promoted bacterial metabolism related to As/iron bioreduction were also exhibited in the clay fractions. The dynamics of As fractions in soils indicated the potential formation of secondary minerals and re-adsorption of As in the PSFs. The highest abundances of arrA, arsC, arsM, and Geo genes were found in the clay fraction, implying that the clay fraction potentially released more As, including As(III) and organic As. Results from the correlation analysis showed that elevated DOC concentrations promoted the catabolic responses of iron-reducing microorganisms and triggered microbial As detoxification. Overall, this study provides valuable information and guidance for the remediation of As-contaminated soils.


Assuntos
Arsênio , Poluentes do Solo , Solo , Arsênio/análise , Matéria Orgânica Dissolvida , Tamanho da Partícula , Argila , Areia , Poluentes do Solo/análise , Ferro/análise
4.
Environ Res ; 216(Pt 2): 114543, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36252841

RESUMO

Globally, to ensure food security bio-based fertilizers must replace a percentage of chemical fertilizers. Such replacement must be deemed sustainable from agronomic and greenhouse gas (GHG) emission perspectives. For agronomic performance several controlled protocols are in place but not for testing GHG emissions. Herein, a pre-screening tool is presented to examine GHG emissions from bio-waste as fertilizers. The various treatments examined are as follows: soil with added mineral nitrogen (N, 140 kg N ha-1) fertilizer (MF), the same amount of MF combined with dairy processing sludge (DS), sludge-derived biochar produced at 450 °C (BC450) and 700 °C (BC700) and untreated control (CK). These treatments were combined with Danish (sandy loam) or Irish (clay loam) soils, with carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) emissions and soil inorganic-N contents measured on selected days. During the incubation, biochar mitigated N2O emissions by regulating denitrification. BC450 reduced N2O emissions from Danish soil by 95.5% and BC700 by 97.7% compared to emissions with the sludge application, and for Irish soil, the N2O reductions were 93.6% and 32.3%, respectively. For both soils, biochar reduced CO2 emissions by 50% as compared to the sludge. The lower N2O reduction potential of BC700 for Irish soil could be due to the high soil organic carbon and clay content and pyrolysis temperature. For the same reasons emissions of N2O and CO2 from Irish soil were significantly higher than from Danish soil. The temporal variation in N2O emissions was correlated with soil inorganic-N contents. The CH4 emissions across treatments were not significantly different. This study developed a simple and cost-effective pre-screening method to evaluate the GHG emission potential of new bio-waste before its field application and guide the development of national emission inventories, towards achieving the goals of circular economy and the European Green Deal.


Assuntos
Gases de Efeito Estufa , Solo , Solo/química , Fertilizantes/análise , Esgotos , Dióxido de Carbono/análise , Argila , Carbono , Óxido Nitroso , Metano/análise , Dinamarca , Agricultura
5.
Environ Res ; 216(Pt 1): 114397, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36167110

RESUMO

Cadmium (Cd) is getting worldwide attention due to its continuous accumulation in agricultural soils which is due to anthropogenic activities and finally Cd enters in food chain mainly through edible plants. Cadmium free food production on contaminated soils is great challenge which requires some innovative measures for crop production on such soils. The current study evaluated the efficiency of zinc oxide nanoparticles (ZnONPs) (0, 150 and 300 mg/kg) on the growth of wheat in texturally different soils including clay loam (CL), sandy clay loam (SCL), and sandy loam (SL) which were contaminated with were contaminated with 25 mg/kg of Cd before crop growth. Results depicted that doses of ZnONPs and soil textures significantly affected the biological yields, Zn and Cd uptake in wheat plants. The application of 300 mg/kg ZnONPs caused maximum increase in dry weights of shoot (66.6%), roots (58.5%), husk (137.8%) and grains (137.8%) in CL soil. The AB-DTPA extractable Zn was increased while Cd was decreased with doses of NPs depending upon soil textures. The maximum decrease in AB-DTPA extractable Cd was recorded in 300 mg/kg of ZnONPs treatment which was 58.7% in CL, 33.2% in SCL and 12.1% in SL soil as compared to respective controls. Minimum Cd concentrations in roots, shoots, husk and grain were found in 300 mg/kg ZnONPs amended CL soil which was 58%, 76.7%, 58%, and 82.6%, respectively. The minimum bioaccumulation factor (0.14), translocation index (2.46) and health risk index (0.05) was found in CL soil with the highest dose of NPs. The results concluded that use of ZnONPs significantly decreased Cd concentration while increased Zn concentrations in plants depending upon doses of NPs and soil textures.


Assuntos
Nanopartículas , Poluentes do Solo , Óxido de Zinco , Animais , Cádmio/análise , Solo , Triticum , Poluentes do Solo/análise , Argila , Grão Comestível/química , Estágios do Ciclo de Vida , Ácido Pentético/farmacologia
6.
J Colloid Interface Sci ; 629(Pt A): 1055-1065, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36174252

RESUMO

High value-added recycling of hazardous substances emerges as one of the most promising directions in current society, which can simultaneously relieve the environmental burden and obtain useful products. Here, we propose a transformation strategy from adsorbent to photocatalyst by recycling heavy metal with natural clay mineral. Sepiolite is selected as an adsorbent for removing Cd2+ in wastewater due to its excellent adsorption properties in terms of high specific surface area and structural channels. Then, in-situ sulfidation of the adsorbed Cd2+ is carried out, transforming it into CdS/Sep photocatalyst, which exhibits efficient photocatalytic antibacterial activity for Escherichia coli with a sterilization efficiency of 98.8% within 2 h. The intense visible light absorption of CdS and the efficient separation of photogenerated carriers render the prominent antibacterial activity. The main reactive species including superoxide radicals and hydroxyl radicals produced by CdS/Sep under visible light irradiation are diffused into the solution and attack the bacteria surrounding the photocatalysts. This work not only develops new ideas for recycling heavy metals for fabrication of efficient photocatalysts, but also provides a reference for water purification based on cost-effective natural minerals.


Assuntos
Cádmio , Metais Pesados , Argila , Águas Residuárias/química , Catálise , Superóxidos , Luz , Antibacterianos/farmacologia , Antibacterianos/química , Metais Pesados/farmacologia , Escherichia coli , Substâncias Perigosas
7.
Sci Total Environ ; 855: 159003, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36155041

RESUMO

A majority of clay minerals contain Fe, and the redox cycling of Fe(III)/Fe(II) in clay minerals has been extensively studied as it may fuel the biogeochemical cycles of nutrients and govern the mobility, toxicity and bioavailability of a number of environmental contaminants. There are three types of Fe in clay minerals, including structural Fe sandwiched in the lattice of clays, Fe species in interlayer space and adsorbed on the external surface of clays. They exhibit distinct reactivity towards contaminants due to their differences in redox properties and accessibility to contaminant species. In natural environments, microbially driven Fe(III)/Fe(II) redox cycling in clay minerals is thought to be important, whereas reductants (e.g., dithionite and Fe(II)) or oxidants (e.g., peroxygens) are capable of enhancing the rates and extents of redox dynamics in engineered systems. Fe(III)-containing clay minerals can directly react with oxidizable pollutants (e.g., phenols and polycyclic aromatic hydrocarbons (PAHs)), whereas structural Fe(II) is able to react with reducible pollutants, such as nitrate, nitroaromatic compounds, chlorinated aliphatic compounds. Also structural Fe(II) can transfer electrons to oxygen (O2), peroxymonosulfate (PMS), or hydrogen peroxide (H2O2), yielding reactive radicals that can promote the oxidative transformation of contaminants. This review summarizes the recent discoveries on redox reactivity of Fe in clay minerals and its links to fates of environmental contaminants. The biological and chemical reduction mechanisms of Fe(III)-clay minerals, as well as the interaction mechanism between Fe(III) or Fe(II)-containing clay minerals and contaminants are elaborated. Some knowledge gaps are identified for better understanding and modelling of clay-associated contaminant behavior and effective design of remediation solutions.


Assuntos
Poluentes Ambientais , Ferro , Argila , Ferro/química , Peróxido de Hidrogênio , Minerais/química , Oxirredução , Compostos Ferrosos/química , Compostos Férricos/química
8.
J Hazard Mater ; 441: 129883, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36108495

RESUMO

Cadmium (Cd) and lead (Pb) are two of the most common elements found in contaminated sites. The behavior of specific metals in the soil may be affected by other metals because of the competition for adsorption sites. In this study, adsorption experiments after chemical extraction, multi-surface models, and advanced spectroscopy technology were jointly used to explain the adsorption mechanism of Cd and Pb and to determine the contribution of each component in the competitive system. The results show that pH is the key factor in determining the contribution of soil components to metal adsorption. Soil organic matter (SOM) is the dominant adsorbent for both Cd and Pb. Clay minerals play an adsorption role at low pH, whereas Fe/Al oxides adsorb metals primarily in the high pH range. Further, the competitive effect of Pb on Cd occurred primarily on SOM rather than on clay minerals. When the Pb concentration increased from 0 to 500 mg/L, the adsorption of Cd on SOM decreased by 132.0 mg/kg, whereas it decreased only by 1.9 mg/kg on clay minerals. Therefore, the competitive effect of Pb on Cd cannot be ignored in soils with high organic matter content.


Assuntos
Metais Pesados , Poluentes do Solo , Adsorção , Cádmio/química , Argila , Chumbo/análise , Metais Pesados/análise , Minerais , Óxidos/análise , Solo/química , Poluentes do Solo/análise
9.
J Environ Sci (China) ; 124: 688-698, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36182174

RESUMO

It has been documented that organic contaminants can be degraded by hydroxyl radicals (•OH) produced by the activation of H2O2 by Fe(II)-bearing clay. However, the interfacial electron transfer reactions between structural Fe(II) and H2O2 for •OH generation and its effects on contaminant remediation are unclear. In this study, we first investigated the relation between •OH generation sites and sulfamethoxazole (SMX) degradation by activating H2O2 using nontronite with different reduction extents. SMX (5.2-16.9 µmol/L) degradation first increased and then decreased with an increase in the reduction extent of nontronite from 22% to 62%, while the •OH production increased continually. Passivization treatment of edge sites and structural variation results revealed that interfacial electron transfer reactions between Fe(II) and H2O2 occur at both the edge and basal plane. The enhancement on basal plane interfacial electron transfer reactions in a high reduction extent rNAu-2 leads to the enhancement on utilization efficiencies of structural Fe(II) and H2O2 for •OH generation. However, the •OH produced at the basal planes is less efficient in oxidizing SMX than that of at edge sites. Oxidation of SMX could be sustainable in the H2O2/rNAu-2 system through chemically reduction. The results of this study show the importance role of •OH generation sites on antibiotic degradation and provide guidance and potential strategies for antibiotic degradation by Fe(II)-bearing clay minerals in H2O2-based treatments.


Assuntos
Peróxido de Hidrogênio , Sulfametoxazol , Antibacterianos , Argila , Elétrons , Compostos Ferrosos , Minerais/química , Oxirredução , Sulfametoxazol/química
10.
Chemosphere ; 310: 136834, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36241108

RESUMO

Diethofencarb (DFC) is a fungicide used in agricultural fields and it's overe use makes a negative impact in the real-time environment. Here in this work, a semi-conductive urchin like Bismuth sulfide (Bi2S3) anchored with tubular structure functionalized halloysite nanotube (F-HNT) was hydrothermally synthesized and used for the electrochemical detection of DFC. Various analytical and microscopic techniques were used to analyze the structure, crystalline nature, and purity of the as-prepared F-HNT@Bi2S3. Moreover, the cyclic voltammetry technique was used to analyze the electrochemical studies of the F-HNT@Bi2S3 modified glassy carbon electrode (GCE). A high synergetic relationship between the Bi2S3 and F-HNT provides a large surface area and better detection of DFC. The amperometry i-t technique result shows that the prepared composite exhibits a wide linear range of 0.0053-526.62 µg L-1, a low detection limit of 0.0032 µg L-1, and very good stability over 2000 s. Notably, our proposed sensor can determine the DFC spiked tomato and water samples with a high recovery range and proven the viability for real-time analysis. Finally, all the above-mentioned study results prove that the F-HNT@Bi2S3 could be used as an electrochemical probe for the detection of DFC.


Assuntos
Técnicas Eletroquímicas , Nanotubos , Argila , Técnicas Eletroquímicas/métodos , Nanotubos/química , Bismuto/química , Eletrodos
11.
Chemosphere ; 310: 136846, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36243092

RESUMO

Heavy metal contaminated soils pose a serious threat to the environment, and preparing ceramsite using contaminated soils was proposed as an effective method to address this threat in this study. Specifically, two typical soils (i.e., contaminated clay and sandy soil) were mixed with different ratios and calcined at temperature 1000-1200 °C to prepare ceramsite. Special attentions were paid to evaluating the immobilization of heavy metals in ceramsite and identifying the corresponding immobilization mechanisms. Using the leachability of heavy metals from ceramsite as evaluation criteria, the optimum mixing ratio of clay/sandy soil and sintering temperature were determined as 0.6:0.4 and 1200 °C. Moreover, based on the spectroscopic characterizations and thermodynamic calculation, high sintering temperature well facilitated the liquid phases formation, promoting the reactions between heavy metals and aluminosilicates and the valence state conversion of heavy metals. Accordingly, heavy metals were well immobilized in ceramsite by forming thermodynamically stable minerals, being encapsulated in solid matrix, and transforming to valence states with low mobility. The leaching conditions including pH and temperature had minimal effect on the immobilization of heavy metals in ceramsite. In summary, ceramsite prepared by contaminated soils was environmentally friendly and had good potential in engineering application as building materials.


Assuntos
Metais Pesados , Poluentes do Solo , Argila , Metais Pesados/análise , Poluição Ambiental , Solo/química , Poluentes do Solo/análise
12.
J Hazard Mater ; 442: 130060, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36182886

RESUMO

The neutralization treatment of acid mine drainage involves the oxidation of Fe(II), but little is known about the effects of co-existing minerals on the oxidation and hydrolysis of Fe(II) to iron oxides. Here we investigated the transformation of fresh and heated Fe(II) oxidation coprecipitates, which were synthesized in the presence and the absence of five co-existing minerals (montmorillonite, kaolin, quartz (SiO2), aluminium oxide (Al2O3) and calcium carbonate (CaCO3)). In the FeSO4 system with montmorillonite or kaolin, the formation of lepidocrocite was inhibited with the increase of clay mineral contents. In the same system, heated coprecipitates of montmorillonite were mainly comprised of amorphous ferrihydrite and its transformation was retarded by the excess montmorillonite. In the FeCl2 system with SiO2, Al2O3 or CaCO3, akaganeite formation was inhibited with the increase in the corresponding mineral contents. In the same system, goethite formation was blocked by either CaCO3 or Al2O3 and the growth of lepidocrocite was inhibited by CaCO3 or SiO2. However, magnetite formation was enhanced by addition of CaCO3. These findings are important for predicting products of abiotic Fe(II) oxidation during the neutralization of acid mine drainage and for better understanding the transformation of amorphous iron oxides in the complicated environmental matrix.


Assuntos
Óxido Ferroso-Férrico , Ferro , Argila , Caulim , Bentonita , Quartzo , Dióxido de Silício , Compostos Férricos , Minerais , Oxirredução , Carbonato de Cálcio
13.
J Hazard Mater ; 442: 130028, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36206718

RESUMO

Accidental releases of highly saline produced water (PW) to land can impact soil quality. The release of associated salts can clog soil pores, disperse soil clays, and inhibit plants and other soil biota. This study explores a novel remediation technique using ferrocyanide to enhance the evaporative flux of soil porewater to transport dissolved salts to the soil surface, where crystallization then occurs. The addition of ferrocyanide modifies crystal growth that enhances salt transport, allowing salt efflorescence on the soil surface and physical removal. Release sites were simulated through beaker sand column experiments using two PWs collected from the Permian Basin. PW composition altered efflorescence, with up to ten times as much ferrocyanide required in PWs than comparable concentrations of pure NaCl solutions. The addition of EDTA reduced dissolved cation competition for the ferrocyanide ion, improving PW salt recovery at the soil surface. The speciation model, PHREEQC, was used to predict the onset of salt precipitation as a function of evaporative water loss and model the effect of aqueous ferrocyanide and EDTA speciation on efflorescence. The results highlight the utility of predictive modeling for optimizing additive dosages for a given release of PW.


Assuntos
Poluentes do Solo , Solo , Solo/química , Sais , Ferrocianetos/química , Água , Cloreto de Sódio/química , Ácido Edético , Areia , Argila , Poluentes do Solo/análise
14.
J Colloid Interface Sci ; 630(Pt A): 395-403, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36265341

RESUMO

Nanoscale zero-valent iron (nZVI)-based composites have been widely utilized in environmental cleanup due to their low cost, high adsorption performance and strong redox activity. Herein, removal mechanism of U(VI) on nZVI/clay composites was demonstrated by batch, XPS and modeling techniques. The batch experiments showed that nZVI/clay composites exhibited the high removal capacity (88.90 mg/g at pH 4.0) and good regeneration towards U(VI) from aqueous solution. The adsorbed U(VI) was mostly reduced to U(IV) by nZVI/clay composites according to XPS analysis. The removal process of U(VI) on nZVI/clay composites was satisfactorily fitted by surface complexation modeling using strong and weak sites, indicating the high chemisorption of U(VI) on nZVI/clay composites. However, the fitting results underestimated U(VI) adsorption at pH 7.0-9.0 due to the reduction of U(VI) into U(IV), whereas the overestimation of U(VI) at pH 4.0-6.0 could be attributed to fewer surface complexation reaction involved. These findings are crucial for the application of nZVI-based composites for the highly efficient removal of radionuclides in actual environmental remediation.


Assuntos
Recuperação e Remediação Ambiental , Poluentes Químicos da Água , Ferro/química , Argila , Poluentes Químicos da Água/análise , Adsorção , Cromo/análise
15.
J Colloid Interface Sci ; 630(Pt A): 855-866, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36283268

RESUMO

Peroxymonosulfate (PMS) driven by halloysite nanotubes (HNTs) modified with nanomanganese cobaltate (MnCo2O4) generates reactive oxygen species (ROS) that offer high degradation efficiency and mineralization rates for many typical antibiotic pollutants, such as ornidazole (ONZ). The experimental results show that halloysite nanotubes (HNTs) modified with nanomanganese cobaltate (MnCo2O4@HNTs denoted as MCO@HNTs) can degrade ONZ completely over a wide pH range (6.08-11.00) with little influence of the pH value. MCO@HNTs + PMS exhibited higher catalytic activity and lower Co- and Mn-ion leaching rates. It also showed a strong anti-interference effect on natural lake water and anions. Additionally, PMS can be quickly activated and consumed in natural lakes to avoid secondary pollution. The roasting of MCO@HNTs showed good catalytic activity and stability after degrading ONZ. The combination of ion quenching and electron paramagnetic resonance (EPR) analysis illustrated that the MCO@HNTs + PMS system had a strong oxidation capacity, and the produced singlet oxygen (1O2) was the main ROS for ONZ degradation. The degradation pathway of ONZ via the MCO@HNTs + PMS system was proposed based on the types of intermediates determined via liquid chromatography-mass spectrometry (LC-MS). This comprehensive study shows the preparation of a simple, environmentally friendly, and cheap PMS activation catalyst that has practical application value in the treatment of antibiotic wastewater and provides a focus on actual water testing with residual amount of PMS.


Assuntos
Nanotubos , Ornidazol , Argila , Espécies Reativas de Oxigênio , Peróxidos/química , Antibacterianos , Água
16.
Talanta ; 252: 123844, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36001900

RESUMO

In this paper, the main subject concerns comparing different techniques to prepare raw clay samples for energy-dispersive X-ray fluorescence spectrometry (EDXRF). Three kinds of sample preparation procedures are examined, such as loose powder, pressed pellet, and fired pressed pellet. The fired pressed pellet approach was observed as a part of universal sample preparation for physic, mechanical, and instrumental analysis, which has not been previously tested as a solution in chemical analysis by the EDXRF method. The observed sample preparation techniques were compared by calculating the parameters of validation (recoveries, limit of detection - LOD, limit of quantification - LOQ, precision, and expanded uncertainties of measurements) of 11 elements (Si, Al, Fe, Ca, Mg, K, Na, Ti, P, Mn, and S) using 15 certified reference materials (CRMs). Calibration curves were created and evaluated using 30 reference materials (RM) for all three approaches. Results proved that the fired pressed pellet is the most practical and precise approach for sample preparation of raw clays.


Assuntos
Argila , Raios X , Cromatografia Gasosa-Espectrometria de Massas , Espectrometria por Raios X/métodos , Calibragem
17.
Talanta ; 252: 123854, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36029681

RESUMO

Nucleic acid hybridization is occurred between the selective single-stranded nucleic acid sequence and its target sequence, which is one of the essential procedure for electrochemical detection of nucleic acid. microRNA-21 (miRNA-21) is known as a biomarker in various cancers. The determination of miRNA-21 was attained through by hybridization of inosine substituted miRNA-21 specific DNA probe (Pinosine) with its target miRNA-21. In this study, the surface of pencil graphite electrode (PGE) was firstly modified with halloysite nanoclay-ionic liquid (HNT/IL) nanocomposite. The characterization of surface was performed by Scanning Electron Microscope (SEM) images and Energy Dispersive X-Ray Analysis (EDX) analysis, and the differences at surface modifications were also shown by electrochemical methods with electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). For sensitive and selective determination of miRNA-21, Pinosine and target miRNA concentration, immobilization and hybridization time were optimized by using HNT/IL modified PGE in combination with differential pulse voltammetry (DPV). The detection limit was achieved as 0.17 µg/mL (equals to 23.69 nM) in the linear range of 0.25-2 µg/mL miRNA-21. The selectivity of voltammetric method based on HNT/IL-PGE developed for miRNA-21 was examined in the presence of mismatch (MM) and non-complementary (NC) sequences. Because miRNA-21 is over-expressed in cancer cells, it has been tested in total RNA samples isolated from cancer cell line (breast cancer cell line, MCF-7). In the total RNA samples obtained from MCF-7, the detection limit was calculated as 0.28 µg/mL in the linear range of 1-4 µg/mL. Besides, the healthy cell line (human embryonic kidney cell line, HEK-293) was used as a control group and the results obtained by MCF-7 total RNA samples were compared to the results using HEK-293 total RNA samples in terms of miRNA-21 level.


Assuntos
Técnicas Biossensoriais , Grafite , Líquidos Iônicos , MicroRNAs , Nanocompostos , Neoplasias , Humanos , Argila , Biomarcadores Tumorais/genética , Técnicas Biossensoriais/métodos , Células HEK293 , Eletrodos , Técnicas Eletroquímicas/métodos , Grafite/química , Sondas de DNA/química , MicroRNAs/análise , Inosina , Prostaglandinas E , Neoplasias/diagnóstico
18.
Sci Total Environ ; 857(Pt 2): 159372, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36244493

RESUMO

Mercapto-modified palygorskite (MP) is an efficient novel amendment with superior ability to decrease soil Cd bioavailability, but the unclear immobilization mechanism has become the bottleneck of its performance improvement and precise application. In order to clarify the Cd reducing mechanism of MP, long-term and short-term soil incubation with three types of soils (paddy soil, alluvial soil and yellow mountain soil) and sorption verification experiments were conducted to investigate the dynamic process of soil labile Cd impacted by MP and the synergetic effects on labile Fe, Mn, S and dissolved organic carbon via in-situ diffusive gradients in thin-films and soil solution sampling techniques. MP with four dosages rapidly and continuously decreased soil labile Cd contents by 14.50 % ∼ 89.16 % in long-term incubation, meanwhile low-dosage MP reduced soil labile Fe and Mn contents, but high-dosage MP increased their contents. With MP dosages increased, the effects of Fe-Mn oxides on soil labile Cd content gradually weakened. MP effectively promoted the reduction of Fe adsorbed by clay minerals and enhanced their ability to adsorb Cd. Short-term incubation showed that MP could decline soil labile Cd by 7.17 % ∼ 44.74 %, especially at the dosage 0.4 %. MP was a reduction catalyst to facilitate Fe reduction, which profited for clay minerals adsorbing Cd. The sorption experiments indicated that 0.30 % MP could adsorb 73.34 % Cd2+, promote the release of Fe2+ from the soil, and stimulate the ability of clay minerals to adsorb Cd. The results revealed that MP decreased soil labile Cd content within 2 d, and MP made soil Cd activity change out of the influence of soil Fe/Mn redox system. The mechanism will be beneficial for the large-scale application of MP in safe utilization of Cd contaminated soil.


Assuntos
Oryza , Poluentes do Solo , Solo , Cádmio/análise , Poluentes do Solo/análise , Argila , Minerais
19.
Chemosphere ; 311(Pt 1): 136878, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36419267

RESUMO

Migration of soil pollutants can cause groundwater pollution, which is dominated by the soil adsorption of pollutants. Heavy metals and fluoroquinolone antibiotics exist in the soil and form compound pollution, with different adsorption behaviors in the soil. It may make the levofloxacin (LVFX) migration and potential risk of LVFX to groundwater change. Therefore, this research on Zinc (Zn/Zn2+) and LVFX studied the binary adsorption on silty clay in the vadose zone using the batch equilibrium adsorption method. Besides, Hydrus-1D simulate vertical migration. As the results show: (1) Silty clay has excellent storage capacity (adsorption rate>90%) for LVFX and is a natural barrier to reducing groundwater risk; (2) Binary adsorption of LVFX with Zn on silty clay had could be influenced by metallic oxide, pH value, and cation species. The metallic oxides adsorption rate decreased by 10.3%; Compared with single adsorption, Zn2+ promoted the adsorption of LVFX on silty clay, with the exception that the pH value was 2.0; Based on the simulated migration, subtle changes in adsorption may lead to a significant difference in migration and impact on the environmental risk of LVFX to groundwater. This paper proposed three aspects of the research should be strengthened to further develop the potential of silty clay in the prevention and control of groundwater pollution.


Assuntos
Água Subterrânea , Águas Residuárias , Argila , Adsorção , Levofloxacino , Zinco , Solo , Óxidos
20.
J Environ Manage ; 325(Pt B): 116596, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36326527

RESUMO

Diesel contamination of soil due to oil spills, disposal of refinery waste, oil exploration constitutes a major environmental problem. This paper reports the remediation of diesel contaminated clay soil using Zn/Fe0 bimetallic nanoparticle stabilized Rhamnolipid (RMLP) and Tween-80 (TW-80) surfactant foams. Fe0, and Zn (x wt%)/Fe0 (x = 0.2, 2.0, and 10.0) bimetallic nanoparticles are synthesized by using sodium borohydride reduction method. The average particle size (from FESEM) is calculated to be 62, 57, 42 and 35 nm for the Fe0, Zn (0.2)/Fe0, Zn (2)/Fe0 and Zn (10)/Fe0 nanopowders, respectively. The highest foamability and foam stability of 109.6 and 108.5 mL, respectively are observed for the RMLP (12 mg/l) surfactant foam stabilized with 6 mg/l Zn (10)/Fe0 nanoparticles. The surface tension values reduce to the lowest value of 28.1 and 31.4 mN/m with the addition of 6 mg/l of Zn (10)/Fe0 powder in RMLP and TW-80 solutions of 12 mg/l, respectively. The maximum diesel removal efficiency of 83.8 and 59%, is achieved by RMLP (12 mg/l) foam stabilized by Zn (10)/Fe0 nanoparticles (6 mg/l) for the clay soil contaminated with 100 and 500 µl/g of diesel, respectively. The physicochemical properties of the nanoparticles are studied to explain the foam properties and the remediation behavior. These findings regarding the nanoparticle stabilized foams can offer a cost-effective environment friendly commercial solution for soil remediation in the future.


Assuntos
Recuperação e Remediação Ambiental , Nanopartículas Metálicas , Poluentes do Solo , Solo/química , Argila , Polissorbatos , Poluentes do Solo/análise , Tensoativos , Nanopartículas Metálicas/química , Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...