Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 448
Filtrar
1.
PLoS One ; 16(5): e0251444, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33974648

RESUMO

A total of 26 Ampelomyces strains were isolated from mycelia of six different powdery mildew species that naturally infected their host plants in Japan. These were characterized based on morphological characteristics and sequences of ribosomal DNA internal transcribed spacer (rDNA-ITS) regions and actin gene (ACT) fragments. Collected strains represented six different genotypes and were accommodated in three different clades of the genus Ampelomyces. Morphology of the strains agreed with that of other Ampelomyces strains, but none of the examined characters were associated with any groups identified in the genetic analysis. Five powdery mildew species were inoculated with eight selected Ampelomyces strains to study their mycoparasitic activity. In the inoculation experiments, all Ampelomyces strains successfully infected all tested powdery mildew species, and showed no significant differences in their mycoparasitic activity as determined by the number of Ampelomyces pycnidia developed in powdery mildew colonies. The mycoparasitic interaction between the eight selected Ampelomyces strains and the tomato powdery mildew fungus (Pseudoidium neolycopersici strain KTP-03) was studied experimentally in the laboratory using digital microscopic technologies. It was documented that the spores of the mycoparasites germinated on tomato leaves and their hyphae penetrated the hyphae of Ps. neolycopersici. Ampelomyces hyphae continued their growth internally, which initiated the atrophy of the powdery mildew conidiophores 5 days post inoculation (dpi); caused atrophy 6 dpi; and complete collapse of the parasitized conidiphores 7 dpi. Ampelomyces strains produced new intracellular pycnidia in Ps. neolycopersici conidiophores ca. 8-10 dpi, when Ps. neolycopersici hyphae were successfully destroyed by the mycoparasitic strain. Mature pycnidia released spores ca. 10-14 dpi, which became the sources of subsequent infections of the intact powdery mildew hyphae. Mature pycnidia contained each ca. 200 to 1,500 spores depending on the mycohost species and Ampelomyces strain. This is the first detailed analysis of Ampelomyces strains isolated in Japan, and the first timing and quantification of mycoparasitism of Ps. neolycopersici on tomato by phylogenetically diverse Ampelomyces strains using digital microscopic technologies. The developed model system is useful for future biocontrol and ecological studies on Ampelomyces mycoparasites.


Assuntos
Ascomicetos/isolamento & purificação , Lycopersicon esculentum/microbiologia , Controle Biológico de Vetores , Ascomicetos/classificação , Ascomicetos/fisiologia , Ascomicetos/ultraestrutura , Genes Fúngicos , Especificidade de Hospedeiro , Processamento de Imagem Assistida por Computador , Japão , Filogenia , Plântula/microbiologia , Alinhamento de Sequência , Homologia de Sequência do Ácido Nucleico , Especificidade da Espécie , Esporos Fúngicos/ultraestrutura , Fatores de Tempo , Tricomas/microbiologia
2.
Arch Microbiol ; 203(6): 3257-3268, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33837802

RESUMO

This study aimed to identify four isolates of Trichoderma sp. (Ufra.T06, Ufra.T09, Ufra.T12, and Ufra.T52) and characterize their interaction with Magnaporthe oryzae in vitro and in vivo conditions. The four isolates of Trichoderma sp. were sequenced, investigated as an antagonist against M. oryzae in five Petri plate assays, and as an inhibitor of conidial germination appressoria formation. Finally, were quantified the lytic activity of chitinase (CHI), glucanase (GLU), and protease (PRO) during co-cultivation of Trichoderma sp. and M. oryzae. In vivo, leaf blast suppression was evaluated in two assays: simultaneous and curative application. Both in vitro and in vivo assays were scanned by electron microscopy (SEM). All isolates were identified as Trichoderma asperellum. All in vitro Petri plates assays reduced M. oryzae colony growth (paired-91.18% by Ufra.T09, volatile metabolites-all isolates equally reduced, non-volatile-68.33% by Ufra.T06, thermostability-99.77% by Ufra.T52 and co-cultivate-64.25% by Ufra.T52). The filtrates and conidia suspensions for T. asperellum isolates inhibited the conidia germination and appressoria formation significantly. In co-cultivate (mycelial or cell wall), all enzymes (GLU, CHI, and PRO) and times (24, 48, and 72 h) showed increased activity. In vivo, reduced leaf blast severity until 94.64% (Ufra.T52cs) in a simultaneous and until 85% (Ufra.T09 24 and 48 hasi) in a curative application. T. asperellum isolates showed efficient control of M. oryzae by mycoparasitism, and antibiosis mechanisms were interfered with by the M. oryzae infection process.


Assuntos
Antibiose , Ascomicetos , Hypocreales , Oryza , Ascomicetos/fisiologia , Ascomicetos/ultraestrutura , Hypocreales/genética , Hypocreales/ultraestrutura , Oryza/microbiologia , Doenças das Plantas/microbiologia
3.
Mol Plant Pathol ; 22(5): 508-521, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33694285

RESUMO

During plant infection, fungi secrete effector proteins in coordination with distinct infection stages. Thus, the success of plant infection is determined by precise control of effector gene expression. We analysed the PWL2 effector gene of the rice blast fungus Magnaporthe oryzae to understand how effector genes are activated specifically during the early biotrophic stages of rice infection. Here, we used confocal live-cell imaging of M. oryzae transformants with various PWL2 promoter fragments fused to sensitive green fluorescent protein reporter genes to determine the expression patterns of PWL2 at the cellular level, together with quantitative reverse transcription PCR analyses at the tissue level. We found PWL2 expression was coupled with sequential biotrophic invasion of rice cells. PWL2 expression was induced in the appressorium upon penetration into a living rice cell but greatly declined in the highly branched hyphae when the first-invaded rice cell was dead. PWL2 expression then increased again as the hyphae penetrate into living adjacent cells. The expression of PWL2 required fungal penetration into living plant cells of either host rice or nonhost onion. Deletion and mutagenesis experiments further revealed that the tandem repeats in the PWL2 promoter contain 12-base pair sequences required for expression. We conclude that PWL2 expression is (a) activated by an unknown signal commonly present in living plant cells, (b) specific to biotrophic stages of fungal infection, and (c) requires 12-base pair cis-regulatory sequences in the promoter.


Assuntos
Ascomicetos/genética , Proteínas Fúngicas/metabolismo , Cebolas/microbiologia , Oryza/microbiologia , Doenças das Plantas/microbiologia , Sequências de Repetição em Tandem/genética , Ascomicetos/fisiologia , Ascomicetos/ultraestrutura , Proteínas Fúngicas/genética , Expressão Gênica , Genes Reporter , Hifas , Mutagênese , Cebolas/ultraestrutura , Oryza/ultraestrutura , Sequências Reguladoras de Ácido Nucleico/genética , Deleção de Sequência
4.
Arch Microbiol ; 203(4): 1357-1366, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33386870

RESUMO

During cultivation of a gastric fungus, Coniochaeta polymorpha, growth of Nocardia colonies on top of the fungal culture raised the question whether bacteria originated from inside of fungus. In this study, the likelihood of intracellular origin of bacteria as well as interaction of two microorganisms was assessed. Fluorescence and electron microscopy showed occurrence of several bacterial cells in fungal cytoplasm. A thick biofilm was observed on the surface of co-culture compared with thin one on bacterial and none on fungal monocultures. Field emission scanning electron microscopy (FESEM) micrographs of co-culture showed a dense network of fungal and bacterial cells embedded in a slime-like layer. Dual cultures revealed antagonistic activity of both fungus and bacteria against three Candida species. These findings indicate that Nocardia isolate identified in this study originated from the inside of fungus C. polymorpha. Intracellular bacteria could benefit the fungal host by producing a rigid biofilm and an antifungal compound.


Assuntos
Ascomicetos/fisiologia , Biofilmes/crescimento & desenvolvimento , Nocardia/fisiologia , Antifúngicos/metabolismo , Antifúngicos/farmacologia , Ascomicetos/metabolismo , Ascomicetos/ultraestrutura , Candida/efeitos dos fármacos , Citoplasma/microbiologia , Interações Microbianas , Microscopia Eletrônica de Varredura , Nocardia/isolamento & purificação , Nocardia/ultraestrutura
5.
Mycologia ; 113(1): 231-244, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33327878

RESUMO

Megacoelomyces (type species: Megacoelomyces sanchezii), an ascomycete asexual morph infecting Myrcia fenzliana (Myrtaceae) from the Brazilian Cerrado, is described as a new genus in the Phaeosphaeriaceae (Pleosporales, Dothideomycetes, Ascomycota), based on multilocus phylogeny (three nuclear ribosomal DNA and two protein-coding genes) in addition to morphological (light and scanning electron microscopy) and ecological data.


Assuntos
Classificação , Fungos Mitospóricos , Ascomicetos/classificação , Ascomicetos/citologia , Ascomicetos/genética , Ascomicetos/ultraestrutura , Brasil , DNA Fúngico/genética , DNA Ribossômico/genética , Genes Fúngicos , Microscopia Eletrônica de Varredura , Fungos Mitospóricos/classificação , Fungos Mitospóricos/citologia , Fungos Mitospóricos/genética , Fungos Mitospóricos/ultraestrutura , Myrtaceae/microbiologia , Filogenia
6.
Biointerphases ; 15(3): 031012, 2020 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-32551719

RESUMO

Thin film coatings prepared from commercially available glycidoxypropyltrimethoxysilane (GPS) modified silica nanoparticles (SiNPs) (Bindzil® CC301 and Bindzil® CC302) have previously shown excellent antifouling performance against a broad range of microbes [Molino et al., "Hydration layer structure of biofouling-resistant nanoparticles," ACS Nano 12, 11610 (2018)]. In this work, single cell force spectroscopy (SCFS) was used to measure the biological interactions between Epicoccum nigrum fungal spores and the same silica nanoparticle-based surfaces used in the aforementioned study, including a: glass coverslip, unmodified SiNP coatings, and both low (Bindzil® CC301) and high density (CC302) GPS functionalized SiNP coatings as a function of NaCl concentration. From the SCFS curves, the spore adhesion to the surface was greatest on the glass coverslip (20-80 nN) followed by the unmodified SiNP (3-5 nN) across all salt concentrations. Upon approach to both surfaces, the spores showed a long-range attraction generally with a profile characteristic of biointeractions and likely those of the outer cell wall structures or biological constituents. The attractive force allowed the spores to initially adhere to the surface and was found to be linearly proportional to the spore adhesion. In comparison, both high and low density GPS-SINP significantly reduced the spore adhesion (0.5-0.9 nN). In addition, the spore adhesion on high density GPS-SiNP occurred in only 14%-27% of SCFS curves (40%-48% for low density GPS-SiNP) compared to 83%-97% for the unmodified SiNP, indicating that in most cases the GPS functionalization completely prevented spore adhesion. The GPS-SiNP surfaces conversely showed a long-range electrostatic repulsion at low 1mM NaCl that was replaced by short-range repulsion at the higher salt concentrations. From the findings, it is proposed that the attractive force is a critical step in initial adhesion processes of the spore. The effective antifouling properties of the GPS are attributed to the ability to negate the attractive forces, either through electrostatic repulsion in low salt conditions and primarily from short-range repulsion correlating to the previously reported combined steric-hydration effect of the GPS functionalization on SiNP coatings.


Assuntos
Ascomicetos/citologia , Nanopartículas/química , Silanos/química , Dióxido de Silício/química , Análise Espectral , Esporos Fúngicos/citologia , Ascomicetos/ultraestrutura , Adesão Celular , Nanopartículas/ultraestrutura , Imagem Óptica , Esporos Fúngicos/ultraestrutura , Eletricidade Estática , Propriedades de Superfície
7.
Am J Trop Med Hyg ; 103(2): 704-712, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32524944

RESUMO

Transformation of Fonsecaea pedrosoi into muriform cells enhances the resistance against phagocytosis and elimination by host immune cells, and links to the chronicity of chromoblastomycosis. Here, we aim to determine whether the muriform cells can reproduce in tissue without reverse transformation into hyphal form by using an experimental nu/nu-BALB/c mouse model of chromoblastomycosis due to F. pedrosoi. During the whole 81-day observation period, most of the hyphal inocula had transformed into muriform cells at 75 days postinoculation and maintained as this parasitic morphology till 81 days postinoculation simultaneously with increased fungal loads in tissue and the worsening of footpad lesion. Scanning and transmitting electronic microscope examinations showed that the muriform cells obtained in tissue or induced in vitro can reproduce daughter cells by dividing, and, meanwhile, the daughter cells had the potential to produce buds and grow into hyphae reversely. Furthermore, exoenzyme examination suggested that the profile of exoenzymes constituted by muriform cells was quite different from that constituted by hyphae although the assay showed both of them had obvious metabolic activity. By contrast, most muriform cells in the footpad gradually transformed into the elongated hyphae without obvious infiltration of inflammatory cells during repeated intraperitoneal administration of cyclophosphamide (50 mg/kg, per every other day) from 50 to 80 days postinoculation. Therefore, we infer that F. pedrosoi can reproduce by dividing as muriform cells in mouse tissue, and the morphological transformation between hyphal form and muriform cells is possibly associated with the host immune status.


Assuntos
Ascomicetos/fisiologia , Divisão Celular/fisiologia , Cromoblastomicose , Hifas/fisiologia , Animais , Ascomicetos/efeitos dos fármacos , Ascomicetos/enzimologia , Ascomicetos/ultraestrutura , Ciclofosfamida/farmacologia , , Hifas/efeitos dos fármacos , Hifas/ultraestrutura , Imunossupressores/farmacologia , Técnicas In Vitro , Camundongos , Camundongos Nus , Microscopia Eletrônica de Varredura
8.
Sci Rep ; 10(1): 6547, 2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32300135

RESUMO

Microbial volatile compounds (MVCs) significantly influence the growth of plants and phytopathogens. However, the practical application of MVCs at the field level is limited by the fact that the concentrations at which these compounds antagonize the pathogens are often toxic for the plants. In this study, we investigated the effect of dimethyl disulfide (DMDS), one of the MVCs produced by microorganisms, on the fitness of tomato plants and its fungicidal potential against a fungal phytopathogen, Sclerotinia minor. DMDS showed strong fungicidal and plant growth promoting activities with regard to the inhibition of mycelial growth, sclerotia formation, and germination, and reduction of disease symptoms in tomato plants infected with S. minor. DMDS exposure significantly upregulated the expression of genes related to growth and defense against the pathogen in tomato. Especially, the overexpression of PR1 and PR5 suggested the involvement of the salicylic acid pathway in the induction of systemic resistance. Several morphological and ultrastructural changes were observed in the cell membrane of S. minor and the expression of ergosterol biosynthesis gene was significantly downregulated, suggesting that DMDS damaged the membrane, thereby affecting the growth and pathogenicity of the fungus. In conclusion, the tripartite interaction studies among pathogenic fungus, DMDS, and tomato revealed that DMDS played roles in antagonizing pathogen as well as improving the growth and disease resistance of tomato. Our findings provide new insights into the potential of volatile DMDS as an effective tool against sclerotial rot disease.


Assuntos
Antifúngicos/farmacologia , Ascomicetos/fisiologia , Membrana Celular/patologia , Resistência à Doença , Dissulfetos/farmacologia , Interações Hospedeiro-Patógeno , Doenças das Plantas/microbiologia , Ascomicetos/efeitos dos fármacos , Ascomicetos/ultraestrutura , Membrana Celular/efeitos dos fármacos , Família 51 do Citocromo P450/metabolismo , Ergosterol/análise , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Glucanos/metabolismo , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Lycopersicon esculentum/efeitos dos fármacos , Lycopersicon esculentum/genética , Lycopersicon esculentum/crescimento & desenvolvimento , Lycopersicon esculentum/microbiologia , Testes de Sensibilidade Microbiana , Controle Biológico de Vetores , Transcrição Genética/efeitos dos fármacos , Compostos Orgânicos Voláteis/farmacologia
9.
Fungal Genet Biol ; 138: 103352, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32087364

RESUMO

Small GTPases of the ADP-ribosylation factor (Arf) family and their activating proteins (Arf-GAPs) regulate mycelial development and pathogenicity in yeast and filamentous fungi; however, little is known about their roles in nematode-trapping (NT) fungi. In this study, an ortholog of Arf-GAP Glo3 (AoGlo3) in Saccharomyces cerevisiae was characterized in the NT fungus Arthrobotrys oligospora. Deletion of the Aoglo3 gene resulted in growth defects and an increase in hyphal septum. Meanwhile, the sporulation capacity of the ΔAoglo3 mutant was decreased by 98%, and 67.1-71.2% spores became gourd or claviform in shape (from obovoid), which was accompanied by a significant decrease in the spore germination rate. This reduced sporulation capacity correlated with the transcriptional repression of several sporulation-related genes including fluG, rodA, abaA, medA, and lreA. The ΔAoglo3 mutant was also sensitive to several chemical stressors such as Congo red, NaCl, and sorbitol. Additionally, AoGlo3 was found to be involved in endocytosis, and more myelin figures were observed in the ΔAoglo3 mutant than in the wild-type strain, which was consistent with the presence of more autophagosomes observed in the mutant. Importantly, AoGlo3 affected the production of mycelial traps and serine proteases for nematode predation. In summary, AoGlo3 is involved in the regulation of multiple cellular processes such as mycelial growth, conidiation, environmental adaption, endocytosis, and pathogenicity in A. oligospora.


Assuntos
Fatores de Ribosilação do ADP/metabolismo , Aldeído Oxirredutases/metabolismo , Ascomicetos , Nematoides/microbiologia , Animais , Ascomicetos/genética , Ascomicetos/patogenicidade , Ascomicetos/fisiologia , Ascomicetos/ultraestrutura , Autofagia , Endocitose , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Genes Fúngicos , Micélio/crescimento & desenvolvimento , Serina Proteases/metabolismo , Esporos Fúngicos/crescimento & desenvolvimento , Virulência
10.
Int J Mol Sci ; 20(23)2019 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-31816858

RESUMO

Wheat yield is greatly reduced because of the occurrence of leaf spot diseases. Bipolaris sorokiniana is the main pathogenic fungus in leaf spot disease. In this study, B. sorokiniana from wheat leaf (W-B. sorokiniana) showed much stronger pathogenicity toward wheat than endophytic B. sorokiniana from Pogostemon cablin (P-B. sorokiniana). The transcriptomes and metabolomics of the two B. sorokiniana strains and transcriptomes of B. sorokiniana-infected wheat leaves were comparatively analyzed. In addition, the expression levels of unigenes related to pathogenicity, toxicity, and cell wall degradation were predicted and validated by quantitative reverse transcription polymerase chain reaction (qRT-PCR) analysis. Results indicated that pathogenicity-related genes, especially the gene encoding loss-of-pathogenicity B (LopB) protein, cell wall-degrading enzymes (particularly glycosyl hydrolase-related genes), and killer and Ptr necrosis toxin-producing related unigenes in the W-B. sorokiniana played important roles in the pathogenicity of W-B. sorokiniana toward wheat. The down-regulation of cell wall protein, photosystem peptide, and rubisco protein suggested impairment of the phytosynthetic system and cell wall of B. sorokiniana-infected wheat. The up-regulation of hydrolase inhibitor, NAC (including NAM, ATAF1 and CUC2) transcriptional factor, and peroxidase in infected wheat tissues suggests their important roles in the defensive response of wheat to W-B. sorokiniana. This is the first report providing a comparison of the transcriptome and metabolome between the pathogenic and endophytic B. sorokiniana strains, thus providing a molecular clue for the pathogenic mechanism of W-B. sorokiniana toward wheat and wheat's defensive response mechanism to W-B. sorokiniana. Our study could offer molecular clues for controlling the hazard of leaf spot and root rot diseases in wheat, thus improving wheat yield in the future.


Assuntos
Ascomicetos/genética , Ascomicetos/metabolismo , Perfilação da Expressão Gênica , Metabolômica , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Triticum/genética , Triticum/microbiologia , Ascomicetos/patogenicidade , Ascomicetos/ultraestrutura , Parede Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Genoma de Planta , Anotação de Sequência Molecular , Micélio/ultraestrutura , Micotoxinas/metabolismo , Metabolismo Secundário/genética , Transcriptoma
11.
An Bras Dermatol ; 94(5): 574-577, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31780436

RESUMO

The authors report a case of 40-year-old male patient with a five-year history of chromoblastomycosis on his right leg. Diagnosis was performed by direct 40% KOH exam of skin scales, culture with micro- and macromorphologic analysis, and genotypic characterization (sequencing of a fragment of the ITS region and phylogenetic analysis) of the isolated fungus. Rhinocladiella aquaspersa was identified as the etiological agent. Initially, the treatment was with oral itraconazole 200mg/day for one year. However, the presence of "sclerotic cells" with filaments ("Borelli spiders") resulted in a change of medical treatment: a higher dose of itraconazole (400mg/day) and surgery, achieving clinical and mycological cure in one year. This is the first report of chromoblastomycosis caused by R. aquaspersa in Guatemala.


Assuntos
Ascomicetos/isolamento & purificação , Cromoblastomicose/microbiologia , Adulto , Antifúngicos/uso terapêutico , Ascomicetos/ultraestrutura , Cromoblastomicose/tratamento farmacológico , Cromoblastomicose/patologia , Guatemala , Humanos , Itraconazol/uso terapêutico , Masculino , Resultado do Tratamento
12.
An. bras. dermatol ; 94(5): 574-577, Sept.-Oct. 2019. graf
Artigo em Inglês | LILACS | ID: biblio-1054870

RESUMO

Abstract The authors report a case of 40-year-old male patient with a five-year history of chromoblastomycosis on his right leg. Diagnosis was performed by direct 40% KOH exam of skin scales, culture with micro- and macromorphologic analysis, and genotypic characterization (sequencing of a fragment of the ITS region and phylogenetic analysis) of the isolated fungus. Rhinocladiella aquaspersa was identified as the etiological agent. Initially, the treatment was with oral itraconazole 200 mg/day for one year. However, the presence of "sclerotic cells" with filaments ("Borelli spiders") resulted in a change of medical treatment: a higher dose of itraconazole (400 mg/day) and surgery, achieving clinical and mycological cure in one year. This is the first report of chromoblastomycosis caused by R. aquaspersa in Guatemala.


Assuntos
Humanos , Masculino , Adulto , Ascomicetos/isolamento & purificação , Cromoblastomicose/microbiologia , Ascomicetos/ultraestrutura , Cromoblastomicose/patologia , Cromoblastomicose/tratamento farmacológico , Resultado do Tratamento , Itraconazol/uso terapêutico , Guatemala , Antifúngicos/uso terapêutico
13.
J Clin Immunol ; 39(7): 713-725, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31414217

RESUMO

PURPOSE: In the past decade, an increasing number of otherwise healthy individuals suffered from invasive fungal infections due to inherited CARD9 mutations. Herein, we present a patient with a homozygous CARD9 mutation who was suffering from localized subcutaneous phaeohyphomycosis caused by the phytopathogenic fungus Pallidocercospora crystallina which has not been reported to cause infections in humans. METHODS: The medical history of our patient was collected. P. crystallina was isolated from the biopsied tissue. To characterize this novel pathogen, the morphology was analyzed, whole-genome sequencing was performed, and the in vivo immune response was explored in mice. Whole-exome sequencing was carried out with samples from the patient's family. Finally, the expression and function of mutated CARD9 were investigated. RESULTS: A dark red plaque was on the patient's left cheek for 16 years and was diagnosed as phaeohyphomycosis due to a P. crystallina infection. Whole-genome sequencing suggested that that this strain had a lower pathogenicity. The in vivo immune response in immunocompetent or immunocompromised mice indicated that P. crystallina could be eradicated within a few weeks. Whole-exome sequencing revealed ahomozygous missense mutation in CARD9 (c.1118G>C p.R373P). The mRNA and protein expression levels were similar among cells carrying homozygous (C/C), heterozygous (G/C), and wild-type (G/G) CARD9 alleles. Compared to PBMCs or neutrophils with heterozygous or wild-type CARD9 alleles, however, PBMCs or neutrophils with homozygous CARD9 alleles showed impaired anti-P. crystallina effects. CONCLUSION: Localized subcutaneous phaeohyphomycosis caused by P. crystallina was reported in a patient with a homozygous CARD9 mutation. Physicians should be aware of the possibility of a CARD9 mutation in seemingly healthy patients with unexplainable phaeohyphomycosis.


Assuntos
Ascomicetos , Proteínas Adaptadoras de Sinalização CARD/genética , Dermatomicoses/genética , Dermatomicoses/microbiologia , Homozigoto , Mutação , Feoifomicose/genética , Feoifomicose/microbiologia , Adulto , Animais , Ascomicetos/ultraestrutura , Biópsia , Dermatomicoses/terapia , Feminino , Dosagem de Genes , Predisposição Genética para Doença , Genoma Fúngico , Interações Hospedeiro-Patógeno , Humanos , Imuno-Histoquímica , Camundongos , Feoifomicose/terapia , Sequenciamento Completo do Exoma
14.
FEMS Microbiol Lett ; 366(14)2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31437267

RESUMO

Beta/delta-agatoxin-1 of spider Agelena orientalis was expressed in entomopathogenic fungus Lecanicillium muscarium. To ensure secretion of the recombinant product by the fungus, the signal secretory peptide of the Metarhizium anisopliae Mcl1 protein was inserted into the sequence. For detection of the recombinant product and selection of transformants, the toxin sequence was also fused with eGFP at the C-terminus. The gene encoding the A. orientalis toxin with the Mcl1 protein signal peptide was commercially synthesized, amplified and cloned into the vector pBARGPE1 designed for heterologous expression under the control of the PgpdA promoter and the trpC terminator of Aspergillus nidulans. A double selection on selective medium and microscopic analysis of transformants allowed obtaining a mitotically stable recombinant strain of L. muscarium. The recognition of the Mcl1 derived signal peptide in the cells of transformants and effective secretion of the hybrid product was confirmed by immunoblotting.


Assuntos
Ascomicetos/genética , Expressão Gênica , Proteínas Recombinantes , Venenos de Aranha/genética , Sequência de Aminoácidos , Ascomicetos/ultraestrutura , Genes Reporter , Venenos de Aranha/química
15.
Sci Rep ; 9(1): 9642, 2019 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-31270361

RESUMO

During their life cycles, pathogens have to adapt to many biotic and abiotic environmental stresses to maximize their overall fitness. Morphological transitions are one of the least understood of the many strategies employed by fungal plant pathogens to adapt to constantly changing environments, even though different morphotypes may play important biological roles. Here, we first show that blastospores (the "yeast-like" form of the pathogen typically known only under laboratory conditions) can form from germinated pycnidiospores (asexual spores) on the surface of wheat leaves, suggesting that this morphotype can play an important role in the natural history of Z. tritici. Next, we characterized the morphological responses of this fungus to a series of environmental stresses to understand the effects of changing environments on fungal morphology and adaptation. All tested stresses induced morphological changes, but different responses were found among four strains. We discovered that Z. tritici forms chlamydospores and demonstrated that these structures are better able to survive extreme cold, heat and drought than other cell types. Finally, a transcriptomic analysis showed that morphogenesis and the expression of virulence factors are co-regulated in this pathogen. Our findings illustrate how changing environmental conditions can affect cellular morphology and lead to the formation of new morphotypes, with each morphotype having a potential impact on both pathogen survival and disease epidemiology.


Assuntos
Ascomicetos/ultraestrutura , Meio Ambiente , Microscopia Confocal/métodos , Estresse Oxidativo , Doenças das Plantas/microbiologia , Triticum/microbiologia , Fatores de Virulência/metabolismo , Ascomicetos/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Interações Hospedeiro-Patógeno
16.
Molecules ; 24(9)2019 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-31052486

RESUMO

Morels famous for their taste and nutrition are in short supply all over the world although they were considered as one of the most highly prized edible and medicinal mushrooms. Because of the limitation of resource and cultivation technology, fermentation of edible mushroom was gradually applied to nutrient, bioactivity and breeder seed preparation. At present, there are more reports on sugar and amino acid but less on other components. Morchella sp. YDJ-ZY-1 was isolated from the wild fruiting body by the spores releasing method in Zunyi Guizhou province in Southwest China and identified based on phenotype and genotype characteristics. Chemical compositions of YDJ-ZY-1 were investigated from liquid fermentation that will lay the foundation for further development and utilization. Four pyranoids (1-4) and 2-(1-oxo-2-hydroxyethyl) furan (5), linoleic acid (6), Morelin (2-hydroxy-cinnamic acid methyl ester, (7) and 1-O-ß-d-ribofuranose-Morelin (8) were obtained from EtOAc extraction and elucidated by spectral data. Product 4 and 8 were new compounds and 7 was isolated from nature for the first time. Antiradical activity was evaluated by free radical scavenging effect on DPPH (1,1-Diphenyl-2-picrylhydrazyl radical 2,2-Diphenyl-1-(2,4,6-trinitrophenyl)hydrazyl). Compound 5 exhibited strong antiradical activity while compounds 1 and 2 exhibited moderate activity. Thus, incubation of Morchella sp YDJ-ZY-1 separated from the wild fruit body afforded eight compounds. Secondary metabolites with new structures were mined from fermentation of Morchella sp. and antiradical activity was evaluated.


Assuntos
Ascomicetos/metabolismo , Produtos Biológicos/isolamento & purificação , Produtos Biológicos/farmacologia , Fermentação , Sequestradores de Radicais Livres/isolamento & purificação , Sequestradores de Radicais Livres/farmacologia , Metabolismo Secundário , Agaricales , Ascomicetos/classificação , Ascomicetos/ultraestrutura , Produtos Biológicos/química , China , Sequestradores de Radicais Livres/química , Espectroscopia de Ressonância Magnética , Estrutura Molecular
17.
Mycologia ; 111(2): 206-216, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30888911

RESUMO

According to a widely held view, fungi do not produce parenchymatous tissues. Following up on recent transmission electron microscopy (TEM) evidence that challenged this paradigm in several lichens, we employed scanning electron microscopy (SEM) to investigate the orientation of new anticlinal walls in the single-layered fungal cortex of six species of Collemataceae, a family of gelatinous cyanolichens with diverse surface morphologies. Examination of thallus surfaces in four species of Leptogium (L. austromericanum, L. burnetiae, L. chloromelum, L. marginellum) and two species of Scytinium (S. gelatinosum, S. lichenoides) revealed that recently formed septa adjoin to preceding septa in parenchymatous division. These cortical divisions were evident in the formation and development of thallus wrinkles, folds, isidia, and lobules in the six morphologically distinct taxa. Tomentum, by contrast, arose as filamentous outgrowths of the cortical cells. We conclude that the monostromatic cellular cortex in Collemataceae participates in surface growth and morphogenesis by means of parenchymatous cell divisions, in a remarkable parallel to plant meristems. Cortical cell divisions do not appear to drive morphogenesis, however, as very similar morphologies are achieved in the closely related genus Collema, which lacks a cortex altogether. These results provide evidence that parenchymatous cell division can indeed play a role in morphogenesis of fungal structures and show that SEM is a useful tool for distinguishing the orientation of anticlinal divisions in the cortex of gelatinous lichens.


Assuntos
Ascomicetos/crescimento & desenvolvimento , Ascomicetos/ultraestrutura , Divisão Celular , Morfogênese , Microscopia Eletrônica de Varredura , Propriedades de Superfície
18.
Astrobiology ; 19(2): 209-220, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30067087

RESUMO

The BIOMEX (BIOlogy and Mars Experiment) is part of the European Space Agency (ESA) space mission EXPOSE-R2 in Low-Earth Orbit, devoted to exposing microorganisms for 1.5 years to space and simulated Mars conditions on the International Space Station. In preparing this mission, dried colonies of the Antarctic cryptoendolithic black fungus Cryomyces antarcticus CCFEE 515, grown on martian and lunar analog regolith pellets, were subjected to several ground-based preflight tests, Experiment Verification Tests, and Science Verification Tests (SVTs) that were performed to verify (i) the resistance of our model organism to space stressors when grown on extraterrestrial rock analogs and (ii) the possibility of detecting biomolecules as potential biosignatures. Here, the results of the SVTs, the last set of experiments, which were performed in ultraviolet radiation combined with simulated space vacuum or simulated martian conditions, are reported. The results demonstrate that C. antarcticus was able to tolerate the conditions of the SVT experiment, regardless of the substratum in which it was grown. DNA maintained high integrity after treatments and was confirmed as a possible biosignature; melanin, which was chosen to be a target for biosignature detection, was unambiguously detected by Raman spectroscopy.


Assuntos
Ascomicetos/fisiologia , Meio Ambiente Extraterreno , Marte , Ascomicetos/efeitos da radiação , Ascomicetos/ultraestrutura , Dano ao DNA , Melaninas/análise , Análise Espectral Raman , Raios Ultravioleta
19.
Astrobiology ; 19(2): 170-182, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30376361

RESUMO

The search for life beyond Earth involves investigation into the responses of model organisms to the deleterious effects of space. In the frame of the BIOlogy and Mars Experiment, as part of the European Space Agency (ESA) space mission EXPOSE-R2 in low Earth orbit (LEO), dried colonies of the Antarctic cryptoendolithic black fungus Cryomyces antarcticus CCFEE 515 were grown on martian and lunar analog regolith pellets, and exposed for 16 months to LEO space and simulated Mars-like conditions on the International Space Station. The results demonstrate that C. antarcticus was able to tolerate the combined stress of different extraterrestrial substrates, space, and simulated Mars-like conditions in terms of survival, DNA, and ultrastructural stability. Results offer insights into the habitability of Mars for future exploration missions on Mars. Implications for the detection of biosignatures in extraterrestrial conditions and planetary protection are discussed.


Assuntos
Ascomicetos/fisiologia , Exobiologia , Marte , Ascomicetos/efeitos da radiação , Ascomicetos/ultraestrutura , Dano ao DNA , Meio Ambiente Extraterreno , Lua , Raios Ultravioleta
20.
Environ Monit Assess ; 191(1): 35, 2018 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-30593600

RESUMO

Epicoccum nigrum (strain LQRA39-P) was isolated from sediments collected in Chilean Patagonian fjords using microscopy and molecular techniques. We analyzed adaptive responses of cell wall morphology to salinity, temperature, and pH in order to explain the ability of E. nigrum to co-inhabit both marine and freshwater environments. For this purpose, E. nigrum was cultured in a series of media with variations in salinity (freshwater and seawater), pH (acidic, neutral, and basic), and temperature (5 to 25 °C). Changes were observed through transmission electron microscopy. A direct correlation between increased salinity and cell wall thickening (> 0.2 µm) was observed, along with a significant relationship between pH and the presence of extracellular polymeric substances (EPS) on the outside of the cell wall. The observed morphological changes could confirm that an ubiquitous fungus such as E. nigrum requires adaptive responses to co-inhabit freshwater, marine, and terrestrial substrates.


Assuntos
Ácidos , Ascomicetos/fisiologia , Água Doce/microbiologia , Salinidade , Água do Mar/microbiologia , Microbiologia do Solo , Temperatura , Adaptação Fisiológica , Ascomicetos/metabolismo , Ascomicetos/ultraestrutura , Parede Celular , Chile , Monitoramento Ambiental , Concentração de Íons de Hidrogênio , Microscopia Eletrônica de Transmissão , Polímeros/metabolismo , Cloreto de Sódio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...