Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.272
Filtrar
1.
Sci Total Environ ; 740: 140137, 2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-32927575

RESUMO

Phytoremediation is a promising inexpensive method of detoxifying arsenic (As) contaminated soils using plants and associated soil microorganisms. The potential of Pteris vittata to hyperaccumulate As contamination has been investigated widely. Since As(V) is efficiently taken up by P. vittata than As(III), As speciation by associated rhizobacteria could offer enormous possibility to enhance As phytoremediation. Specifically, increased rhizobacteria mediated As(III) to As(V) conversion appeared to be a crucial step in As mobilization and translocation. In this study, Pseudomonasvancouverensis strain m318 with the potential to improve As phytoremediation was inoculated to P. vittata in a field trial for three years to evaluate its long-term efficacy and stability for enhancing As phytoextraction. The biomass, As concentration, and As accumulation of ferns showed to be increased by inoculation treatment. Although this trend occasionally declined which may be accounted to lower As concentration in soil and amount of precipitation during experiments, the potential of inoculation was observed in increased enrichment coefficients. Further, the arsenite oxidase (aioA-like) genes in the rhizosphere were detected to evaluate the influence of inoculation on As phytoremediation. The findings of this study suggested the potential application of rhizosphere regulation to improve phytoremediation technologies for As contaminated soils. However, the conditions which set the efficacy of this method could be further optimized.


Assuntos
Arsênico/análise , Pteris , Poluentes do Solo/análise , Biodegradação Ambiental , Rizosfera
2.
Sci Total Environ ; 739: 139906, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32758940

RESUMO

Silicon (Si) addition to flooded rice paddy soil tends to decrease grain inorganic arsenic (iAs) and increase grain dimethylarsinic acid (DMA) concentrations, but the mechanism for the increase in plant-available DMA is unresolved. It has been suggested that Si displaces DMA from soil solids, rendering it plant-available; however, we hypothesize that Si desorbs primarily iAs from soil solids, which stimulates methylation to DMA. We added silicic acid to a contaminated paddy soil and a flooded upland soil that had been historically contaminated with lead arsenate in a batch incubation experiment, and measured changes in solid-phase As speciation, porewater As speciation, and As-methylating microbial (AsMM) abundance over time. We found that DMA was not detectable in soils prior to the start of the experiment nor throughout the experiment, so it comprised a trace amount of total soil As. Upon Si addition to paddy soil, total As increased in porewater following Si spike and this increase was mainly due to iAs desorption, and an order of magnitude less MMA and DMA was desorbed. The upland soil transitioned to reducing conditions throughout the experiment, but when they were achieved, iAs was desorbed first and this was followed by an increase of MMA and then DMA compared to control soils. Total microbial community abundance increased over the course of the experiments and arsM gene abundance increased from initial conditions, but did not differ between treatments. In the paddy soil, the ratio of arsM:16S gene abundance decreased from the initial conditions, but it increased in the upland soil with historic As contamination. These results suggest that Si-induced desorption of DMA is small and likely does not explain the increases of plant-available DMA upon Si fertilization in prior work. Likely, Si-induced iAs desorption drives microorganisms to methylate iAs, but degree of methylation will differ between soils.


Assuntos
Arsênico/análise , Arsenitos , Oryza , Poluentes do Solo/análise , Ácido Cacodílico , Silício , Solo
3.
Environ Monit Assess ; 192(9): 590, 2020 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-32820434

RESUMO

Organoarsenic compounds are widely used in chicken feed for control of coccidial parasite, quick weight gain, and for imparting attractive color to the chicken flesh. A study was conducted to assess the level of arsenic in both chicken feed and flesh. Chicken feed was collected from 10 farm houses and total arsenic was estimated. The quantitative estimation suggests that the four levels of chicken feed contain different quantities of arsenic load. The results demonstrated that feed at stages III and IV levels contain 0.01 mg/g and 0.018 mg/g of arsenic respectively. However, at stages I and II levels, the feed contains 0.005 mg/g and 0.0052 mg/g of arsenic respectively. Proceeding similarly, chicken flesh was collected from ten vendors in the local markets of Burdwan. The experimental results revealed that deposition of arsenic in different parts of chicken body is not same. The highest accumulation was recorded in the flesh of chest followed by stomach, whereas flesh of the legs and heart showed lower levels of arsenic accumulation. A comprehensive calculation was thereafter done to assess the total amount of arsenic ingestion through consumption of chicken. If a person takes 60.0 g of chicken flesh (leg, breast, muscles, and stomach) everyday, then the person may consume 0.186-0.372 µg of arsenic per day. This study therefore clearly suggests that excessive consumption of poultry chicken may prove to be fatal. However, further research is necessary to confirm the present findings. To the best of our knowledge, this is probably the first report on the likelihood of arsenic contamination in the flesh of different body parts of poultry chicken from Eastern India.


Assuntos
Arsênico/análise , Ração Animal/análise , Animais , Galinhas , Monitoramento Ambiental , Índia , Prevalência
4.
Water Res ; 183: 116106, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32771717

RESUMO

Engineered black carbon (biochar) can be introduced into groundwater through its extensive engineered applications (e.g., in-situ remediation of groundwater/soils), which can participate in geochemical processes that may alter the fate of trace contaminants such as arsenic (As(III)). Here we examined the impacts of the undissolved and dissolved fractions of reduced biochar (hereafter denoted as rUBC and rDBC, respectively) on the As(III) immobilization in the absence/presence of Ca2+ (50 mM) at pH 11.5 under anoxic conditions. While neither rUBC nor rDBC alone was capable of immobilizing As(III), the apparent As(III) immobilization by rUBC and rDBC synergistically occurred in the presence of Ca2+, with an efficiency of 73.1% and 89.6% within 24 h, respectively. In the rUBC/Ca2+/As(III) system, rUBC enabled full oxidation of As(III) to As(V) by its residual redox-active moieties such as quinoid CO and persistent free radicals, thereby facilitating precipitation of the newly generated As(V) with Ca2+ adsorbed onto the rUBC's surface. In contrast, rDBC induced in-situ local enrichment of Ca2+ in the nascent rDBC-derived flocs with predominant non-oxidative and slight oxidative precipitation of As(III) via ternary rDBC-Ca-As complexation. This ternary complex was created by Ca2+-bridging interactions between As species and oxygen-containing functional groups of rDBC, as evidenced by the FTIR results and the Ca2+-impeded As(III) oxidation. The generation of the flocs physically trapped a small amount of As species particularly As(III). Both the increases in Ca2+ concentration (0-100 mM) and solution pH (10.0-12.5) enhanced the apparent As(III) immobilization. This study provides new insights into the environmental impacts of two reduced biochar fractions released into typical Ca2+-rich aquifers on the fate and transport of As species.


Assuntos
Arsênico/análise , Água Subterrânea , Poluentes Químicos da Água/análise , Carvão Vegetal , Solo
5.
Water Res ; 183: 116081, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32784107

RESUMO

Groundwater flow has the potential to introduce arsenic (As) in previously uncontaminated aquifers. The extent to which As transport is retarded by adsorption is particularly relevant in Bangladesh where low-As wells offer the best chance of reducing chronic exposure to As of a large rural population dependent on groundwater. In this study, column experiments were conducted with intact cores in the field to measure As retardation. Freshly collected cores of reduced iron (Fe-II) dominated gray sediment of Holocene age as well as oxidized Fe (III)-coated orange sediment of Pleistocene age were eluted at pore-water velocities of 40-230 cm/day with anoxic groundwater pumped directly from a well and containing 320 µg/L As. Up to 100 µg/L As was immediately released from gray sand but the main As breakthrough for both gray and orange sand occurred between 30 and 70 pore volumes, depending on flow rate. The early release of As from gray sand is attributed to the presence of a weakly bound pool of As. The sorption of As was kinetically limited in both gray and orange sand columns. We used a reversible multi-reaction transport model to simulate As breakthrough curves while keeping the model parameters as constant as possible. Contrary to the notion that dissolved As is sorbed more strongly to orange sands, we show that As was similarly retarded in both gray and orange sands in the field.


Assuntos
Arsênico/análise , Citrus sinensis , Água Subterrânea , Poluentes Químicos da Água/análise , Bangladesh , Sedimentos Geológicos , Humanos
6.
Environ Sci Pollut Res Int ; 27(32): 39888-39912, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32772289

RESUMO

Arsenic (As) toxicity is a global phenomenon, and it is continuously threatening human life. Arsenic remains in the Earth's crust in the forms of rocks and minerals, which can be released into water. In addition, anthropogenic activity also contributes to increase of As concentration in water. Arsenic-contaminated water is used as a raw water for drinking water treatment plants in many parts of the world especially Bangladesh and India. Based on extensive literature study, adsorption is the superior method of arsenic removal from water and Fe is the most researched periodic element in different adsorbent. Oxides and hydroxides of Fe-based adsorbents have been reported to have excellent adsorptive capacity to reduce As concentration to below recommended level. In addition, Fe-based adsorbents were found less expensive and not to have any toxicity after treatment. Most of the available commercial adsorbents were also found to be Fe based. Nanoparticles of Fe-, Ti-, Cu-, and Zr-based adsorbents have been found superior As removal capacity. Mixed element-based adsorbents (Fe-Mn, Fe-Ti, Fe-Cu, Fe-Zr, Fe-Cu-Y, Fe-Mg, etc.) removed As efficiently from water. Oxidation of AsO33- to AsO43-and adsorption of oxidized As on the mixed element-based adsorbent occurred by different adsorbents. Metal organic frameworks have also been confirmed as good performance adsorbents for As but had a limited application due to nano-crystallinity. However, using porous materials having extended surface area as carrier for nano-sized adsorbents could alleviate the separation problem of the used adsorbent after treatment and displayed outstanding removal performances.


Assuntos
Arsênico , Poluentes Químicos da Água , Purificação da Água , Adsorção , Arsênico/análise , Bangladesh , Índia , Poluentes Químicos da Água/análise
7.
Environ Pollut ; 266(Pt 2): 115140, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32653722

RESUMO

Water management such as drainage for creating aerobic conditions is considered to be an adequate method for reducing the accumulation of arsenic (As) in rice grains; however, it is difficult to conduct drainage operations in some areas that experience a lengthy rainy season as well as in soils with poor drainage. In this regard, application of oxygen-releasing compounds (ORCs) may be an alternative method for maintaining aerobic conditions even under flooding in paddy soils. Therefore, a pot experiment was conducted to investigate the effects of application of an ORC, calcium peroxide (CaO2), on the growth and accumulation of As in rice plants grown in As-contaminated paddy soils. The rice plants were grown in two soils with different characteristics and As levels, and all of the tested soils were treated with 0, 5, 10, and 20 g CaO2 kg-1. Results revealed that the concentration of As and the distribution of arsenite in the pore water of all tested soils was reduced by CaO2 application. In addition, the grain yields increased and the concentration of inorganic As in brown rice decreased by 25-45% upon CaO2 treatment of low-As-level soils (<16 mg kg-1). However, the effect of CaO2 application on the accumulation of inorganic As in brown rice in As-enriched soils (>78 mg kg-1) could not found in this study, due to the rice plant suffered from serious As phytotoxicity. It suggests that CaO2 amendment may be suitable for reducing the As concentration of rice grains grown in low-As-level paddy soils, but for As-enriched soils, the proposed CaO2 application method is not feasible.


Assuntos
Arsênico/análise , Oryza , Poluentes do Solo/análise , Peróxidos , Solo
8.
Environ Pollut ; 266(Pt 2): 115190, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32688077

RESUMO

With the constant quest for new sources of superfoods to supplement the largely nutrient deficient diet of the modern society, sea cucumbers are gaining increasing popularity. Three species of sea cucumbers, Cucumaria frondosa, Apostichopus californicus and Apostichopusjaponicus were collected from three geographical regions, Atlantic and Pacific coast of Canada and Yellow sea/ East China sea in China, respectively. These organisms were sectioned into parts (body wall, tentacles, internal organ, skin and muscle) and analysed for total arsenic (As) by inductively coupled plasma mass spectrometry (ICP-MS) and As species by high-performance liquid chromatography (HPLC) coupled to ICP-MS. Normal and reversed sequential extractions were optimised to address As distribution between lipids (polar and non-polar) and water-extractable fractions. Two extraction methods for water-extractable As were compared in terms of the number and the amount of extracted species. The results revealed that total As concentration and As species distribution varies significantly between sea cucumbers species. Total As in studied body parts ranged between 2.8 ± 0.52 and 7.9 ± 1.2 mg kg-1, with an exception of the muscle tissue of A. californicus, where it reached to 36 ± 3.5 mg kg-1. Arsenobetaine (AsB) was the most abundant As species in A. californicus and A.japonicus, however, inorganic As represented over 70% of total recovered As in the body parts of C. frondosa. Arsenosugars-328 and 482 were found in all studied body parts whereas arsenosugar-408 was only found in the skin of A. californicus. This is the first time that such a variation in As species distribution between sea cucumber species has been shown.


Assuntos
Arsênico/análise , Pepinos-do-Mar , Animais , Canadá , China , Cromatografia Líquida de Alta Pressão , Água
9.
Environ Pollut ; 266(Pt 1): 115221, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32698057

RESUMO

As a well-known toxic element, antimony occurred in a wide range of concentrations in the geothermal waters discharging from Rehai and Daggyai, two representative hydrothermal areas in the Yunnan-Sichuan-Tibet Geothermal Province of China. Antimony speciation in different types of the hot springs in Rehai and Daggyai varied greatly as well, and tri- and tetrathioantimonate were detected in most neutral to alkaline Rehai hot springs. Neutral to alkaline pH, high sulfide concentrations, and high sulfide to antimony ratios were the critical factors promoting the formation of thioantimonates. The fact that no thioantimonates were detected in neutral to alkaline Daggyai hot springs is attributed to high concentrations of coexistent arsenic capable of inhibiting the thiolation of oxyantimony anions, because thioantimonates are kinetically more labile than thioarsenates. Upon discharge of the hot springs, both total aqueous antimony and arsenic decreased rapidly and substantially via immobilization to the sediments in the spring vents and their outflow channels. Some of the common iron-bearing minerals in the spring sediments, like pyrite and goethite, are known sinks for antimony and arsenic. Yet, an interesting difference was observed with antimony and iron contents in the sediment samples showing a significant correlation that was lacking for arsenic and iron contents. The explanation might be that for arsenic, sorption affinities are known to vary significantly with aqueous arsenic speciation and mineral phases. Typically, thiolation increases, and oxidation decreases arsenic mobility. Sorption experiments for antimony conducted in the present study, in contrast, showed that different antimony species were comparably sorbed to pyrite over a wide range of initial antimony concentrations and to goethite at relatively low initial antimony concentrations (but still covering the concentration range of antimony in common natural waters), so neither thiolation nor oxidation contributed significantly to the mobility of antimony in the hot springs investigated in this study.


Assuntos
Arsênico/análise , Fontes Termais , Antimônio , China , Sulfetos/análise , Tibet
10.
Environ Pollut ; 266(Pt 3): 115152, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32702603

RESUMO

Nano-silica as an important part of soil is an ideal carrier of passivator material. In this paper, nano-silica was modified by silane coupling agent containing mercapto group and iron (II) salt to afford an organic-inorganic hybrid containing -S-Fe-S functional group (coded as RNS-SFe) on the surface of nano-silica. Results demonstrate that the RNS-SFe nanoparticle has network-like spheroidal shape and a primary particle size is about 18.0 nm. The RNS-SFe hybrid as a potential immobilization agent for heavy metal in soil shows excellent performance for the remediation of the contaminated soil. Specifically, with a dosage of 3.0% (mass ratio) in the soil, it can immobilize bioavailable Pb, Cd, and As by 97.1%, 85.0%, and 80.1%, respectively. Namely, the RNS-SFe hybrid can transform the bioavailable Pb, Cd, and As into insoluble mercapto metal compounds (-S-Pb-S- and -S-Cd-S-) and less soluble iron arsenate (Fe3(AsO4)2, FeAsO4) precipitate on the surface of nano-silica particle, thereby reducing the toxicity and mobility of the toxic contaminant fractions. In the meantime, the immobilized products of the Pb, Cd and As fractions have good resistance against acid leaching. These results are contributive to the application of RNS-SFe for the remediation of multi-heavy metal-contaminated soils in field.


Assuntos
Arsênico/análise , Recuperação e Remediação Ambiental , Metais Pesados/análise , Poluentes do Solo/análise , Cádmio/análise , Compostos Ferrosos , Silanos , Dióxido de Silício , Solo
11.
Sci Total Environ ; 743: 140534, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32659549

RESUMO

Adverse health outcomes, including death from cardiovascular disease (CVD), arising from chronic exposure to inorganic arsenic (iAs) are well documented. Consumption of rice is a major iAs exposure route for over 3 billion people, however, there is still a lack of epidemiological evidence demonstrating the association between iAs exposure from rice intake and CVD risks. We explored this potential association through an ecological study using data at local authority level across England and Wales. Local authority level daily per capita iAs exposure from rice (E-iAsing,rice) was estimated using ethnicity as a proxy for class of rice consumption. A series of linear and non-linear models were applied to estimate the association between E-iAsing,rice and CVD age-standardized mortality rate (ASMR), using Akaike's Information Criterion as the principle model selection criterion. When adjusted for significant confounders, notably smoking prevalence, education level, employment rate, overweight percentage, PM2.5, female percentage and medical and care establishments, the preferred non-linear model indicated that CVD risks increased with iAs exposure from rice at exposures above 0.3 µg/person/day. Also, the best-fitted linear model indicated that CVD ASMR in the highest quartile of iAs exposure (0.375-2.71 µg/person/day) was 1.06 (1.02, 1.11; p-trend <0.001) times higher than that in the lowest quartile (<0.265 µg/person/day). Notwithstanding the well-known limitations of ecological studies, this study further suggests exposure to iAs, including from rice intake, as a potentially important confounder for studies of the factors controlling CVD risks.


Assuntos
Arsênico/análise , Doenças Cardiovasculares , Oryza , Inglaterra , Exposição Ambiental/análise , Feminino , Contaminação de Alimentos/análise , Humanos , País de Gales
12.
Life Sci ; 257: 118132, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32710949

RESUMO

AIM: Arsenic, an environmental contaminant, represents a public health problem worldwide. Studies have shown its association with molecular mechanisms related to cardiomyocytes redox balance. However, the microstructure and ultrastructure of cardiac tissue, as well as the activity of its antioxidant defenses front of disturbances in the mineral bioavailability induced by arsenic are still scarce. Thus, the aim of this study was to evaluate if arsenic exposure might induce structural and ultrastructural damages in cardiac tissue, including pathological remodeling of the parenchyma and stroma. Moreover, its impact on micromineral distribution and antioxidant enzymes activity in heart tissue was also evaluated. MAIN METHODS: Adult male Wistar rats were divided into three groups that received 0, 1 and 10 mg/L sodium arsenite in drinking water for eight weeks. The hearts were collected and subjected to structural and ultrastructural analysis, mineral microanalysis and antioxidant enzymes quantification. Functional markers of cardiac damages were evaluated using serum samples. KEY FINDINGS: Arsenic exposure induced dose-dependent structural and ultrastructural remodeling of cardiac tissue, with parenchyma loss, increase of stroma components, collagen deposition, and pathological damages such as inflammation, sarcomere disorganization, mitochondria degeneration and myofilament dissociation. Moreover, this metalloid was bioaccumulated in the tissue affecting its micromineral content, which resulted in antioxidant imbalance and increased levels of oxidative stress and cardiac markers. SIGNIFICANCE: Taken together, our findings indicate that the heart is a potential target to arsenic toxicity, and long-term exposure to this metalloid must be avoided, once it might induce several cardiac tissue pathologies.


Assuntos
Arsênico/toxicidade , Coração/efeitos dos fármacos , Miocárdio/patologia , Remodelação Ventricular/efeitos dos fármacos , Animais , Arsênico/administração & dosagem , Arsênico/análise , Catalase/metabolismo , Relação Dose-Resposta a Droga , Glutationa Transferase/metabolismo , Masculino , Miocárdio/química , Miocárdio/ultraestrutura , Ratos , Ratos Wistar , Superóxido Dismutase/metabolismo
13.
Chemosphere ; 260: 127451, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32673876

RESUMO

This study aims to calculate deposition of PM2.5 -bound hazardous metals in different organs after inhalation of particulate matter for the Delhi (India), and to estimate risks to organs following inhalation. Bio-accessible fractions of three PM-associated carcinogenic metals (As, Pb &Cd) were calculated using the metal values in simulated lung fluids. Depositions of metals in different organs were calculated using an integrated model consists of HRT and PBPK models. The calculation indicates that the major or significant deposition of metal Pb occurs in tissues, such as bone, muscle and blood. Most of the depositions of Cd happens in lung whereas most of the depositions of As happens in lung, muscle and skin. Most of the deposition of studied metals was found in lung (45% for arsenic and 70% for cadmium of their bio -dissolved contents). The following order of depositions of metals in different tissues were found (from highest deposition to smallest deposition): As: Lung > muscle = liver; Pb: bone > blood > muscle; Cd: lung > intestine. The combined exposures of PM2.5 and its associated metals were found to give interaction-based hazard index greater than 1 for several months of the year, indicating a chance of health risk. Hazard quotient (HQ) <1 was seen for ingestion and dermal pathways, indicating no cause of concern. Findings indicate the need for doing periodic monitoring and estimating deposition doses and exposure risks of PM-associated metals to lungs and other organs for protecting human health.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental , Exposição por Inalação/estatística & dados numéricos , Metais/análise , Material Particulado/análise , Arsênico/análise , Fenômenos Biofísicos , Cádmio , Humanos , Índia , Exposição por Inalação/análise , Pulmão/metabolismo , Metais Pesados/análise , Medição de Risco , Estações do Ano
14.
Chemosphere ; 260: 127619, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32683027

RESUMO

Heavy metal contamination poses considerable threats to various ecosystems, yet little is known about the assembly and adaptation of microbial communities at sites with combined heavy metal(loid) pollution. Here, we examined metal(loid) pollutants and bacterial communities in three zones (Zones Ⅰ, Ⅱ, and Ⅲ) of an abandoned sewage reservoir with different usage years. The contamination level of multiple metal(loid)s was higher in Zone Ⅰ than in the other zones, and arsenic (As), zinc (Zn), selenium (Se), copper (Cu), tin (Sn), molybdenum (Mo), antimony (Sb), cadmium (Cd), lead (Pb), thallium (Tl), and nickel (Ni) were the major contaminants (pollution load index > 1). Bioavailable forms of titanium (Ti), chromium (Cr), Sn, and cobalt (Co) played essential roles in shaping the microbial structure, and physicochemical properties, especially organic matter (OM) and pH, also mediated the microbial diversity and composition in the metal(loid) contaminated zones. Metal-microbe interactions and heatmap analysis revealed that the bioavailability of metal(loid)s promoted the niche partitioning of microbial species. Metal-resistant species were abundant in Zone Ⅰ that had the highest metal-contaminated level, whereas metal-sensitive species prevailed in Zone Ⅲ that had the lowest pollution level. The bioavailable metal(loid)s rather than physicochemical and spatial variables explained a larger portion of the variance in the microbial community, and the homogeneous selection was the dominant ecological process driving the assembly of the microbial community. Overall, our study highlighted the importance of metal(loid) bioavailability in shaping microbial structure, future bioremediation, and environmental management of metal(loid) contaminated sites.


Assuntos
Metaloides/análise , Microbiota , Arsênico/análise , Bactérias , Biodegradação Ambiental , China , Cromo/análise , Monitoramento Ambiental , Poluentes Ambientais/análise , Metais Pesados/análise , Interações Microbianas , Poluentes do Solo/análise
15.
Chemosphere ; 260: 127621, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32688320

RESUMO

Biological technologies are efficient and economical methods for removing toxic arsenic (As) from organic wastewaters. In this study, four sequencing batch reactors of manganese-oxidizing aerobic granular sludge (Mn-AGS) were operated in duplicate and imposed with acidic pH and high organic shocks. Batch experiments with different initial conditions were conducted to investigate the effects of pH and organic load on As(III) oxidation and removal. The results indicate that acidic pH shocks (influent pH decreased to 4.0/3.0) unexpectedly increased the As removal efficiency from 23.4-38.2% to 64.7-72.5%. The effects of high organic shocks were very complicated, as the results of the shocks were opposite twice. According to the results of the batch experiments, it was estimated that the suitable pH range for high performance was 5.0-8.5 in reaction liquid. Although acidic pH shocks initially inhibited As(III) oxidation and removal, they largely extended the reaction time of the suitable pH range and finally improved the As removal efficiency. There were many negative and positive factors affecting the As removal during the high organic shocks, leading to the unstable responses. Moreover, the microbial community was not largely changed by pH or organic shocks, and genus Hydrogenophaga (∼8%) might be responsible for the microbial As(III) oxidation. Finally, several operation strategies were proposed to obtain high performance, such as liquid pH control and aeration improvement.


Assuntos
Reatores Biológicos , Manganês/análise , Eliminação de Resíduos Líquidos/métodos , Arsênico/análise , Trióxido de Arsênio , Concentração de Íons de Hidrogênio , Oxirredução , Esgotos , Águas Residuárias
16.
Environ Sci Pollut Res Int ; 27(27): 34348-34356, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32557050

RESUMO

The objective of the present study was to assess the markers of arsenic, cadmium, mercury, and lead exposure in first-year RUDN University students of different geographic origins. A total of 274 first-year students of the RUDN University originating from Russia (n = 65), Asia (n = 57), Middle East (n = 84), Africa (n = 40), and Latin America (n = 28) were enrolled in the present study. Evaluation of As, Cd, Hg, and Pb levels in urine and hair was performed using inductively coupled plasma-mass spectrometry. The obtained data demonstrate that hair As levels in foreign students exceed that in Russian examinees. The highest Cd and Pb levels were detected in subjects from Africa and Latin America, whereas hair Hg content was significantly higher in Latin America students. Urinary Cd levels in foreign students exceeded those in Russian counterparts. In turn, the highest Hg concentration in urine was revealed in students originating from Middle East and especially Latin America. Urinary Pb levels were found to be the highest in students from Africa. Multiple regression analysis demonstrated that Asian, African, and Latin American origins were considered as a significant predictor of hair Hg content. Higher urinary Hg levels were associated with Asia, Middle East, and Latin American origins. Prior habitation in Africa and Asia was considered as predictor of higher hair Pb and urinary Cd levels. The observed difference may be indicative of geographic difference in toxic metal exposure patterns.


Assuntos
Arsênico/análise , Mercúrio/análise , África , Ásia , Cádmio/análise , Humanos , Chumbo/análise , Oriente Médio , Federação Russa , Estudantes , Universidades
17.
Environ Sci Pollut Res Int ; 27(29): 36377-36390, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32562227

RESUMO

The consumption of agricultural products grown on paddy soils contaminated with toxic element has a detrimental effect on human health. However, the processes and mechanisms of iron (Fe) mineral-associated arsenic (As) availability and As reactivity in different paddy soil profiles are not well understood. In this study, the fractions, immobilization, and release risk of As in eleven soil profiles from the Changzhutan urban agglomeration in China were investigated; these studied soils were markedly contaminated with As. Sequential extraction experiments were used to analyze fractions of As and Fe oxide minerals, and kinetic experiments were used to characterize the reactivity of Fe oxide minerals. The results showed that concentrations of total As and As fractions had a downward trend with depth, but the average proportions of As fractions only showed relatively small changes, which implied that the decrease in the total As concentrations influenced the changes in fraction concentrations along the sampling depth. Moreover, we found that easily reducible Fe (Feox1) mainly controlled the reductive dissolution of the Fe oxides, which suggest that the reductive dissolution process could potentially release As during the flooded period of rice production. In addition, a high proportion of As was specifically absorbed As (As-F2) (average 20.4%) in paddy soils, higher than that in other soils. The total organic carbon (TOC) content had a positive correlation with the amount of non-specifically bound As (As-F1) (R = 0.56), which means that TOC was one factor that affected the As extractability in the As-F1. Consequently, high inputs of organic fertilizers may elevate the release of As and accelerate the diffusion of As. Graphical abstract.


Assuntos
Arsênico/análise , Oryza , Poluentes do Solo/análise , China , Compostos Férricos , Minerais , Solo
18.
Environ Sci Pollut Res Int ; 27(29): 36744-36753, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32564325

RESUMO

Chronic arsenic poisoning is one of the serious health hazards in West Bengal, India, and Bangladesh. It occurs due to contaminated subsoil water. The aim of this study is conducted to find out the ameliorative effect of turmeric and P. foetida powder on experimentally induced arsenic toxicity in sheep. Twelve sheep were divided into four groups; groups I, II and III were orally administered with sodium arsenite at 6.6 mg/kg body weight for 133 days; groups I and II animals were treated by turmeric and P. foetida powders respectively at 500 mg/kg dose for the last 49 days; the fourth group was control. Arsenic content was estimated in faeces, urine and wool in every 15 days. Biochemical, haematological, antioxidant parameters and DNA fragmentation were also assessed. Turmeric and P. foetida powder treatment significantly (P < 0.05) increased arsenic elimination through faeces, urine and wool. Haemoglobin content and TEC were decreased in groups I, II and III; however, these were improved significantly (P < 0.05) by turmeric and P. foetida powder treatment. Increased activity of AST, ALT, blood urea nitrogen and plasma creatinine were significantly (P < 0.05) decreased in groups I and II. The reduced SOD and catalase activity were significantly (P < 0.05) restored at the end of the experiment in turmeric and P. foetida-treated groups. The test drugs are found significantly effective not only to eliminate arsenic from the body but also give protection from possible damage caused by arsenic exposure in sheep.


Assuntos
Intoxicação por Arsênico , Arsênico/análise , Animais , Bangladesh , Curcuma , Índia , Estresse Oxidativo , Ovinos
19.
Environ Sci Pollut Res Int ; 27(26): 33362-33372, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32533478

RESUMO

Arsenic in groundwater for human consumption has negative effects on human's health worldwide. Due to the above, it is essential to invest in the development of new materials and more efficient technology for the elimination of such priority contaminants as arsenic. Therefore, in the present work, it was synthesized an amorphous hybrid material ZrOx-FeOx with a high density of OH groups, to improve the arsenic adsorption capacity of iron (FeOx) and zirconium (ZrOx) that makes up the bimetallic oxyhydroxide. The spectra of FT-IR and pKa's distribution suggest that in the synthesized binary oxides, a new union between the two metallic elements is formed by means of an oxygen (metal-O-metal). In addition, TEM profiles suggest that there are chemical interactions between both metals since no individual particles of iron oxide and zirconium oxide were found. According to the results, the adsorption capacity of the ZrOx-FeOx material increases 4.5 and 1.4 times with respect to FeOx and ZrOx, respectively. At pH 6, the maximum adsorption capacity was 27 mg g-1, but at pH greater than 7, the arsenic adsorption capacity onto ZrOx-FeOx decreased 66%. Graphical Abstract.


Assuntos
Arsênico/análise , Poluentes Químicos da Água/análise , Purificação da Água , Adsorção , Concentração de Íons de Hidrogênio , Cinética , Espectroscopia de Infravermelho com Transformada de Fourier , Água , Zircônio
20.
Sci Total Environ ; 738: 139869, 2020 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-32526410

RESUMO

Phosphorus (P) application rate can affect the As uptake by rice, but its mechanism lacks systematic studies. In this study, P fertilizers with different dosages (0, 75, 150, and 300 mg P2O5 kg-1 soil) were used to investigate the effects of P on As release in soil porewater, As sequestration on Fe plaque and the change of abundance and communities of aioA and arsC genes in rhizosphere, and then explore its effect on As uptake by rice. Our results indicated that As content in brown rice under P0 and P75 treatments was 14.3-28.6% lower than that under P150 treatment. The total accumulation of As in brown rice under P0 treatment (1.51 µg plant-1) was significantly lower than that under P150 treatment (2.17 µg plant-1). Compared to P150 treatment, P0 treatment decreased the total As content in porewater but increased the proportion of As(V) to total As in porewater. The activities of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) in rice roots and the Fe and As contents in Fe plaque were significantly higher under P0 treatment than under P150 treatment. Most of As (80.3-82.9%) sequestered by Fe plaque was in the form of arsenate (As(V)), and the associated As(V) on Fe plaque was 11.0% higher under P0 treatment than under P150 treatment. In addition, the abundance of aioA gene was 73.5% higher under P0 treatment than under P150 treatment, and the dominant aioA at genus level was Rhizobium and Rhodoferax. In general, P0 treatment led to higher root oxidation activity, which improved the formation of Fe plaque; and P0 treatment also improved the abundance of aioA gene in rhizosphere, thus increased the oxidation of As; so, P0 treatment indirectly enhanced As sequestration on Fe plaque, and that in turn reduced As accumulation in brown rice.


Assuntos
Arsênico/análise , Oryza , Poluentes do Solo/análise , Ferro , Fósforo , Raízes de Plantas/química , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA