Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.182
Filtrar
1.
Zootaxa ; 5129(1): 129-136, 2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-36101145

RESUMO

The recent examination of the morphology of the wings, hypandrium and phallosome, of Brazilian and Colombian species of Euplocania, initially assigned to the species group Marginata, suggested that the group was wrongly established and therefore, must be removed. As a consequence, the new species group Uariniensis is proposed to include E. atlantica Silva-Neto, E. uariniensis Silva-Neto, Garca Aldrete Rafael and E. macuxi Pereira, Silva-Neto Boldrini, in addition to the two species described in this paper: E. guticortesorum n. sp. and E. wilsoni n. sp. The number of species in Euplocania is raised to 53. A key for the determination of the species (males) of the group Uariniensis is also included.


Assuntos
Insetos , Neópteros , Distribuição Animal , Animais , Masculino , Asas de Animais/anatomia & histologia
2.
Proc Natl Acad Sci U S A ; 119(37): e2204847119, 2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36067296

RESUMO

Birds perform astounding aerial maneuvers by actuating their shoulder, elbow, and wrist joints to morph their wing shape. This maneuverability is desirable for similar-sized uncrewed aerial vehicles (UAVs) and can be analyzed through the lens of dynamic flight stability. Quantifying avian dynamic stability is challenging as it is dictated by aerodynamics and inertia, which must both account for birds' complex and variable morphology. To date, avian dynamic stability across flight conditions remains largely unknown. Here, we fill this gap by quantifying how a gull can use wing morphing to adjust its longitudinal dynamic response. We found that it was necessary to adjust the shoulder angle to achieve trimmed flight and that most trimmed configurations were longitudinally stable except for configurations with high wrist angles. Our results showed that as flight speed increases, the gull could fold or sweep its wings backward to trim. Further, a trimmed gull can use its wing joints to control the frequencies and damping ratios of the longitudinal oscillatory modes. We found a more damped phugoid mode than similar-sized UAVs, possibly reducing speed sensitivity to perturbations, such as gusts. Although most configurations had controllable short-period flying qualities, the heavily damped phugoid mode indicates a sluggish response to control inputs, which may be overcome while maneuvering by morphing into an unstable flight configuration. Our study shows that gulls use their shoulder, wrist, and elbow joints to negotiate trade-offs in stability and control and points the way forward for designing UAVs with avian-like maneuverability.


Assuntos
Charadriiformes , Voo Animal , Asas de Animais , Animais , Charadriiformes/fisiologia , Voo Animal/fisiologia , Asas de Animais/anatomia & histologia , Asas de Animais/fisiologia
3.
Acta Trop ; 235: 106662, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35998679

RESUMO

Blowflies have forensic, sanitary and veterinary importance, as well as being pollinators, parasitoids and ecological bioindicators. There is still little work with real data and from experiments assessing the relationship between blowflies' morphologic features and environmental and demographic factors. The present work tests whether the variation, in the shape and size, of Chrysomya albiceps (Wiedemann, 1819) wings is influenced by the following factors: 1) time; 2) temperature; 3) sex and; 4) different types of carcasses (pig, dog/cat and whale). Male and female wings from four different sites collected in six different years were used to obtain wing size and shape of C. albiceps. Analyses between wing shape and the variables tested had low explanatory power, even though they had statistical support. However, it was possible to identify differences in wing shape between males and females, with good returns in sex identification. The comparison between wing size and the variables tested showed that wing size has a negative relationship with temperature, significant differences between sexes, slight variation over time and no influence by carcass types. Furthermore, wing size influenced wing shape. Understanding population-specific characteristics of C. albiceps provide important insights about how the species reacts under specific conditions.


Assuntos
Calliphoridae , Asas de Animais , Animais , Cadáver , Calliphoridae/anatomia & histologia , Feminino , Medicina Legal , Masculino , Temperatura , Asas de Animais/anatomia & histologia
4.
IET Nanobiotechnol ; 16(7-8): 273-283, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35962575

RESUMO

The bamboo weevil beetle, Cyrtotrachelus buqueti, has evolved a particular flight pattern. When crawling, the beetle folds the flexible hind wings and stuffs under the rigid elytra. During flight, the hind wings are deployed through a series of deployment joints that are passively driven by flapping forces. When the hind wings are fully expanded, the unfolding joint realises self-locking. At this time, the hind wings act as a folded wing membrane and flap simultaneously with the elytra to generate aerodynamics. The functional characteristics of the elytra of the bamboo weevil beetle were investigated, including microscopic morphology, kinematic properties and aerodynamic forces of the elytra. In particular, the flapping kinematics of the elytra were measured using high-speed cameras and reconstructed using a modified direct linear transformation algorithm. Although the elytra are passively flapped by the flapping of the hind wings, the analysis shows that its flapping wing trajectory is a double figure-eight pattern with flapping amplitude and angle of attack. The results show that the passive flapping of elytra produces aerodynamic forces that cannot be ignored. The kinematics of the elytra suggest that this beetle may use well-known flapping mechanisms such as a delayed stall and clap and fling.


Assuntos
Besouros , Gorgulhos , Animais , Fenômenos Biomecânicos , Voo Animal , Modelos Biológicos , Gorgulhos/anatomia & histologia , Asas de Animais/anatomia & histologia
5.
Sci Rep ; 12(1): 13917, 2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-35977980

RESUMO

Despite extensive research on the biomechanics of insect wings over the past years, direct mechanical measurements on sensitive wing specimens remain very challenging. This is especially true for examining delicate museum specimens. This has made the finite element method popular in studies of wing biomechanics. Considering the complexities of insect wings, developing a wing model is usually error-prone and time-consuming. Hence, numerical studies in this area have often accompanied oversimplified models. Here we address this challenge by developing a new tool for fast, precise modelling of insect wings. This application, called WingGram, uses computer vision to detect the boundaries of wings and wing cells from a 2D image. The app can be used to develop wing models that include complex venations, corrugations and camber. WingGram can extract geometric features of the wings, including dimensions of the wing domain and subdomains and the location of vein junctions. Allowing researchers to simply model wings with a variety of forms, shapes and sizes, our application can facilitate studies of insect wing morphology and biomechanics. Being an open-access resource, WingGram has a unique application to expand how scientists, educators, and industry professionals analyse insect wings and similar shell structures in other fields, such as aerospace.


Assuntos
Voo Animal , Asas de Animais , Animais , Fenômenos Biomecânicos , Insetos , Modelos Biológicos , Asas de Animais/anatomia & histologia
6.
J Exp Biol ; 225(15)2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35851402

RESUMO

Habitat specialization can influence the evolution of animal movement in promoting divergent locomotor abilities adapted to contrasting environmental conditions, differences in vegetation clutter or predatory communities. While the effect of habitat on the evolution of locomotion and particularly escape performance has been well investigated in terrestrial animals, it remains understudied in flying animals. Here, we investigated whether specialization of Morpho butterfly species into different vertical strata of the Amazonian forest affects the performance of upward escape flight manoeuvres. Using stereoscopic high-speed videography, we compared the climbing flight kinematics of seven Morpho species living either in the forest canopy or in the understory. We show that butterflies from canopy species display strikingly higher climbing speed and steeper ascent angle compared with understory species. Although climbing speed increased with wing speed and angle of attack, the higher climb angle observed in canopy species was best explained by their higher body pitch angle, resulting in more upward-directed aerodynamic thrust forces. Climb angle also scales positively with weight-normalized wing area, and this weight-normalized wing area was higher in canopy species. This shows that a combined divergence in flight behaviour and morphology contributes to the evolution of increased climbing flight abilities in canopy species.


Assuntos
Borboletas , Voo Animal , Adaptação Fisiológica , Animais , Fenômenos Biomecânicos , Ecossistema , Asas de Animais/anatomia & histologia
7.
Sci Rep ; 12(1): 11695, 2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35803997

RESUMO

Cryptic species that coexist in sympatry are likely to simultaneously experience strong competition and hybridization. The first phenomenon would lead to character displacement, whereas the second can potentially promote morphological similarity through adaptive introgression. The main goal of this work was to investigate the effect of introgressive hybridization on the morphology of cryptic Iberian Eptesicus bats when facing counteracting evolutionary forces from interspecific competition. We found substantial overlap both in dentition and in wing morphology traits, though mainly in individuals in sympatry. The presence of hybrids contributes to a fifth of this overlap, with hybrids showing traits with intermediate morphometry. Thus, introgressive hybridization may contribute to species adaptation to trophic and ecological space responding directly to the macro-habitats characteristics of the sympatric zone and to local prey availability. On the other hand, fur shade tended to be browner and brighter in hybrids than parental species. Colour differences could result from partitioning of resources as an adaptation to environmental factors such as roost and microhabitats. We argue that a balance between adaptive introgression and niche partitioning shapes species interactions with the environment through affecting morphological traits under selection.


Assuntos
Adaptação Biológica/fisiologia , Quirópteros/anatomia & histologia , Hibridização Genética/fisiologia , Animais , Evolução Biológica , Quirópteros/genética , Dentição , Ecologia , Introgressão Genética , Humanos , Simpatria , Asas de Animais/anatomia & histologia
8.
J Morphol ; 283(8): 1015-1047, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35673834

RESUMO

The Greater Rhea (Rhea americana, Rheidae) is a flightless paleognath with a wide geographical distribution in South America. The morphology of its shoulder girdle and wings are different from those of flying birds and some characteristics are similar to basal birds and paravian theropods. We present a detailed osteological, myological, and functional study of the shoulder and the wing of the Greater Rhea. Particular features of the anatomy of the pectoral girdle and wing of Rhea include the lack of triosseal canal, reduced origin area of the mm. pectoralis p. thoracica and supracoracoideus and the lack of a propatagium. The wing muscle mass is markedly reduced, reaching only 0.89% of total body mass (BM). Forelimb muscles mass values are low compared to those of flying birds and are congruent with the non-use of wings for active locomotion movements. R. americana does not flap the wings dorso-ventral as typical for flying birds, but predominantly in cranio-caudal direction, following a craniolateral to caudomedial abduction-adduction arc. When the wings are fully abducted, they are inverted L-shaped, with the inner surface caudally faced, and when the wings are folded against the body, they do not perform the complete automatic wing folding nor the circumduction of the manus, a movement performed by extant volant birds. This study complements our knowledge of the axial musculature of the flightless paleognaths and highlights the use of the Greater Rhea as a model, which may help understand the evolution of Palaeognathae, as well as the origin of flapping flight among paravian theropods.


Assuntos
Reiformes , Struthioniformes , Animais , Voo Animal/fisiologia , Osteologia , Asas de Animais/anatomia & histologia
9.
J Insect Sci ; 22(3)2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35738260

RESUMO

Aphids exhibit wing polyphenism. Winged and wingless aphid morphs are produced by parthenogenesis depending on population density and host plant quality. Recent studies showed that microRNAs in alate and apterous individuals have differential expression and are involved in wing dimorphism of Acyrthosiphon pisum. From which miR-92a-1-p5 can target the mRNA of flight muscle gene flightin in vitro, but what effect they have on wing development of aphid is unclear. Here with the nanocarrier-delivered RNA interference (RNAi) method, flightin gene was knocked down in winged nymphs of A. pisum. Results showed that the majority (63.33%) of adults had malformed wings, the shape of dorsal longitudinal muscle (DLM) was deformed severely, the dorsoventral flight muscle (DVM) became wider and looser in aphids with flightin reduction compared with the negative control. Overexpression of miR-92a-1-p5 caused decreased expression of flightin and malformed wings of aphids, with a mutant ratio of 62.50%. Morphological analysis of flight musculature showed the consistent result as that with flightin knockdown. These results suggest that flightin is essential for flight musculature formation and wing extension in A. pisum, which can be modulated by miR-92a-1-p5.


Assuntos
Afídeos , MicroRNAs , Animais , Afídeos/fisiologia , MicroRNAs/genética , MicroRNAs/metabolismo , Músculos , Ervilhas/genética , Asas de Animais/anatomia & histologia
10.
J Anim Ecol ; 91(8): 1651-1665, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35668666

RESUMO

Substantial global data show that many taxa are shifting their phenologies in response to climate change. For birds, migration arrival dates in breeding regions have been shifting earlier, and there is evidence that both evolutionary adaptation and behavioural flexibility influence these shifts. As more efficient flyers may be able to demonstrate more flexibility to respond to changing conditions during migratory flight, we hypothesize that differences among passerine species in flight efficiency, as reflected by morphology, may be associated with the magnitude of shifts in arrival date in response to climate warming. We applied a logistic model to 18 years of eBird data to estimate mean arrival date for 44 common passerines migrating to northeast North America. We then used linear mixed-effects models to estimate changes in mean arrival date and compared these changes to morphological proxies for flight efficiency and migratory distance using phylogenetic generalized least squares models. On average, passerine species shifted their arrival dates 0.120 days earlier each year, with 27 of the 44 species shifting to significantly earlier arrival times, and two shifting to significantly later ones. Of the 15 species with non-significant shifts, 13 trended toward earlier arrivals. Longer migration distances and higher wing aspect ratios were associated with greater shifts toward earlier arrivals. Migration distance and aspect ratio were also significantly correlated to each other. This suggests that changes in arrival date are affected by factors pertaining to migratory flight over long distances namely, flight efficiency and migration distance. These traits may be able predict the magnitude of arrival date shift, and by extension identify species that are most at risk to climate change due to inflexible arrival timing.


Assuntos
Migração Animal , Aves/fisiologia , Mudança Climática , Voo Animal/fisiologia , Asas de Animais/anatomia & histologia , Animais , Evolução Biológica , Aves/anatomia & histologia , Aves/classificação , Filogenia , Estações do Ano , Fatores de Tempo , Asas de Animais/fisiologia
11.
Sci Rep ; 12(1): 10888, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35764791

RESUMO

Incomplete premating barriers in closely related species may result in reproductive interference. This process has different fitness consequences and can lead to three scenarios: niche segregation, sexual exclusion, or reproductive character displacement. In morphologically cryptic species, isolation barriers can be difficult to recognize. Here, we analyzed the morphological, behavioral, and genetic differences between two sympatric cryptic species of the genus Hetaerina to determine the characters that contribute the most to reproductive isolation and the effect of the high rates of behavior interference between the species. We found complete genetic isolation and significant differences in the morphometry of caudal appendages and wing shape, as well as body size variation between species. In contrast, we did not find clear differences in the coloration of the wing spot and observed high rates of interspecific aggression. Our results suggest that divergence in the shape of the caudal appendages is the principal pre-mating barrier that prevents interspecific mating. Moreover, a scenario of character displacement on body size was found. Nevertheless, size could play an important role in both inter- and intrasexual interactions and, therefore, we cannot differentiate if it has resulted from reproductive or aggressive interference.


Assuntos
Odonatos , Isolamento Reprodutivo , Animais , Evolução Biológica , Especificidade da Espécie , Asas de Animais/anatomia & histologia
12.
Proc Biol Sci ; 289(1975): 20220562, 2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35611535

RESUMO

Predation is a powerful selective force shaping many behavioural and morphological traits in prey species. The deflection of predator attacks from vital parts of the prey usually involves the coordinated evolution of prey body shape and colour. Here, we test the deflection effect of hindwing (HW) tails in the swallowtail butterfly Iphiclides podalirius. In this species, HWs display long tails associated with a conspicuous colour pattern. By surveying the wings within a wild population of I. podalirius, we observed that wing damage was much more frequent on the tails. We then used a standardized behavioural assay employing dummy butterflies with real I. podalirius wings to study the location of attacks by great tits Parus major. Wing tails and conspicuous coloration of the HWs were struck more often than the rest of the body by birds. Finally, we characterized the mechanical properties of fresh wings and found that the tail vein was more fragile than the others, suggesting facilitated escape ability of butterflies attacked at this location. Our results clearly support the deflective effect of HW tails and suggest that predation is an important selective driver of the evolution of wing tails and colour pattern in butterflies.


Assuntos
Borboletas , Passeriformes , Animais , Borboletas/anatomia & histologia , Fenótipo , Pigmentação , Comportamento Predatório , Asas de Animais/anatomia & histologia
13.
Bioinspir Biomim ; 17(4)2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35609562

RESUMO

Bioinspired morphing wings are part of a novel research direction offering greatly increased adaptability for use in unmanned aerial vehicles. Recent models published in the literature often rely on simplifications of the bird wing apparatus and fail to preserve many of the macroscopic morphological features. Therefore, a more holistic design approach could uncover further benefits of truly bioinspired bird wing models. With this issue in mind, a prototype inspired by crow wings (Corvusgenus) is developed, which is capable of planform wing morphing. The prototype imitates the feather structure of real birds and replicates the folding motion with a carbon fiber reinforced polymer skeleton with one controllable degree of freedom. The mechanism supplies a smooth airfoil lifting surface through a continuous morphing motion between a fully extended and a folded state. When extended, it has an elliptic planform and emarginated slots between primary remiges. In the folded state, the wingspan is reduced by 50% with a 40% reduction in surface area and the aspect ratio decreases from 2.9 to 1.2. Experimental data from a subsonic wind tunnel investigation is presented for flow velocities ranging from 5 to 20 m s-1, corresponding to Reynolds numbers between 0.7 × 105-2.8 × 105. The wing is analyzed in the three static states (folded, intermediate, and extended) through aerodynamic coefficients and flow visualizations along the surface. The bioinspired design enables the wing to capture several phenomena found on real bird wings. Through its morphing capabilities and intrinsic softness, the wing can sustain large angles of attack with greatly delayed stall and maintain optimal performance at different velocities.


Assuntos
Aeronaves , Voo Animal , Modelos Biológicos , Animais , Fenômenos Biomecânicos , Aves , Plumas , Asas de Animais/anatomia & histologia
14.
Comput Biol Med ; 145: 105421, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35366473

RESUMO

Insect wings are typically deformed under aerodynamic and inertial forces. Both the forces are related to kinematic and morphology parameters of the wing. However, how the insects utilize complex wing morphologies and kinematics to generate the forces, and what the exact contributions of the two forces in wing deformation are still unclear. In the study, the aerodynamic and inertial forces produced by a dragonfly forewing are compared quantitively. Then the dynamic deformation behaviors are studied with a three-dimensional finite element model. Finally, roles of the two forces in wing deformation are fully discussed. The two forces increase along the wingspan every moment and they reach maximal consistently near the pterostigma. Because of the asymmetry of angle of attack, the maximal resultant aerodynamic force is about 4 times of that in upstroke. By comparison, the normal component of aerodynamic force plays the leading role in downstroke while the inertial force works mainly in tangential in upstroke. The finite element simulation demonstrates the bending and twisting deformation behaviors of the wing considering both flapping and rotation. The average strain energy in one flapping cycle is 1.23×10-3 mJ under inertial force and 0.43×10-3 mJ under aerodynamics respectively. In addition, the rapid rotation can enhance inertial deformation by 6 times. As a result, deformation of dragonfly wing is dominated by its own inertia in flight. The deformation mechanism addressed could inspire the design of flexible flapping airfoils in morphology and kinematics.


Assuntos
Odonatos , Animais , Fenômenos Biomecânicos , Voo Animal , Insetos , Modelos Biológicos , Asas de Animais/anatomia & histologia
15.
BMC Ecol Evol ; 22(1): 43, 2022 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-35410171

RESUMO

BACKGROUND: The phylogenetic ecology of the Afro-Asian dragonfly genus Trithemis has been investigated previously by Damm et al. (in Mol Phylogenet Evol 54:870-882, 2010) and wing ecomorphology by Outomuro et al. (in J Evol Biol 26:1866-1874, 2013). However, the latter investigation employed a somewhat coarse sampling of forewing and hindwing outlines and reported results that were at odds in some ways with expectations given the mapping of landscape and water-body preference over the Trithemis cladogram produced by Damm et al. (in Mol Phylogenet Evol 54:870-882, 2010). To further explore the link between species-specific wing shape variation and habitat we studied a new sample of 27 Trithemis species employing a more robust statistical test for phylogenetic covariation, more comprehensive representations of Trithemis wing morphology and a wider range of morphometric data-analysis procedures. RESULTS: Contrary to the Outomuro et al. (in J Evol Biol 26:1866-1874, 2013) report, our results indicate that no statistically significant pattern of phylogenetic covariation exists in our Trithemis forewing and hindwing data and that both male and female wing datasets exhibit substantial shape differences between species that inhabit open and forested landscapes and species that hunt over temporary/standing or running water bodies. Among the morphometric analyses performed, landmark data and geometric morphometric data-analysis methods yielded the worst performance in identifying ecomorphometric shape distinctions between Trithemis habitat guilds. Direct analysis of wing images using an embedded convolution (deep learning) neural network delivered the best performance. Bootstrap and jackknife tests of group separations and discriminant-function stability confirm that our results are not artifacts of overtrained discriminant systems or the "curse of dimensionality" despite the modest size of our sample. CONCLUSION: Our results suggest that Trithemis wing morphology reflects the environment's "push" to a much greater extent than phylogeny's "pull". In addition, they indicate that close attention should be paid to the manner in which morphologies are sampled for morphometric analysis and, if no prior information is available to guide sampling strategy, the sample that most comprehensively represents the morphologies of interest should be obtained. In many cases this will be digital images (2D) or scans (3D) of the entire morphology or morphological feature rather than sparse sets of landmark/semilandmark point locations.


Assuntos
Odonatos , Animais , Feminino , Masculino , Odonatos/anatomia & histologia , Filogenia , Especificidade da Espécie , Água , Asas de Animais/anatomia & histologia
16.
Proc Natl Acad Sci U S A ; 119(15): e2103745119, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35377801

RESUMO

Body size and shape fundamentally determine organismal energy requirements by modulating heat and mass exchange with the environment and the costs of locomotion, thermoregulation, and maintenance. Ecologists have long used the physical linkage between morphology and energy balance to explain why the body size and shape of many organisms vary across climatic gradients, e.g., why larger endotherms are more common in colder regions. However, few modeling exercises have aimed at investigating this link from first principles. Body size evolution in bats contrasts with the patterns observed in other endotherms, probably because physical constraints on flight limit morphological adaptations. Here, we develop a biophysical model based on heat transfer and aerodynamic principles to investigate energy constraints on morphological evolution in bats. Our biophysical model predicts that the energy costs of thermoregulation and flight, respectively, impose upper and lower limits on the relationship of wing surface area to body mass (S-MR), giving rise to an optimal S-MR at which both energy costs are minimized. A comparative analysis of 278 species of bats supports the model's prediction that S-MR evolves toward an optimal shape and that the strength of selection is higher among species experiencing greater energy demands for thermoregulation in cold climates. Our study suggests that energy costs modulate the mode of morphological evolution in bats­hence shedding light on a long-standing debate over bats' conformity to ecogeographical patterns observed in other mammals­and offers a procedure for investigating complex macroecological patterns from first principles.


Assuntos
Regulação da Temperatura Corporal , Quirópteros , Voo Animal , Asas de Animais , Animais , Fenômenos Biofísicos , Tamanho Corporal , Quirópteros/anatomia & histologia , Quirópteros/fisiologia , Clima , Voo Animal/fisiologia , Asas de Animais/anatomia & histologia , Asas de Animais/fisiologia
17.
Zootaxa ; 5100(2): 269-279, 2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35391076

RESUMO

Mansonia amazonensis (Theobald, 1901) is one of 15 species of the subgenus Mansonia Blanchard, 1901. It is essentially a Neotropical species, recorded in Bolivia, Peru and Brazil. In the highly seasonal Amazon region, Mansonia species find ideal environmental conditions for reproduction, development and establishment. Considering that climate significantly influences the size and behavior of mosquitoes, and insects in general, we analyzed the influence of seasonality on wing morphological variability in populations of Ma. amazonensis. Captures were carried out near the banks of the Madeira River in Rondnia State, Brazil during the dry, rainy and transition periods between seasons during 2018 and 2019. Morphometric characters of 181 wings were analyzed using morphological methods. The results show that wing size of Ma. amazonensis increases following a relatively gradual trend, from smaller wings during the dry period to larger ones in the rainy season. This study provides the first evidence, detected using geometric morphometry, of seasonally associated phenotypic variability in the wing conformation of Ma. amazonensis.


Assuntos
Culicidae , Malvaceae , Animais , Clima , Culicidae/anatomia & histologia , Estações do Ano , Asas de Animais/anatomia & histologia
18.
Zootaxa ; 5120(4): 451-481, 2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35391154

RESUMO

In the mate finding system of bush-crickets, acoustical signals play a central role. Here we review and describe the bioacoustics of Hetrodini, a morphologically uniform group of Tettigonioidea with a distribution centered in Africa. The male calling songs are produced by tegmino-tegminal stridulation. In all species, these fore wings are completely covered by the pronotum (invisible in intact specimens) and lack the glossy mirror cells which are well-known from many other singing Ensifera. Concerning spectral composition, the broad frequency peak and the parts with the most energy lie in the high audio or low ultrasonic range. In amplitude modulation, the songs are relatively simply structured and contain only one type of syllables each. These syllables consist of heavily dampened impulses (non-resonant song) and are arranged in long series of echemes (chirps) or trills. As far as it is known, syntopic species differ in syllable and/or echeme repetition rates. In contrast to the uniform morphology, the karyotypes are surprisingly diverse with chromosome numbers ranging from 2n = 29 to 17 and one of two sex determination systems: X0 and neo-XY. In our opinion, taxonomically the group is at the moment at best considered as a tribe incertae sedis (without subfamily classification) within Tettigoniidae (not Tettigoniinae sensu OSF).


Assuntos
Gryllidae , Ortópteros , Animais , Masculino , Ortópteros/anatomia & histologia , Reprodução , Asas de Animais/anatomia & histologia
19.
Elife ; 112022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35356889

RESUMO

The morphology of the pectoral girdle, the skeletal structure connecting the wing to the body, is a key determinant of flight capability, but in some respects is poorly known among stem birds. Here, the pectoral girdles of the Early Cretaceous birds Sapeornis and Piscivorenantiornis are reconstructed for the first time based on computed tomography and three-dimensional visualization, revealing key morphological details that are important for our understanding of early-flight evolution. Sapeornis exhibits a double articulation system (widely present in non-enantiornithine pennaraptoran theropods including crown birds), which involves, alongside the main scapula-coracoid joint, a small subsidiary joint, though variation exists with respect to the shape and size of the main and subsidiary articular contacts in non-enantiornithine pennaraptorans. This double articulation system contrasts with Piscivorenantiornis in which a spatially restricted scapula-coracoid joint is formed by a single set of opposing articular surfaces, a feature also present in other members of Enantiornithines, a major clade of stem birds known only from the Cretaceous. The unique single articulation system may reflect correspondingly unique flight behavior in enantiornithine birds, but this hypothesis requires further investigation from a functional perspective. Our renderings indicate that both Sapeornis and Piscivorenantiornis had a partially closed triosseal canal (a passage for muscle tendon that plays a key role in raising the wing), and our study suggests that this type of triosseal canal occurred in all known non-euornithine birds except Archaeopteryx, representing a transitional stage in flight apparatus evolution before the appearance of a fully closed bony triosseal canal as in modern birds. Our study reveals additional lineage-specific variations in pectoral girdle anatomy, as well as significant modification of the pectoral girdle along the line to crown birds. These modifications produced diverse pectoral girdle morphologies among Mesozoic birds, which allowed a commensurate range of capability levels and styles to emerge during the early evolution of flight.


Assuntos
Evolução Biológica , Fósseis , Animais , Aves/fisiologia , Filogenia , Asas de Animais/anatomia & histologia
20.
Zool Res ; 43(3): 367-379, 2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35355458

RESUMO

Swallowtail butterflies (Papilionidae) are a historically significant butterfly group due to their colorful wing patterns, extensive morphological diversity, and phylogenetically important position as a sister group to all other butterflies and have been widely studied regarding ecological adaption, phylogeny, genetics, and evolution. Notably, they contain a unique class of pigments, i.e., papiliochromes, which contribute to their color diversity and various biological functions such as predator avoidance and mate preference. To date, however, the genomic and genetic basis of their color diversity and papiliochrome origin in a phylogenetic and evolutionary context remain largely unknown. Here, we obtained high-quality reference genomes of 11 swallowtail butterfly species covering all tribes of Papilioninae and Parnassiinae using long-read sequencing technology. Combined with previously published butterfly genomes, we obtained robust phylogenetic relationships among tribes, overcoming the challenges of incomplete lineage sorting (ILS) and gene flow. Comprehensive genomic analyses indicated that the evolution of Papilionidae-specific conserved non-exonic elements (PSCNEs) and transcription factor binding sites (TFBSs) of patterning and transporter/cofactor genes, together with the rapid evolution of transporters/cofactors, likely promoted the origin and evolution of papiliochromes. These findings not only provide novel insights into the genomic basis of color diversity, especially papiliochrome origin in swallowtail butterflies, but also provide important data resources for exploring the evolution, ecology, and conservation of butterflies.


Assuntos
Borboletas , Animais , Borboletas/genética , Filogenia , Pigmentação/genética , Asas de Animais/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...