Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.956
Filtrar
1.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 51(2): 171-177, 2020 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-32220184

RESUMO

Objective: To investigate the effects of dihydroartemis (DHA) on influenza A virus (IAV) A/PR/8/34 (H1N1) induces the pro-inflammatory factor and protein of extracellular signal regulated kinase (ERK) signaling pathway expression in bronchial epithelial cells. Methods: The BEAS-2B cells were treated with different concentrations of DHA (i.e.,0, 12.5, 25,50 and 100 µmol/L) for 24 h and the effect of DHA on the viability of BEAS-2B cells were measure by CCK8 method. The BEAS-2B cells were absorbed with IAV for 1 h, and then were treated with different concentrations of DHA (i.e., 12.5, 25 and 50 µmol/L) for 24 h, meanwhile, the normal control group and IAV group were established. The mRNA and protein expression levels of tumor necrosis factor-α (TNF-α) and interleukin (IL-6) were measured by real time quantitative PCR (RT-qPCR) and enzyme linked immunosorbent assay (ELISA), the expression levels of phospho-ERK (p-ERK) proteins were tested by Western blot (WB). Then, an ERK agonist (20 ng/mL) was used to treat BEAS-2B cells (the groups were divided into normal control group, DHA group, DHA+IAV group, ERK agonist group and DHA+IAV+ERK agonist group) for 24 h, and to observe the effect of DHA on inhibiting IAV induce the TNF-α, IL-6 and p-ERK expression in the BEAS-2B cells. Results: The BEAS-2B cells viability was not significantly different from that of the normal control group after treatment with DHA (i.e., 12.5, 25, and 50 µmol/L). The expression levels of TNF-α, IL-6 mRNA and TNF-α, IL-6, p-ERK protein in IAV group were significantly up-regulated compared with that in the normal control group ( P<0.05), meanwhile, compared with the IAV group, the expression levels of TNF-α, IL-6 mRNA and TNF-α, IL-6, p-ERK protein showed dose-dependent decrease in IAV+DHA group ( P<0.05). However, ERK agonists attenuated the DHA inhibit IAV induced the proinflammatory factors TNF-α, IL-6 secretion and the p-ERK protein expression of ERK signaling pathway in BEAS-2B cells. Conclusion: These data suggest that DHA can inhibit IAV induces the TNF-α and IL-6 expression in BEAS-2B cells through ERK signaling pathway.


Assuntos
Antivirais/farmacologia , Artemisininas/farmacologia , Vírus da Influenza A Subtipo H1N1/patogenicidade , Vírus da Influenza A , Interleucina-6/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , Brônquios , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/virologia , Humanos , Fator de Transcrição STAT1
2.
Life Sci ; 248: 117454, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32088211

RESUMO

AIMS: Dihydroartemisinin (DHA) is currently considered as the promising cancer therapeutic drug. In this study, we aimed to investigate the anti-proliferative and anti-metastasis effects of DHA. MAIN METHODS: Utilizing breast cancer cells MCF-7, MDA-MB-231 and BT549, cell proliferation, migration and invasion were detected. RT-qPCR was performed to detect CIZ1, TGF-ß1 and Snail expression, and the interactions of these related molecules were analyzed by GeneMANIA database. Western blot detected CIZ1, TGF-ß1/Smads signaling and Snail expression in DHA-treated cells, in TGFß1-induced cells with enhanced metastatic capacity, and in cells treated with DHA plus TGFß1/TGFß1 inhibitor SD-208. KEY FINDINGS: Results indicated DHA inhibited breast cancer cell proliferation and migration, with more potent effects compared with that of artemisinin. RT-qPCR and Western blot showed DHA inhibited CIZ1, TGF-ß1 and Snail expression, and these molecules were shown to have protein-protein interactions by bioinformatics. Furthermore, TGFß1-treatment enhanced MCF-7 migration and invasion, and CIZ1, TGF-ß1/Smads signaling and snail activities; DHA, SD-208, combination of DHA and SD-208 reversed these conditions, preliminarily proving the cascade regulation between TGF-ß1 signaling and CIZ1. MCF-7 xenografts model demonstrated the inhibition of DHA on tumor burden, and its mechanisms and well-tolerance in vivo; combination of DHA and SD-208 tried by us for the first time showed better treatment effects, but possible liver impairment made its use still keep cautious. SIGNIFICANCE: DHA treatment inhibits the proliferation and metastasis of breast cancer, through suppressing TGF-ß1/Smad signaling and CIZ1, suggesting the promising potential of DHA as a well-tolerated antitumor TGF-ß1 pathway inhibitor.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Artemisininas/farmacologia , Neoplasias da Mama/tratamento farmacológico , Regulação Neoplásica da Expressão Gênica , Proteínas Nucleares/genética , Fator de Crescimento Transformador beta1/genética , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Carcinogênese/genética , Carcinogênese/metabolismo , Carcinogênese/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sinergismo Farmacológico , Transição Epitelial-Mesenquimal , Feminino , Humanos , Metástase Linfática , Células MCF-7 , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/metabolismo , Pteridinas/farmacologia , Transdução de Sinais , Proteínas Smad/genética , Proteínas Smad/metabolismo , Fatores de Transcrição da Família Snail/antagonistas & inibidores , Fatores de Transcrição da Família Snail/genética , Fatores de Transcrição da Família Snail/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Life Sci ; 242: 117221, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31881224

RESUMO

AIMS: Endothelial cell (EC) tube formation is crucial for tumor angiogenesis, which becomes a target for chemotherapy. The anti-malaria agent dihydroartemisinin (DHA) inhibited tumor growth and angiogenesis. The aim of this study was to investigate the effects of DHA on EC tube formation and the underlying mechanisms. MATERIALS AND METHODS: Human umbilical vein endothelial cells (HUVECs) were cultured with different concentrations of DHA, and the tube formation was measured by in vitro angiogenesis assay. The protein levels of signal transducer and activator of transcription factor 3 (STAT3), phosphorylated STAT3 and fatty acid synthase (FASN) were detected by Western blotting. The gene expression of FASN was determined by real time-polymerase chain reaction (RT-PCR). The FASN siRNA and STAT3 (Y705D) vector were introduced into HUVECs by lipofectin transfection. KEY FINDINGS: DHA treatment inhibited tube formation, and the phosphorylation of STAT3 on Y705 of HUVECs. The expression of FASN was down-regulated by DHA and STAT3 inhibitor. The inhibitory effect of DHA on FASN expression in HUVECs was eliminated by co-treatment with the STAT3 inhibitor. Over-expression of STAT3 (Y705D) relieved the inhibitory effect of DHA on tube-formation and FASN expression. Under hypoxia condition, expression of FASN was up-regulated but inhibited by DHA treatment in HUVECs through suppression of STAT3 phosphorylation. SIGNIFICANCE: We demonstrate that DHA inhibits the protein level of FASN via attenuation of the Y705 phosphorylation of STAT3, and subsequently inhibits tube formation of HUVECs. Our results support the therapeutic potential of DHA on angiogenesis.


Assuntos
Inibidores da Angiogênese/farmacologia , Artemisininas/farmacologia , Neovascularização Fisiológica/efeitos dos fármacos , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ácido Graxo Sintases/metabolismo , Expressão Gênica/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Hylobatidae , Reação em Cadeia da Polimerase em Tempo Real , Fator de Transcrição STAT3/antagonistas & inibidores
4.
Eur J Med Chem ; 185: 111791, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31669852

RESUMO

Hybrid molecules have the potential to enhance the efficacy against both drug-sensitive and drug-resistant organisms, and Ferroquine, a ferrocene hybrid, has demonstrated great potency in clinical trials against both drug-sensitive and drug-resistant malaria. Accordingly, hybridization of ferrocene with other antimalarial pharmacophores represents a promising strategy to develop novel antimalarial candidates. This work attempts to systematically review the recent study of ferrocene hybrids in the design and development of antimalarial agents, and the structure-activity relationship (SAR) is also discussed to provide an insight for rational design of more effective antibacterial candidates.


Assuntos
Antimaláricos/farmacologia , Compostos Ferrosos/farmacologia , Malária/tratamento farmacológico , Metalocenos/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Antimaláricos/química , Artemisininas/química , Artemisininas/farmacologia , Compostos Ferrosos/química , Humanos , Metalocenos/química , Estrutura Molecular , Testes de Sensibilidade Parasitária , Peróxidos/química , Peróxidos/farmacologia , Quinolinas/química , Quinolinas/farmacologia
5.
Zhongguo Zhong Yao Za Zhi ; 44(22): 4992-4999, 2019 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-31872610

RESUMO

Artemisinin was isolated from traditional Chinese herb Artemisia annua for treating malaria. A series of derivatives,like dihydroartemisinin,artesunate,artemether,artether,had the same core chemical structure,and sesquiterpene lactone containing peroxide bridge constitute the basic chemical structure. Besides anti-malaria,artemisinin family drugs were found to ameliorate many different diseases,which have attracted wide attention in recent years. Among different diseases,artemisinin family drugs were found to have T lymphocytes immunomodulation effects,including activation,proliferation,differentiation,apoptosis and subsets function. Because T cell immunologic response is the key point of many diseases,and impact the pathogenic process,therapeutic effect and prognosis,the drug studies with it as the target have become hotspots in recent years. Studies of artemisinin family drug on T cell immunomodulation were still at the initial stage and involved in different disease; furthermore,T cell immune process involves complicated molecular mechanism,it is imperative to summarize the advance of current studies for further systematic explanation and exploration of their characteristics and mechanisms. This article will summarize the research progress of artemisinin family drugs for malaria,autoimmune disease,hypersensitivity reaction,tumor,schistosomiasis and AIDS relating to T cell immune modulation,so as to provide basic and professional reference for related research and application.


Assuntos
Antimaláricos , Artemisia annua , Artemisininas/farmacologia , Imunomodulação , Linfócitos T
6.
PLoS Genet ; 15(10): e1008453, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31609965

RESUMO

Determining the genetic basis of fitness is central to understanding evolution and transmission of microbial pathogens. In human malaria parasites (Plasmodium falciparum), most experimental work on fitness has focused on asexual blood stage parasites, because this stage can be easily cultured, although the transmission of malaria requires both female Anopheles mosquitoes and vertebrate hosts. We explore a powerful approach to identify the genetic determinants of parasite fitness across both invertebrate and vertebrate life-cycle stages of P. falciparum. This combines experimental genetic crosses using humanized mice, with selective whole genome amplification and pooled sequencing to determine genome-wide allele frequencies and identify genomic regions under selection across multiple lifecycle stages. We applied this approach to genetic crosses between artemisinin resistant (ART-R, kelch13-C580Y) and ART-sensitive (ART-S, kelch13-WT) parasites, recently isolated from Southeast Asian patients. Two striking results emerge: we observed (i) a strong genome-wide skew (>80%) towards alleles from the ART-R parent in the mosquito stage, that dropped to ~50% in the blood stage as selfed ART-R parasites were selected against; and (ii) repeatable allele specific skews in blood stage parasites with particularly strong selection (selection coefficient (s) ≤ 0.18/asexual cycle) against alleles from the ART-R parent at loci on chromosome 12 containing MRP2 and chromosome 14 containing ARPS10. This approach robustly identifies selected loci and has strong potential for identifying parasite genes that interact with the mosquito vector or compensatory loci involved in drug resistance.


Assuntos
Interações Hospedeiro-Parasita/genética , Estágios do Ciclo de Vida/genética , Malária Falciparum/parasitologia , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Animais , Anopheles/parasitologia , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Artemisininas/farmacologia , Artemisininas/uso terapêutico , Mapeamento Cromossômico , Modelos Animais de Doenças , Resistência a Medicamentos/genética , Feminino , Frequência do Gene , Loci Gênicos , Humanos , Malária Falciparum/tratamento farmacológico , Masculino , Camundongos , Mosquitos Vetores/parasitologia , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/crescimento & desenvolvimento , Polimorfismo de Nucleotídeo Único , Proteínas Ribossômicas/genética , Seleção Genética , Quimeras de Transplante
7.
Malar J ; 18(1): 337, 2019 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-31581943

RESUMO

BACKGROUND: The recent emergence in Southeast Asia of artemisinin resistance poses major threats to malaria control and elimination globally. Green nanotechnologies can constitute interesting tools for discovering anti-malarial medicines. This systematic review focused on the green synthesis of metal nanoparticles as potential source of new antiplasmodial drugs. METHODS: Seven electronic database were used following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. RESULTS: A total of 17 papers were included in the systematic review. 82.4% of the studies used plant leaves to produce nanoparticles (NPs) while three studies used microorganisms, including bacteria and fungi. Silver was the main metal precursor for the synthesis of NPs. The majority of studies obtained nanoparticles spherical in shape, with sizes ranging between 4 and 65 nm, and reported no or little cytotoxic effect of the NPs. Results based on 50% inhibitory concentration (IC50) varied between studies but, in general, could be divided into three NP categories; (i) those more effective than positive controls, (ii) those more effective than corresponding plant extracts and, (iii) those less effective than the positive controls or plant extracts. CONCLUSIONS: This study highlights the high antiplasmodial potential of green-synthesized metal nanoparticles thereby underscoring the possibility to find and develop new anti-malarial drugs based on green synthesis approaches. However, the review also highlights the need for extensive in vitro and in vivo studies to confirm their safety in humans and the elucidation of the mechanism of action.


Assuntos
Antimaláricos/síntese química , Descoberta de Drogas/tendências , Nanopartículas Metálicas/química , Folhas de Planta/metabolismo , Plasmodium falciparum/efeitos dos fármacos , Artemisininas/farmacologia , Malária/tratamento farmacológico , Extratos Vegetais/química , Prata
8.
Life Sci ; 237: 116943, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31604109

RESUMO

AIMS: The purpose of this study was to investigate the therapeutic effect of artemisinin (ART) on atherosclerosis and explore the molecular mechanisms involved by RNA sequencing (RNA-Seq). MAIN METHODS: Eight-week-old male ApoE-/- mice were treated with ART for eight weeks. Atherosclerotic lesion sizes were determined by Oil Red O staining, and RNA-Seq was used to detect the profile of differentially expressed genes following the administration of ART. The expressions of contractile phenotypic markers were detected by western blot and qRT-PCR, and the ability of the MOVAS cells to migrate and proliferate were assessed using the wound healing and CCK8 assays. KEY FINDINGS: Artemisinin treatment significantly reduced plaque area in the ApoE-/- mice and increased the expression of contractile phenotypic markers. RNA-Seq of aorta tissue revealed a distinct change in gene expression patterns after the mice were treated with ART. Our bioinformatics analysis demonstrated that the most prominently enriched pathway was a set of genes involved in vascular smooth muscle contractile function. Using an in vitro cell model, we demonstrated that ART could effectively reverse PDGF-activated MOVAS migration and proliferation, and elevate the level of proteins involved in the contractile phenotype. SIGNIFICANCE: We provide in vivo and in vitro evidence supporting a role for ART in the suppression of atherosclerosis, partly through the inhibition of vascular smooth muscle cell phenotype switching to a de-differentiated phenotype. These data further advances our understanding for a potential role for ART and suggests that ART is an excellent candidate for the treatment of atherosclerosis.


Assuntos
Antimaláricos/farmacologia , Apolipoproteínas E/fisiologia , Artemisininas/farmacologia , Aterosclerose/prevenção & controle , Proliferação de Células , Modelos Animais de Doenças , Músculo Liso Vascular/citologia , Animais , Aterosclerose/etiologia , Aterosclerose/patologia , Células Cultivadas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Fenótipo , Transdução de Sinais
9.
J Exp Clin Cancer Res ; 38(1): 402, 2019 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-31519193

RESUMO

BACKGROUND: Dihydroartemisinin (DHA) has been shown to exert anticancer activity through iron-dependent reactive oxygen species (ROS) generation, which is similar to ferroptosis, a novel form of cell death. However, whether DHA causes ferroptosis in glioma cells and the potential regulatory mechanisms remain unclear. METHODS: Effects of DHA on the proliferation, cell death, ROS and lipid ROS generation as well as reduced gluthione consumption were assessed in glioma cells with or without ferroptosis inhibitor. The biological mechanisms by which glioma cells attenuate the pro-ferroptotic effects of DHA were assessed using molecular methods. RESULTS: DHA induced ferroptosis in glioma cells, as characterized by iron-dependent cell death accompanied with ROS generation and lipid peroxidation. However, DHA treatment simultaneously activated a feedback pathway of ferroptosis by increasing the expression of heat shock protein family A (Hsp70) member 5 (HSPA5). Mechanistically, DHA caused endoplasmic reticulum (ER) stress in glioma cells, which resulted in the induction of HSPA5 expression by protein kinase R-like ER kinase (PERK)-upregulated activating transcription factor 4 (ATF4). Subsequent HSPA5 upregulation increased the expression and activity of glutathione peroxidase 4 (GPX4), which neutralized DHA-induced lipid peroxidation and thus protected glioma cells from ferroptosis. Inhibition of the PERK-ATF4-HSPA5-GPX4 pathway using siRNA or small molecules increased DHA sensitivity of glioma cells by increasing ferroptosis both in vitro and in vivo. CONCLUSIONS: Collectively, these data suggested that ferroptosis might be a novel anticancer mechanism of DHA in glioma and HSPA5 may serve as a negative regulator of DHA-induced ferroptosis. Therefore, inhibiting the negative feedback pathway would be a promising therapeutic strategy to strengthen the anti-glioma activity of DHA.


Assuntos
Fator 4 Ativador da Transcrição/metabolismo , Artemisininas/farmacologia , Glioma/metabolismo , Proteínas de Choque Térmico/metabolismo , Transdução de Sinais/efeitos dos fármacos , Resposta a Proteínas não Dobradas/efeitos dos fármacos , eIF-2 Quinase/metabolismo , Animais , Biomarcadores , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Expressão Gênica , Humanos , Camundongos , Espécies Reativas de Oxigênio/metabolismo
10.
Korean J Parasitol ; 57(4): 369-377, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31533403

RESUMO

Artemisinin-based combination therapy (ACT) resistance is widespread throughout the Greater Mekong Subregion. This raises concern over the antimalarial treatment in Thailand since it shares borders with Cambodia, Laos, and Myanmar where high ACT failure rates were reported. It is crucial to have information about the spread of ACT resistance for efficient planning and treatment. This study was to identify the molecular markers for antimalarial drug resistance: Pfkelch13 and Pfmdr1 mutations from 5 provinces of southern Thailand, from 2012 to 2017, of which 2 provinces on the Thai- Myanmar border (Chumphon and Ranong), one on Thai-Malaysia border (Yala) and 2 from non-border provinces (Phang Nga and Surat Thani). The results showed that C580Y mutation of Pfkelch13 was found mainly in the province on the Thai-Myanmar border. No mutations in the PfKelch13 gene were found in Surat Thani and Yala. The Pfmdr1 gene isolated from the Thai-Malaysia border was a different pattern from those found in other areas (100% N86Y) whereas wild type strain was present in Phang Nga. Our study indicated that the molecular markers of artemisinin resistance were spread in the provinces bordering along the Thai-Myanmar, and the pattern of Pfmdr1 mutations from the areas along the international border of Thailand differed from those of the non-border provinces. The information of the molecular markers from this study highlighted the recent spread of artemisinin resistant parasites from the endemic area, and the data will be useful for optimizing antimalarial treatment based on regional differences.


Assuntos
Antimaláricos/farmacologia , Artemisininas/farmacologia , Marcadores Genéticos , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum/genética , Antimaláricos/administração & dosagem , Antimaláricos/uso terapêutico , Artemisininas/administração & dosagem , Artemisininas/uso terapêutico , Sequência de Bases , DNA de Protozoário/química , Combinação de Medicamentos , Resistência a Medicamentos/genética , Genes MDR/genética , Humanos , Repetição Kelch/genética , Malária Falciparum/sangue , Malária Falciparum/parasitologia , Mutação , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/isolamento & purificação , Reação em Cadeia da Polimerase , Tailândia
11.
Biomed Res Int ; 2019: 3456719, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31534957

RESUMO

Dihydroartemisinin (DHA), which is considered to be one of the active compounds within Artemisia annua, has extensively been used in recent years as the most effective drug against malaria, having many biological functions including anticancer, antifungal, and immunomodulatory activities. However, DHA plays a role in the regulation of the proliferation and human mesenchymal stem cells (hMSCs) osteogenic differentiation that remains unknown. We explored DHA's effect on hMSCs' proliferation as well as the osteogenic differentiation, together with its underlying mechanisms of action. We showed that DHA enhanced osteogenic differentiation but had no significant effect on hMSCs' proliferation. It probably exerted its functions through the signaling pathways of ERK1/2 as well as Wnt/ß. Because DHA has low toxicity and costs, it might be regarded as an important drug for fracture treatment and tissue engineering.


Assuntos
Artemisininas/farmacologia , Diferenciação Celular/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Osteogênese/efeitos dos fármacos , Via de Sinalização Wnt/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Humanos , Células-Tronco Mesenquimais/citologia , beta Catenina/metabolismo
12.
Eur J Med Chem ; 181: 111353, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31525705

RESUMO

Malaria is a life threatening disease caused by microscopic parasites called Plasmodium that are transmitted to human beings by mosquitoes. Single celled Eukaryotic plasmodium parasite is responsible to cause malaria in human beings and is transmitted by bite of Anopheles species mosquitoes. Resurgence of malaria towards the end of 20th Century is due to failure of its eradication completely. Parasite recurrence occurs due to high densities of parasite, low immunity and non opimized drug concentration. The ineffective eradications strategies were due to indefinable complex life cycle of Plasmodium and emergence of drugs resistant strains of Plasmodium falciparum (Pf) including Artemisinin and Artemisinin based combination therapy (ACT). The vector of the disease i.e. mosquitoes became resistive towards Pyrethroids, which are only class of insecticides recommended for vector control. Artemisinin based combination therapy gained acceptance as an effective approach to counter the spread of disease resistance to chloroquine, sulfadoxine, pyrimethamine and other anti malarial drugs. Understanding the underlying molecular basis of the pathogenesis led to the development of some new diagnostic, drugs and insecticides. Reports on the use of new combination therapies reduced the burden of disease worldwide. Some of the new combination therapies are in clinical stage of development that have efficacy against drug resistant parasites and the potential to use in single dose regimens to improve compliance. The current review represents the recent anti-malarial research carried out globally especially in the class of synthesis of small molecule and natural product derivatives as potent anti-malarial drugs. The review also covers the advancement in the anti-malarial vaccine development although goal for vaccine development still remains elusive.


Assuntos
Antimaláricos/farmacologia , Artemisininas/farmacologia , Malária/tratamento farmacológico , Plasmodium falciparum/efeitos dos fármacos , Animais , Antimaláricos/química , Artemisininas/química , Resistência a Medicamentos/efeitos dos fármacos , Humanos
13.
Eur J Med Chem ; 182: 111665, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31494469

RESUMO

A series of novel derivatives of artemisinin-4-(arylamino)quinazoline have been designed and synthesized, and most of them showing potent in vitro cytotoxic activity against HCT116 and WM-266-4 cell lines. Compound 32 was the most active derivative against HCT116 cell line with an IC50 of 110 nM, and significantly improved the antitumor activity of the parent compounds dihydroartemisinin (DHA) (IC50 = 2.85 µM) and Gefitinib (IC50 = 19.82 µM). In vivo HCT116 xenografts assay showed that compound 32 exhibited potent antitumor activity with obvious tumor growth delay and tumor shrunken after 18 days treatment on xenografted mice, and especially without loss of body weight. Our results indicate that compounds 32 may represent a safe, novel structural lead for developing new chemotherapy of colorectal cancer.


Assuntos
Antineoplásicos/farmacologia , Artemisininas/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Desenho de Drogas , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Artemisininas/síntese química , Artemisininas/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Neoplasias Colorretais/patologia , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Células HCT116 , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Estrutura Molecular , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/patologia , Relação Estrutura-Atividade , Células Tumorais Cultivadas
14.
Int J Infect Dis ; 89: 30-44, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31491558

RESUMO

BACKGROUND: Artesunate (ART) is an artemisinin derivative used as monotherapy for the treatment of severe malaria and in combination with a partner drug for non-severe malaria. Resistance of malaria parasites to artemisinins have emerged in Southeast Asia. Adjustment of drug regimen may be an option to prevent therapeutic failures considering the relative favourable safety profile of ART high doses. METHODS: For that purpose, a systematic review was done using PubMed, Scopus and Web of Science databases. All studies on ART and DHA pharmacokinetic post-administration of artesunate in human patients or volunteers were included. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) checklist 2009 was used. FINDINGS: Fifty studies exploring oral, intravenous, rectal, and intramuscular route (1470 persons, volunteers and patients) were included. Correlations between artesunate doses and Cmax or AUC0-∞ of dihydroartemisinin (DHA) and DHA+ART were evaluated. This correlation was good (R2>0.9) using intravenous (IV) route. DHA and ART+DHA average concentrations (Cav) were well above estimated in vivo half-maximal effective concentration (EC50) for intravenous route, but this was not the case for oral route. INTERPRETATION: The favorable Cav/EC50 ratio for IV route provides evidence that IV ART will remain efficient even in the case of increased resistance level, whereas for the oral route, a two-fold increase in EC50 may lead to therapeutic failures, thus providing a rationale for oral dose escalation. Considering the inter-individual variability of ART pharmacokinetic, Therapeutic Drug Monitoring through antimalarial stewardship activities is needed to optimize drug exposure and avoid resistance development.


Assuntos
Antimaláricos/farmacocinética , Artemisininas/farmacologia , Artemisininas/farmacocinética , Artesunato/farmacocinética , Resistência a Medicamentos , Malária/tratamento farmacológico , Administração Intravenosa , Administração Oral , Antimaláricos/administração & dosagem , Artemisininas/administração & dosagem , Artesunato/administração & dosagem , Ásia Sudeste , Monitoramento de Medicamentos , Humanos , Malária Falciparum
15.
Am J Chin Med ; 47(6): 1325-1343, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31488031

RESUMO

Artemisinin and its analogues (ARTs) are currently the most effective anti-malarial drugs, but the precise mechanism of action is still highly controversial. Effects of ARTs on Plasmodium genes expression are studied in our Lab. The overexpression of an interesting amidotransferase, NADH-dependent glutamate synthase (NADH-GltS) was found in treated by dihydroartemisinin (DHA). The increased expression occurred not only from global transcriptomics analysis on the human malaria parasite Plasmodium falciparum (P. falciparum) 3D7 and gene expression screening on all of iron-sulphur cluster proteins from P.f. 3D7 in vitro but also from Plasmodium berghei (P. berghei) ANKA in mice. Influence of DHA on NADH-GltS was specifically at trophozoite stage of P. falciparum and in a dose-dependent manner below the effective doses. L-glutamine (Gln) and L-glutamate (Glu) are the substrate and product of NADH-GltS respectively. Azaserine (Aza) is specific inhibitor for NADH-GltS. Experimental data showed that Glu levels were significantly decreasing with DHA dose increasing but NADH-GltS enzyme activities were still remained at higher levels in parasites, and appropriate amount of exogenous Glu could significantly reduce anti-malarial action of DHA but excessive amount lost the above effect. Aza alone could inhibit proliferation of P. falciparum and had an additive effect in combination with DHA. Those results could suggest that: Glutamate depletion is one of the anti-malarial actions of DHA; overexpression of NADH-GltS would be a feedback pattern of parasite itself due to glutamate depletion, but not a direct action of DHA; the "feedback pattern" is one of protective strategies of Plasmodium to interfere with the anti-malarial actions of DHA; and specific inhibitor for NADH-GltS as a new type of anti-malarial agents or new partner in ACT might provide a potential.


Assuntos
Antimaláricos , Artemisininas/farmacologia , Artemisininas/uso terapêutico , Expressão Gênica/efeitos dos fármacos , Glutamato Sintase (NADH)/genética , Glutamato Sintase (NADH)/metabolismo , Malária/tratamento farmacológico , Fitoterapia , Plasmodium falciparum/enzimologia , Plasmodium falciparum/genética , Animais , Azasserina/farmacologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Glutamato Sintase (NADH)/antagonistas & inibidores , Ácido Glutâmico/metabolismo , Humanos , Camundongos Endogâmicos C57BL , Plasmodium falciparum/fisiologia
16.
Malar J ; 18(1): 325, 2019 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-31547827

RESUMO

BACKGROUND: Activation of hypnozoites of vivax malaria causes multiple clinical relapses, which contribute to the Plasmodium vivax burden and continuing transmission. Artemisinin-based combination therapy (ACT) is effective against blood-stage P. vivax but requires co-administration with primaquine to achieve radical cure. The therapeutic efficacy of primaquine depends on the generation of a therapeutically active metabolite via cytochrome P450 2D6 (CYP2D6). Impaired CYP2D6 metabolism has been associated with primaquine treatment failure. This study investigated the association between impaired CYP2D6 genotypes, drug-exposure to the long-acting ACT component (schizonticidal drugs) and tolerance and efficacy. METHODS: Adult patients with acute vivax malaria were enrolled in a recently completed trial and treated with artesunate-mefloquine, chloroquine or artemether-lumefantrine. All received concomitant primaquine (0.5 mg/kg/day for 7-9 days). The association between efficacy and safety and drug exposure was explored using area-under-the-curve (AUC) and half-life (t1/2) estimates obtained by non-compartmental analysis of the long half-life drugs. Parasite recurrences by day 63 were categorized as related relapses or re-infections/unrelated hypnozoite activation by genotyping three microsatellite loci and two polymorphic loci of merozoite surface antigen-1. The CYP2D6 genotype was identified with Taqman assays by real-time PCR to 9 polymorphisms (8 SNPs and one deletion). Impaired CYP2D6 activity was inferred using the Activity Score System. RESULTS: Most recurrences in the ASMQ (67%), CQ (80%) and AL (85%) groups were considered related relapses. Eight of nine (88.9%) of the patients with impaired CYP2D6 activity relapsed with related parasite compared to 18/25 (72%) with normal activity (RR = 1.23, 0.88; 1.72, p = 0.40). There were no associations between the measured PK parameters and recurrence. Patients with longer chloroquine half-lives had more pruritus (RR = 1.09, 1.03; 1.14, p = 0.001). Higher CQ AUCs were associated with reduced falls in haemoglobin by day 14 (Coef - 0.02, - 0.005; - 0.03, p = 0.01). All regimens were well tolerated. CONCLUSION: Genotyping of P. vivax showed that activation of related (homologous) hypnozoites was the most frequent cause of recurrence. The high proportion of the impaired CYP2D6 activity among patients with recurrent infections suggests that slow primaquine metabolism might influence related relapse rates in Brazil among patients receiving primaquine for radical cure, although confirmatory studies are needed. There was no association between drug exposure of the long-acting ACT component (schizonticidal drugs) and risk of related relapse. ACT was well tolerated. These results provide further re-assurance about the safety and efficacy of ACT when combined with short course primaquine to treat uncomplicated malaria vivax in Brazil. Trial registration RBR-79s56s ( http://www.ensaiosclinicos.gov.br/rg/RBR-79s56s/ ).


Assuntos
Antimaláricos/farmacologia , Artemisininas/farmacologia , Cloroquina/farmacologia , Primaquina/farmacologia , Adulto , Idoso , Antimaláricos/farmacocinética , Artemisininas/farmacocinética , Brasil , Cloroquina/farmacocinética , Combinação de Medicamentos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Primaquina/farmacocinética , Adulto Jovem
17.
Biomed Pharmacother ; 118: 109383, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31545251

RESUMO

Given studies have shown that Artemisinin (ART) reduces cancer cell proliferation, migration, invasion, tumorigenesis and metastasis. In this study, we evaluated the roles of ART in clear cell renal cell carcinoma (ccRCC) progression. We measured the eff ;ects of ART on cancer cell proliferation, colony formation, migration, invasion and tumorigenesis. CCK-8 assay demonstrated that ART inhibited cell growth with IC50 values 31.30 ±â€¯0.73 µM in UMRC-2 and 23.97 ±â€¯0.92 µM in CAKI-2, respectively. Colony formation assay shown that ART inhibited cell colony formation. Transwell migration and invasion assay shown that ART inhibited RCC migration and invasion. Realtime-qPCR assay shown that ART decreased the mRNA levels of proliferation related genes c-Myc, cyclin D1 and PCNA, and reduced the mRNA levels of mesenchymal genes N-cadherin, Vimentin and Snail, but increased the mRNA levels of epithelial marker E-cadherin. Moreover, ART inhibited AKT signaling pathway. In the presence of AKT inhibitor VIII, a pan-AKT inhibitor, ART reduced more cell proliferation, migration and invasion than in the absence of AKT inhibitor VIII, suggesting combination of ART and AKT inhibitor enhanced the anti-cancer effects of ART. Furthermore, the in vivo xenograft tumor model results suggested that ART decreased tumor size and weight, and suppressed AKT signaling. Taken together, our results indicated that ART inhibited ccRCC cell proliferation, colony formation, migration, invasion and tumorigenesis. Combination of ART and AKT inhibitor enhanced the anti-cancer cell proliferation, migration and invasion.


Assuntos
Antineoplásicos/uso terapêutico , Artemisininas/uso terapêutico , Carcinoma de Células Renais/tratamento farmacológico , Neoplasias Renais/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Animais , Antineoplásicos/farmacologia , Artemisininas/química , Artemisininas/farmacologia , Carcinogênese/efeitos dos fármacos , Carcinogênese/genética , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Humanos , Neoplasias Renais/patologia , Masculino , Camundongos Nus , Invasividade Neoplásica , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ensaio Tumoral de Célula-Tronco
18.
Life Sci ; 233: 116730, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31390552

RESUMO

AIMS: Dihydroartemisinin (DHA) exhibits potential anticancer activity. However, the biological functions of DHA in prostate cancer remain largely unexplored. In this study, we aim to investigate the anti-proliferative effect and glycolysis regulation of DHA on prostate cancer cell LNCaP. MAIN METHODS: Cell proliferative activity and apoptosis inducing were detected. The gene expression was detected by mRNA microarray and results were analyzed by GO and KEGG pathway database. Expressions of glycolysis key enzymes and PI3K/AKT/HIF-1α were detected by Western blot. KEY FINDINGS: Results indicated that DHA could inhibit the LNCaP cell proliferation considerably and induce cell apoptosis. mRNA microarray showed 1293 genes were upregulated and 2322 genes were downregulated. GO and KEGG enrichment analysis suggested that glycolysis pathway was correlated with DHA inhibited the proliferation on the LNCaP cell. Western blot results showed that DHA can decrease GLUT1 and regulatory enzymes of glycolytic pathway expression probably by suppressing the activity of the intracellular Akt/mTOR and HIF-1 α. SIGNIFICANCE: Experimental validation results indicate that DHA treatment can inhibit the LNCaP cell proliferation and induce apoptosis, which may be related to glycolysis inhibition.


Assuntos
Artemisininas/farmacologia , Biomarcadores Tumorais/metabolismo , Glicólise/efeitos dos fármacos , Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Neoplasias da Próstata/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Antimaláricos/farmacologia , Apoptose , Biomarcadores Tumorais/genética , Proliferação de Células , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Masculino , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Células Tumorais Cultivadas
19.
Biomed Pharmacother ; 117: 109181, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31387196

RESUMO

BACKGROUND: Rosacea is a facial chronic inflammatory skin disease with dysfunction of immune and vascular system. Artemisinin (ART), an anti-malaria drug, was reported to have several effects including anti-inflammation and anti-angiogenesis activities. However, the role of ART on rosacea remains unclear. OBJECTIVES: To investigate the effects and molecular mechanism of ART on rosacea. METHOD: In rosacea-like mouse model, the phenotype of rosacea lesions was evaluated by redness score, the inflammatory biomarkers were analyzed by qPCR, and the infiltration of inflammatory cells were assessed by IHC analysis and immunofluorescence. In vitro, LL37-induced expression of inflammatory factors in HaCaT cells was detected by qPCR, potential signaling pathways were detected by Western blotting or immunofluorescence. Migration ability of human umbilical vein endothelial cells (HUVECs) was evaluated by cell scratch and transwell assays. RESULT: The skin erythema and histopathological alteration, as well as the elevated pro-inflammatory factors (IL-1ß, IL6, TNFα) and TLR2 were significantly ameliorated by ART treatment in LL37-induced rosacea-like mice. In addition, ART reduced the infiltration of CD4+ T cells, macrophages and neutrophils, and repressed the expression of immune cells related chemokines (CXCL10, CCL20, CCL2 and CXCL2) in mouse lesions. In HaCaT cells, ART significantly decreased the LL37-induced expression of inflammatory biomarkers. Moreover, we found that ART inhibited rosacea-like inflammation via NF-kB signaling pathways in HaCaT cells. Finally, for vascular dysregulation, ART repressed the angiogenesis in mouse model and inhibited the LL37-induced HUVECs migration in vitro. CONCLUSION: ART ameliorated rosacea-like dermatitis by regulating immune response and angiogenesis, indicating that it could represent an effective therapeutic option for patients with rosacea.


Assuntos
Anti-Inflamatórios/farmacologia , Artemisininas/farmacologia , Inflamação/tratamento farmacológico , Neovascularização Patológica/tratamento farmacológico , Rosácea/tratamento farmacológico , Animais , Biomarcadores/metabolismo , Células Cultivadas , Quimiocinas/metabolismo , Modelos Animais de Doenças , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , NF-kappa B/metabolismo , Neovascularização Patológica/metabolismo , Rosácea/metabolismo , Transdução de Sinais/efeitos dos fármacos , Pele/efeitos dos fármacos , Pele/metabolismo
20.
BMB Rep ; 52(8): 520-524, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31383247

RESUMO

Dihydroartemisinin (DHA) has been reported to possess anti-cancer activity against many cancers. However, the pharmacologic effect of DHA on HBV-positive hepatocellular carcinoma (HCC) remains unknown. Thus, the objective of the present study was to determine whether DHA could inhibit the proliferation of HepG2.2.15 cells and uncover the underlying mechanisms involved in the effect of DHA on HepG2.2.15 cells. We found that DHA effectively inhibited HepG2.2.15 HCC cell proliferation both in vivo and in vitro. DHA also reduced the migration and tumorigenicity capacity of HepG2.2.15 cells. Regarding the underlying mechanisms, results showed that DHA induced cellular senescence by up-regulating expression levels of proteins such as p-ATM, p-ATR, γ-H2AX, P53, and P21 involved in DNA damage response. DHA also induced autophagy (green LC3 puncta gathered together and LC3II/LC3I ratio increased through AKT-mTOR pathway suppression). Results also revealed that DHA-induced autophagy was not linked to senescence or cell death. TPP1 (telomere shelterin) overexpression could not rescue DHA-induced anticancer activity (cell proliferation). Moreover, DHA down-regulated TPP1 expression. Gene knockdown of TPP1 caused similar phenotypes and mechanisms as DHA induced phenotypes and mechanisms in HepG2.2.15 cells. These results demonstrate that DHA might inhibit HepG2.2.15 cells proliferation through inducing cellular senescence and autophagy. [BMB Reports 2019; 52(8): 520-524].


Assuntos
Antineoplásicos/farmacologia , Artemisininas/farmacologia , Autofagia/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Células Hep G2 , Humanos , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA