Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 802
Filtrar
1.
Sci Rep ; 12(1): 6840, 2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35477983

RESUMO

Cadmium (Cd), though potentially beneficial at lower levels to some plant species, at higher levels is a toxic metal that is detrimental to plant growth and development. Cd is also a carcinogen to humans and other contaminated plant consumers, affecting the kidneys and reducing bone strength. In this study we investigated responses of growth, chlorophyll content, reactive oxygen species levels, and antioxidant responses to Cd in honeysuckle leaves (Lonicera japonica Thunb.), a potential Cd hyperaccumulator. Results indicated that plant height, dry weight, leaf area, and chlorophyll content increased when honeysuckle was exposed to 10 mg kg-1 or 30 mg kg-1 Cd (low concentration). However, in response to 150 mg kg-1 or 200 mg kg-1 Cd (high concentration) these growth parameters and chlorophyll content significantly decreased relative to untreated control plant groups. Higher levels of superoxide radical (O2·-) and hydrogen peroxide (H2O2) were observed in high concentration Cd groups. The activities of ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), and glutathione reductase were enhanced with exposure to increasing levels of Cd. Additionally, the Ascorbate-Glutathione (AsA-GSH) cycle was activated for the removal of H2O2 in honeysuckle in response to elevated Cd. The Pearson correlation analysis, a redundancy analysis, and a permutation test indicated that proline and APX were dominant antioxidants for removing O2·- and H2O2. The antioxidants GSH and non-protein thiols (NPTs) also increased as the concentration of Cd increased.


Assuntos
Antioxidantes , Lonicera , Antioxidantes/metabolismo , Ascorbato Peroxidases/metabolismo , Cádmio/toxicidade , Clorofila , Glutationa/metabolismo , Humanos , Peróxido de Hidrogênio , Lonicera/metabolismo , Estresse Oxidativo , Compostos Fitoquímicos
2.
Sci Rep ; 12(1): 6224, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35418703

RESUMO

The sensitivity of rice to low-temperature stress (LTS), especially at the reproductive stage, is a primary factor of rice yield fluctuation in cold cultivate region. Here, the changes of reactive oxygen species (ROS), osmotic adjustment substances, and antioxidants in different tissues were analyzed during rice growing under low temperatures (LT) at the reproductive stage. Results showed that LTS increases the levels of proline (Pro), soluble protein (SP), glutathione (GSH), superoxidase (SOD), and ascorbate peroxidase (APX) in LJ25 (LTS-resistant) and LJ11 (LTS-sensitive). The activities of catalase (CAT) and peroxidase (POD) were significantly increased in LJ25 but decreased in LJ11 under LTS, while an opposite trend in ROS and malondialdehyde (MDA) was observed in both varieties. Moreover, most physicochemical properties were higher in flag leaves and panicles compared with those in leaf sheaths. The expression patterns of OsCOIN, OsCATC, OsMAP1, OsPOX1, and OsAPX were the same with phenotypic changes in Pro and the enzymes encoded by them, confirming the accuracy of the physicochemical analysis. Therefore, only CAT and POD increased more in LJ25, suggesting they could be the key factors used for LT-tolerant breeding of rice in cold regions.


Assuntos
Oryza , Antioxidantes/metabolismo , Ascorbato Peroxidases/metabolismo , Catalase/metabolismo , Glutationa/metabolismo , Oryza/metabolismo , Estresse Oxidativo , Prolina/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo , Temperatura
3.
Int J Mol Sci ; 23(6)2022 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-35328760

RESUMO

Chloroplasts are the most major producers of reactive oxygen species (ROS) during photosynthesis. However, the function of thylakoid ascorbate peroxidase (tAPX) in response to oxidative stress in wood trees is largely unknown. Our results showed that PtotAPX of Populus tomentosa could effectively utilize ascorbic acid (AsA) to hydrolyze hydrogen peroxide (H2O2) in vitro. The overexpression or antisense of PtotAPX (OX-PtotAPX or anti-PtotAPX, respectively) in Populus tomentosa plants did not significantly affect plant morphology during plant growth. When treated with methyl viologen (MV), the OX-PtotAPX plants exhibited less morphological damage under stress conditions compared to WT plants. OX-PtotAPX plants maintained lower H2O2 levels and malondialdehyde (MDA) contents, but more reduced AsA levels, a higher photosynthetic rate (Pn), and the maximal photochemical efficiency of PSII (Fv/Fm), whereas anti-PtotAPX plants showed the opposite phenotype. Furthermore, the activity of APX was slightly higher in OX-PtotAPX under normal growth conditions, and this activity significantly decreased after stress treatment, which was the lowest in anti-P. Based on these results, we propose that PtotAPX is important for protecting the photosynthetic machinery under severe oxidative stress conditions in P. tomentosa, and is a potential genetic resource for regulating the stress tolerance of woody plants.


Assuntos
Populus , Tilacoides , Ascorbato Peroxidases/metabolismo , Cloroplastos/metabolismo , Regulação da Expressão Gênica de Plantas , Peróxido de Hidrogênio/metabolismo , Estresse Oxidativo , Fotossíntese/genética , Plantas Geneticamente Modificadas/genética , Populus/genética , Populus/metabolismo , Tilacoides/metabolismo
4.
Ying Yong Sheng Tai Xue Bao ; 33(1): 104-110, 2022 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-35224931

RESUMO

Methylglyoxal (MG) is a novel signaling molecule with multiple functions in plants. To explore the effects of MG on Chinese chestnut (Castanea mollissima) under drought stress, two-year-old 'Huangpeng' chestnut seedlings were treated with 15% polyethylene glycol (PEG) coupled with MG or its scavenger N-acetyl-L-cys-teine (NAC). We measured the activities of antioxidant enzymes, including superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX) and glutathione reductase (GR), and glyoxalase enzymes, including glyoxalase Ⅰ (GlyⅠ) and glyoxalase Ⅱ(GlyⅡ). Contents of antioxidants such as endogenous MG, malondialdehyde (MDA), H2O2, and O2-· as well as the osmotic adjustment substances including proline (Pro), soluble sugar (SS), glycine betaine (GB) were also detected. The results showed that 0.5 mmol·L-1 MG significantly increased the activities of antioxidant enzymes (SOD, POD, CAT, APX, GR) and glyoxalase enzymes (GlyⅠ, GlyⅡ) in leaves of chestnut seedlings under drought stress, elevated the contents of osmotic adjustment substances (Pro, SS, GB) and antioxidant substances (ASA, GSH), and reduced the contents of MG, MDA, H2O2, O2-· and dehydroascorbate (DHA). Drought stress induced damages such as membrane lipid peroxidation and osmotic stress was alleviated by MG, leading to an overall improved adaptability of chestnut to drought stress. Moreover, the addition of MG scavenger NAC could reverse the effects induced by MG, indicating that MG had positive impacts on drought resistance of chestnut plants. Our study provided a theoretical basis for further exploring the mechanism of MG in alleviating drought stress induced symptoms in chestnut.


Assuntos
Secas , Fagaceae/efeitos dos fármacos , Aldeído Pirúvico , Plântula , Antioxidantes/metabolismo , Ascorbato Peroxidases/metabolismo , Catalase/metabolismo , Fagaceae/fisiologia , Peróxido de Hidrogênio , Peroxidação de Lipídeos , Estresse Oxidativo , Aldeído Pirúvico/farmacologia , Plântula/efeitos dos fármacos , Plântula/fisiologia , Estresse Fisiológico
5.
Chemosphere ; 294: 133796, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35104550

RESUMO

During this study, the bioremediation potential of zinc-oxide nanoparticles (ZnO-NPs) and PGPR mixed biofertilizer (BF) on maize plants under induced arsenic (As) stress of 50 ppm and 100 ppm was investigated. The treated plants showed increased As resistance to mitigate the adverse effects of stress by enhancing fresh and dry biomass, relative water content, protein content, soluble sugars, proline content, enzymatic antioxidant defense mechanisms including activities of catalase (CAT), peroxidase (POD), ascorbate peroxidase (APX), superoxide dismutase (SOD), and malondialdehyde (MDA) content. In the pot experiment, the parameters studied have shown that the integrated treatments of ZnO-NPs and BF cause a notable enhancement in relative water content 43%-50% and plant biomass. Moreover, the same treatment showed a marked upregulation in enzymes activity (APX, SOD, APX, and CAT) which oxidized the cell-damaging ROS, produced in response to As stress. Likewise, the combined treatment showed a maximum reduction in MDA content 46%-57% and electrolyte leakage in As treated plants as compared to stressed plants. On the other hand, total soluble sugar 114%-170% and total protein content 117%-241% escalated. SEM analysis revealed marked damage reduction in the treated cells caused by arsenic toxicity. Thus, the use of BF comprised of rhizobacteria along with ZnO-NPs could be a very effective bio source for improving maize plant growth under As stress. In in silico study, As mediated network of proteins showed positive and negative regulation of As activity that leads to stress generation for housekeeping genome.


Assuntos
Arsênio , Nanopartículas , Óxido de Zinco , Antioxidantes/metabolismo , Arsênio/toxicidade , Ascorbato Peroxidases/metabolismo , Peróxido de Hidrogênio/metabolismo , Nanopartículas/toxicidade , Zea mays/metabolismo , Óxido de Zinco/toxicidade
6.
J Proteome Res ; 21(2): 494-506, 2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-35044772

RESUMO

Kinases govern many cellular responses through the reversible transfer of a phosphate moiety to their substrates. However, pairing a substrate with a kinase is challenging. In proximity labeling experiments, proteins proximal to a target protein are marked by biotinylation, and mass spectrometry can be used for their identification. Here, we combine ascorbate peroxidase (APEX) proximity labeling and a phosphorylation enrichment-based workflow, Phospho-APEX (pAPEX), to rapidly identify phosphorylated and biotinylated neighbor proteins which can be considered for candidate substrates. The pAPEX strategy enriches and quantifies differences in proximity for proteins and phosphorylation sites proximal to an APEX2-tagged kinase under the kinase "ON" and kinase "OFF" conditions. As a proof of concept, we identified candidate substrates of MAPK1 in HEK293T and HCT116 cells and candidate substrates of PKA in HEK293T cells. In addition to many known substrates, C15orf39 was identified and confirmed as a novel MAPK1 substrate. In all, we adapted the proximity labeling-based platform to accommodate phosphorylation analysis for kinase substrate identification.


Assuntos
Fosforilação , Ascorbato Peroxidases/química , Ascorbato Peroxidases/metabolismo , Biotinilação , Células HEK293 , Humanos , Espectrometria de Massas , Especificidade por Substrato
7.
Plant Physiol Biochem ; 172: 167-179, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35091196

RESUMO

Plants subjected to biotic or abiotic stresses produce a large amount of reactive oxygen species (ROS). If ROS cannot be cleared in time, they cause a series of harmful reactions in plants. Ascorbate peroxidase (APX) is a key enzyme that removes ROS from plant cells and plays a vital role in plant stress resistance. However, to date, no studies on APX homologs in Cryptomeria fortunei have been reported. In this study, we isolated complementary DNA (cDNA) encoding APXfrom C. fortunei needles, which is referred to as CfAPX, by rapid amplification of cDNA ends (RACE). The full-length CfAPX sequence was 1226 bp in length and included a 750-bp open reading frame (ORF) encoding a protein of 249 amino acids. Phylogenetic analysis showed that APXs of different plant species have been highly evolutionarily conserved. CfAPX was shown to belong to the cytoplasmic subgroup and was more closely related to GbAPX of the gymnosperm Ginkgo biloba. CfAPX showed no transcriptional activity in yeast cells but was highly expressed in cones. To better handle abiotic stresses, compared with wild-type (WT) Arabidopsis thaliana, 35S::CfAPX transgenic Arabidopsis strongly expressed CfAPX, presented increased antioxidant enzyme activities, ascorbic acid (AsA) contents, chlorophyll levels and fluorescence parameter and reduced malondialdehyde (MDA) and hydrogen peroxide (H2O2) contents. In addition, CfAPX expression in C. fortunei was mostly upregulated under stress. In summary, CfAPX confers abiotic stress responses to plants, which provides a scientific basis for subsequent breeding for increased stress resistance in C. fortunei.


Assuntos
Arabidopsis , Cryptomeria , Arabidopsis/genética , Arabidopsis/metabolismo , Ascorbato Peroxidases/genética , Ascorbato Peroxidases/metabolismo , Ácido Ascórbico , Cryptomeria/metabolismo , Secas , Regulação da Expressão Gênica de Plantas , Peróxido de Hidrogênio/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Estresse Fisiológico/genética
8.
Int J Mol Sci ; 23(1)2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35008903

RESUMO

Aluminum (Al) toxicity is the main factor limiting plant growth and the yield of cereal crops in acidic soils. Al-induced oxidative stress could lead to the excessive accumulation of reactive oxygen species (ROS) and aldehydes in plants. Aldehyde dehydrogenase (ALDH) genes, which play an important role in detoxification of aldehydes when exposed to abiotic stress, have been identified in most species. However, little is known about the function of this gene family in the response to Al stress. Here, we identified an ALDH gene in maize, ZmALDH, involved in protection against Al-induced oxidative stress. Al stress up-regulated ZmALDH expression in both the roots and leaves. The expression of ZmALDH only responded to Al toxicity but not to other stresses including low pH and other metals. The heterologous overexpression of ZmALDH in Arabidopsis increased Al tolerance by promoting the ascorbate-glutathione cycle, increasing the transcript levels of antioxidant enzyme genes as well as the activities of their products, reducing MDA, and increasing free proline synthesis. The overexpression of ZmALDH also reduced Al accumulation in roots. Taken together, these findings suggest that ZmALDH participates in Al-induced oxidative stress and Al accumulation in roots, conferring Al tolerance in transgenic Arabidopsis.


Assuntos
Adaptação Fisiológica/genética , Aldeído Desidrogenase/genética , Alumínio/toxicidade , Arabidopsis/genética , Arabidopsis/fisiologia , Genes de Plantas , Zea mays/genética , Adaptação Fisiológica/efeitos dos fármacos , Aldeído Desidrogenase/química , Aldeído Desidrogenase/metabolismo , Sequência de Aminoácidos , Antioxidantes/metabolismo , Arabidopsis/efeitos dos fármacos , Ascorbato Peroxidases/metabolismo , Ácido Ascórbico/metabolismo , Clonagem Molecular , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Glutationa/metabolismo , Glutationa Redutase/metabolismo , Peróxido de Hidrogênio/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Filogenia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Prolina/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Frações Subcelulares/metabolismo , Superóxidos/metabolismo , Tabaco/metabolismo
9.
Biosci Biotechnol Biochem ; 86(4): 476-489, 2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35090004

RESUMO

Redox homeostasis is crucial for plant acclimation to nutrient-deficient conditions, but its molecular mechanisms remain largely unknown. In this study, the effects of nutrient deficiencies on antioxidant systems in Arabidopsis thaliana were investigated. We found that ascorbate content in the plants grown with nitrogen starvation was higher than those with complete nutrition. The higher ascorbate levels were associated with enhanced gene expression of ascorbate biosynthesis enzymes and cytosolic isozymes of the ascorbate-glutathione cycle, suggesting that nitrogen starvation facilitated both consumption and biosynthesis of ascorbate. Nevertheless, we did not identify any phenotypic differences between wild type and ascorbate-deficient mutants (vtc2) under nitrogen starvation. Under high-light stress, the vtc2 mutants suffered severer photoinhibition than wild type. Interestingly, when high-light stress and nitrogen starvation were combined, wild type and vtc2 plants exhibited photoinhibition to the same extent. Based on these findings, we discuss the regulation and role of ascorbate metabolism under nitrogen starvation.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Antioxidantes/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ascorbato Peroxidases/metabolismo , Ácido Ascórbico/metabolismo , Regulação da Expressão Gênica de Plantas , Nitrogênio/metabolismo
10.
Protoplasma ; 259(3): 809-822, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34553239

RESUMO

Plants are equipped with a wide range of defensive mechanisms such as morphophysiological, biochemical, molecular, and hormonal signaling for protecting against insect-pest infestation. The infestation of a devastating pest shoot fly [Atherigona soccata (Rodani)] at seedling stage causes huge loss of sorghum crop productivity. In morphophysiological screening ICSV700, ICSV705, and IS18551 have been categorized as resistant, PSC-4 moderately resistant, SL-44 and SWARNA as susceptible. The present study focused on the role of defensive gene expression and its products viz: superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), glutathione reductase (GR), polyphenol oxidase (PPO), phenyl alanine ammonia lyase (PAL), responsive enzymes, and metabolites restoring redox status in sorghum plants against shoot fly infestation. In both leaf and stem tissue of sorghum genotypes, shoot fly infestation induced SOD, APX, DHAR, GR, PAL, and PPO activities while CAT activity was significantly declined at 15 and 21 days after emergence (DAE). IS18551 with resistant behavior showed upregulation of SOD, GR, APX, and DHAR along with accumulation of ascorbate, glutathione enhancing redox status of the plant during shoot fly infestation at later stage of infestation. While SWARNA with susceptible response exhibited enhanced activity of phenylpropanoid pathway enzymes PAL and PPO which in turn increased the levels of secondary metabolites like o-dihydroxyphenol and other phenols deterring the insect to attack the plant. The qRT-PCR data predicted that stress-responsive genes were initially unregulated in SWARNA; however, at 21 DAE, multifold higher expression of SOD, CAT, APX, and PPO (24.8-, 37.2-, 21.7-, and 17.9-fold respectively) in 1S18551 indicates the resistance behavior of this genotype against insect infestation owing to sustainable development capability.


Assuntos
Muscidae , Sorghum , Animais , Antioxidantes/metabolismo , Ascorbato Peroxidases/metabolismo , Catecol Oxidase/metabolismo , Grão Comestível/metabolismo , Genótipo , Muscidae/metabolismo , Sorghum/metabolismo , Superóxido Dismutase/metabolismo
11.
Bull Environ Contam Toxicol ; 108(3): 451-456, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33891141

RESUMO

Sustainable agricultural practices based on the development of native arbuscular mycorrhizal fungi (AMF) can improve crop growth and stress tolerance in acidic soils with manganese toxicity. The beneficial effects are stronger when crops are colonized early in development by an intact extraradical mycelium (ERM), but are dependent on AMF assemblage. In wheat colonized by AMF associated to Lolium rigidum L. (LOL) or Ornithopus compressus (ORN), growth and stress tolerance are differently influenced. In the present study, this functional diversity was studied by evaluating the activity of ascorbate peroxidase (APX), catalase (CAT), glutathione reductase (GR), guaiacol peroxidase (GPX), superoxide dismutase (SOD) and Mn-SOD. ORN treatment promoted higher wheat shoot and root dry weights, a higher root protein content, decreased root APX, GR and SOD activities but a higher proportion of MnSOD activity. ORN associated microbiota differently manage antioxidant enzyme activity of succeeding wheat to improve growth.


Assuntos
Antioxidantes , Micorrizas , Antioxidantes/metabolismo , Ascorbato Peroxidases/metabolismo , Micélio/metabolismo , Micorrizas/metabolismo , Triticum/metabolismo
12.
Plant Cell Rep ; 41(3): 571-592, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34115169

RESUMO

KEY MESSAGE: APX and APX-R gene families were identified and characterized in two important oilseed species of Brassica. Gene expression under abiotic stress conditions, recombinant protein expression, and analysis further divulged their drought, heat, and salt-responsive behavior. Ascorbate peroxidases (APX) are heme-dependent enzymes that rid the cells of H2O2 and regulate diverse biological processes. In the present study, we performed APX gene family characterization in two Brassica sp. (B. juncea and B. rapa) as these are commercially important oilseed crops and affected severely by abiotic stresses. We identified 16 BjuAPX and 9 BraAPX genes and 2 APX-R genes each in B. juncea and B. rapa genomes, respectively. Phylogenetic analysis divided the APX genes into five distinct clades, which exhibited conservation in the gene structure, motif organization, and sub-cellular location within the clade. Structural analysis of APX and APX-R proteins revealed the amino acid substitutions in conserved domains of APX-R proteins. The expression profiling of BjuAPX and BraAPX genes showed that 3 BjuAPX, 7BraAPX, and 2 BraAPX-R genes were drought and heat responsive. Notably, BjuAAPX1a, BjuAPX1d, BjuAAPX6, BraAAPX1a, BraAAPX2, and BraAAPX3b showed high expression levels in RT-qPCR. Cis-regulatory elements in APX and APX-R gene promoters supported the differential behavior of these genes. Further, two stress-responsive genes BjuAPX1d and BraAAPX2 were cloned, characterized, and their roles were validated under heat, drought, salt, and cold stress in bacterial expression system. This study for the first time reports the presence of APX activity in dimeric and LMW form of purified BraAAPX2 protein. The study may help pave way for developing abiotic stress-tolerant Brassica crops.


Assuntos
Regulação da Expressão Gênica de Plantas , Mostardeira , Ascorbato Peroxidases/genética , Ascorbato Peroxidases/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética , Genes vpr , Peróxido de Hidrogênio/metabolismo , Família Multigênica , Mostardeira/genética , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética
13.
J Sci Food Agric ; 102(2): 628-643, 2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-34146341

RESUMO

BACKGROUND: Heat shock transcription factors (Hsfs) play pivotal roles in plant responses to stress. Although glycine betaine (GB) and hot water (HW) treatments are effective in reducing chilling injury (CI), little is known about the characterization of the Hsfs gene family and its potential roles in alleviating CI by regulating antioxidant systems in peach fruit. RESULTS: In this study, 17 PpHsfs were identified in the peach genome and were investigated using bioinformatics, including chromosomal locations, phylogenetic relationships, gene structure, motifs, and promoter analyses. The expression patterns of PpHsfs under GB and HW treatments were also investigated. The PpHsfs showed different expression patterns in GB- and HW-treated fruit, and most of them were significantly up-regulated by both treatments, especially PpHsfA1a/b, PpHsfA2a, PpHsfA9a, and PpHsfB2a/b. Meanwhile, GB and HW treatments induced higher levels of gene expression and antioxidant enzyme activity of superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX) compared to the control, contributing to the inhibition of hydrogen peroxide (H2 O2 ) accumulation and superoxide anion (O2 .- ) production. Moreover, the correlation analysis between PpHsfs and antioxidant-related genes showed that three PpAPXs were significantly correlated with ten PpHsfs, whereas PpCAT and PpSOD had no significant correlations with PpHsfs, which indicated that PpAPX might be regulated by PpHsfs. CONCLUSIONS: The results indicated that GB and HW treatments induced different PpHsfs transcript levels to regulate the antioxidant gene expressions, which might be beneficial in inhibiting the accumulation of reactive oxygen species and protecting the integrity of cell structure, thus alleviating the development of CI in peach fruit during cold storage. © 2021 Society of Chemical Industry.


Assuntos
Antioxidantes/metabolismo , Betaína/farmacologia , Genoma de Planta , Fatores de Transcrição de Choque Térmico/genética , Proteínas de Plantas/genética , Prunus persica/efeitos dos fármacos , Ascorbato Peroxidases/genética , Ascorbato Peroxidases/metabolismo , Catalase/genética , Catalase/metabolismo , Armazenamento de Alimentos , Frutas/efeitos dos fármacos , Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Fatores de Transcrição de Choque Térmico/metabolismo , Temperatura Alta , Peróxido de Hidrogênio/metabolismo , Proteínas de Plantas/metabolismo , Prunus persica/genética , Prunus persica/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Superóxidos/metabolismo
14.
Int J Mol Sci ; 22(23)2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34884801

RESUMO

As climate changes increase, drought stress is becoming a problem for all major horticultural crops; among them is okra (Abelmoschus esculentus). Despite its superior resilience to heat stress and high nutritional content, it is still underutilized in contrast to other vegetable crops. Moreover, the drought-resistant and drought-sensitive genotypes of okra are also not well known and require further exploration to improve their productivity. To investigate this in more detail, we performed comparative physiological and large-scale chloroplast proteomics on drought-stressed genotypes of okra. We evaluated four major genotypes of okra, viz., NS7774, NS7772, Green Gold, and OH3312 for drought resilient rootstock. The physiological modulations demonstrated a significant change by 50-76% in biomass, net-photosynthetic machinery, water transport, and absorption both in early and late stages of drought stress compared to well-watered crops in all genotypes. Maximum oxidative damage due to drought stress was observed for the genotypes NS7772, Green Gold and OH3312 as depicted by H2O2 and O2- determination. Greater oxidative stress was correlated to lesser antioxidant activity and expression of antioxidant enzymes, such as catalase and ascorbate peroxidase under stress in okra genotypes. The overall photosynthetic pigments, such as total chlorophyll, and total carotenoid content, were also decreased, and stomatal guard cells were disrupted and appeared closed compared to the control for the above three mentioned genotypes, except NS7774. A subsequent tissue-specific proteome analysis of chloroplasts and thylakoids analyzed by BN-PAGE (blue native polyacrylamide gel electrophoresis) revealed either over or under expression of specific proteins, such as ATPase, PSI, PSII core dimer, PSII monomer and ATP synthase. The expression of multiprotein complex proteins, including PSII-core dimer and PSII-core monomer, was slightly higher for the genotype NS7774 when compared to three other genotypes for both 5 and 10 days of drought stress. Further identification of specific proteins obtained in second dimension BN-PAGE provided descriptive detail of seven proteins involved in drought resistance across all genotypes. The identified proteins are majorly involved in photosynthesis under drought stress, suggesting NS7774 as a drought tolerant genotype. Further, the proteomic results were confirmed using Immunoblot by selecting specific protein such as PsaA. Overall, from our physiological modulations and chloroplast proteomics in all genotypes, we summarized NS7774 as a resilient rootstock and the other three genotypes (NS7772, OH3312, and Green Gold) as sensitive ones.


Assuntos
Abelmoschus/crescimento & desenvolvimento , Adaptação Fisiológica/fisiologia , Secas , Proteoma/metabolismo , Estresse Fisiológico/fisiologia , Abelmoschus/genética , Abelmoschus/metabolismo , Antioxidantes/metabolismo , Ascorbato Peroxidases/metabolismo , Carotenoides/metabolismo , Catalase/metabolismo , Clorofila/metabolismo , Cloroplastos/genética , Cloroplastos/metabolismo , Mudança Climática , Perfilação da Expressão Gênica , Estresse Oxidativo/fisiologia , Proteoma/genética
15.
Physiol Plant ; 173(4): 2323-2333, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34625976

RESUMO

The present study aimed to evaluate root cortical aerenchyma formation in response to Cd-driven hydrogen peroxide (H2 O2 ) production and the role of nitric oxide (NO) in the alleviation of Cd oxidative stress in maize roots and its effects on aerenchyma development. Maize plants were subjected to continuous flooding for 30 days, and the following treatments were applied weekly: Cd(NO3 )2 at 0, 10, and 50 µM and Na2 [Fe(CN)5 NO]·2H2 O (an NO donor) at 0.5, 0.1, and 0.2 µM. The root biometrics; oxidative stress indicators H2 O2 and malondialdehyde (MDA); and activities of catalase (CAT), superoxide dismutase (SOD), and ascorbate peroxidase (APX) were analyzed. The root dry and fresh masses decreased at higher concentrations of NO and Cd. H2 O2 also decreased at higher NO concentrations; however, MDA increased only at higher Cd levels. SOD activity decreased at higher concentrations of NO, but CAT activity increased. Aerenchyma development decreased in response to NO. Consequently, NO acts as an antagonist to Cd, decreasing the concentration of H2 O2 by reducing SOD activity and increasing CAT activity. Although H2 O2 is directly linked to aerenchyma formation, increased H2 O2 concentrations are necessary for root cortical aerenchyma development.


Assuntos
Cádmio , Óxido Nítrico , Antioxidantes , Ascorbato Peroxidases/metabolismo , Cádmio/toxicidade , Catalase/metabolismo , Peróxido de Hidrogênio , Estresse Oxidativo , Espécies Reativas de Oxigênio , Superóxido Dismutase/metabolismo
16.
J Cell Biol ; 220(12)2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34617965

RESUMO

The formation and plasticity of neuronal circuits relies on dynamic activity-dependent gene expression. Although recent work has revealed the identity of important transcriptional regulators and of genes that are transcribed and translated in response to activity, relatively little is known about the cell biological mechanisms by which activity alters the nuclear proteome of neurons to link neuronal stimulation to transcription. Using nucleus-specific proteomic mapping in silenced and stimulated neurons, we uncovered an understudied mechanism of nuclear proteome regulation: activity-dependent proteasome-mediated degradation. We found that the tumor suppressor protein PDCD4 undergoes rapid stimulus-induced degradation in the nucleus of neurons. We demonstrate that degradation of PDCD4 is required for normal activity-dependent transcription and that PDCD4 target genes include those encoding proteins critical for synapse formation, remodeling, and transmission. Our findings highlight the importance of the nuclear proteasome in regulating the activity-dependent nuclear proteome and point to a specific role for PDCD4 as a regulator of activity-dependent transcription in neurons.


Assuntos
Núcleo Celular/metabolismo , Neurônios/metabolismo , Proteoma/metabolismo , Transcrição Genética , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Ascorbato Peroxidases/metabolismo , Biotinilação , Regulação da Expressão Gênica , Humanos , Espectrometria de Massas , Mutação/genética , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C/metabolismo , Proteólise , Ratos Sprague-Dawley
17.
PLoS One ; 16(9): e0255623, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34559804

RESUMO

The present study evaluates the effect of nickel oxide nanoparticles on some biochemical parameters and midgut tissues in the ground beetle Blaps polychresta as an indicator organism for nanotoxicity. Serial doses of the NiO-NPs colloid (0.01, 0.02, 0.03, 0.04, 0.05, and 0.06 mg/g) were prepared for injecting into the adult beetles. Insect survival was reported daily for 30 days, and the sublethal dose of 0.02 mg/g NiO-NPs was selected for the tested parameters. After the treatment, nickel was detected in the midgut tissues by X-ray microanalysis. The treated group demonstrated a significant increase in aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activities when compared to the untreated group. However, the treated group demonstrated a significant decrease in ascorbate peroxidase (APOX) activity when compared to the untreated group. Histological and ultrastructural changes in the midgut tissues of treated and untreated beetles were also observed. The current findings provide a precedent for describing the physiological and histological changes caused by NiO-NPs in the ground beetle B. polychresta.


Assuntos
Besouros/fisiologia , Trato Gastrointestinal/patologia , Proteínas de Insetos/metabolismo , Nanopartículas Metálicas/toxicidade , Níquel/química , Alanina Transaminase/metabolismo , Animais , Ascorbato Peroxidases/metabolismo , Aspartato Aminotransferases/metabolismo , Besouros/efeitos dos fármacos , Trato Gastrointestinal/efeitos dos fármacos , Nanopartículas Metálicas/administração & dosagem
18.
PLoS One ; 16(9): e0257023, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34555032

RESUMO

Abiotic stress, especially a lack of water, can significantly reduce crop yields. In this study, we evaluated the physiological and biochemical effects of potassium sulfate (K2SO4) fertilizer and varied irrigation regimes on the economically significant oilseed crop, Brassica juncea L, under open field conditions. Two cultivars (RH-725 and RH-749) of B. juncea were used in a randomized complete block design experiment with three replicates. Irrigation regimes consisted of a control (double irrigation: once at the 50% flowering and another at 50% fruiting stages), early irrigation (at 50% flowering only), late irrigation (at 50% fruiting only) and stress (no irrigation). The K2SO4 applications were: control (K0, no fertilization); K1, 10 kg ha-1; and K2, 20 kg ha-1. We measured growth via fresh and dry plant weight, plant height, root length, and leaf area. All the growth parameters were higher in RH-749. The physiological attributes, including the membrane stability index and relative water content, were higher at the 50% flowering stage in RH-749. The amount of antioxidant enzymes (catalase (CAT), guaiacol peroxidase (POX), ascorbate peroxidase (APX), and superoxide dismutase (SOD)) was enhanced when both plants were fertilized during water stress. All of these enzymes had higher activity in RH-749. The total chlorophyll content and photosynthesis rate were considerably higher in RH-749, which leaked fewer electrolytes and maintained a less destructive osmotic potential under limited water conditions. The results indicated that it is water-stress tolerant when given a high concentration of K2SO4, which alleviated the adverse effects of water stress on growth and physiology.


Assuntos
Irrigação Agrícola/métodos , Fertilizantes/análise , Mostardeira/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Sulfatos/farmacologia , Ascorbato Peroxidases/metabolismo , Catalase/metabolismo , Clorofila/metabolismo , Secas , Flores/efeitos dos fármacos , Flores/crescimento & desenvolvimento , Flores/metabolismo , Frutas/efeitos dos fármacos , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Mostardeira/crescimento & desenvolvimento , Mostardeira/metabolismo , Peroxidase/metabolismo , Fotossíntese , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Especificidade da Espécie , Estresse Fisiológico/fisiologia , Superóxido Dismutase/metabolismo , Água/metabolismo
19.
Nat Commun ; 12(1): 4855, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34381044

RESUMO

The vertebrate brain consists of diverse neuronal types, classified by distinct anatomy and function, along with divergent transcriptomes and proteomes. Defining the cell-type specific neuroproteomes is important for understanding the development and functional organization of neural circuits. This task remains challenging in complex tissue, due to suboptimal protein isolation techniques that often result in loss of cell-type specific information and incomplete capture of subcellular compartments. Here, we develop a genetically targeted proximity labeling approach to identify cell-type specific subcellular proteomes in the mouse brain, confirmed by imaging, electron microscopy, and mass spectrometry. We virally express subcellular-localized APEX2 to map the proteome of direct and indirect pathway spiny projection neurons in the striatum. The workflow provides sufficient depth to uncover changes in the proteome of striatal neurons following chemogenetic activation of Gαq-coupled signaling cascades. This method enables flexible, cell-type specific quantitative profiling of subcellular proteome snapshots in the mouse brain.


Assuntos
Ascorbato Peroxidases/metabolismo , Núcleo Celular/metabolismo , Corpo Estriado/metabolismo , Proteoma/metabolismo , Animais , Ascorbato Peroxidases/genética , Corpo Estriado/citologia , Citosol/metabolismo , Espectrometria de Massas , Camundongos , Vias Neurais , Neurônios/citologia , Neurônios/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Coloração e Rotulagem , Fluxo de Trabalho
20.
Cells ; 10(8)2021 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-34440713

RESUMO

Verticillium wilt, caused by the fungal pathogen Verticillium dahliae, is the most severe disease that threatens artichoke (Cynara scolymus L.) plants. Arbuscular mycorrhizal fungi (AMF) may represent a useful biological control strategy against this pathogen attack, replacing chemical compounds that, up to now, have been not very effective. In this study, we evaluated the effect of the AMF Glomus viscosum Nicolson in enhancing the plant tolerance towards the pathogen V. dahliae. The role of the ascorbate-glutathione (ASC-GSH) cycle and other antioxidant systems involved in the complex network of the pathogen-fungi-plant interaction have been investigated. The results obtained showed that the AMF G. viscosum is able to enhance the defense antioxidant systems in artichoke plants affected by V. dahliae, alleviating the oxidative stress symptoms. AMF-inoculated plants exhibited significant increases in ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), and superoxide dismutase (SOD) activities, a higher content of ascorbate (ASC) and glutathione (GSH), and a decrease in the levels of lipid peroxidation and hydrogen peroxide (H2O2). Hence, G. viscosum may represent an effective strategy for mitigating V. dahliae pathogenicity in artichokes, enhancing the plant defense systems, and improving the nutritional values and benefit to human health.


Assuntos
Antioxidantes/metabolismo , Ascomicetos/patogenicidade , Cynara scolymus/microbiologia , Fungos/fisiologia , Estresse Oxidativo , Controle Biológico de Vetores , Doenças das Plantas/prevenção & controle , Proteínas de Plantas/metabolismo , Ascorbato Peroxidases/metabolismo , Cynara scolymus/metabolismo , Interações Hospedeiro-Patógeno , Peróxido de Hidrogênio/metabolismo , Peroxidação de Lipídeos , NADH NADPH Oxirredutases/metabolismo , Doenças das Plantas/microbiologia , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...