Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.846
Filtrar
1.
Microbiome ; 9(1): 82, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33795001

RESUMO

BACKGROUND: Clean rooms of the Space Assembly Facility (SAF) at the Jet Propulsion Laboratory (JPL) at NASA are the final step of spacecraft cleaning and assembly before launching into space. Clean rooms have stringent methods of air-filtration and cleaning to minimize microbial contamination for exoplanetary research and minimize the risk of human pathogens, but they are not sterile. Clean rooms make a selective environment for microorganisms that tolerate such cleaning methods. Previous studies have attempted to characterize the microbial cargo through sequencing and culture-dependent protocols. However, there is not a standardized metagenomic workflow nor analysis pipeline for spaceflight hardware cleanroom samples to identify microbial contamination. Additionally, current identification methods fail to characterize and profile the risk of low-abundance microorganisms. RESULTS: A comprehensive metagenomic framework to characterize microorganisms relevant for planetary protection in multiple cleanroom classifications (from ISO-5 to ISO-8.5) and sample types (surface, filters, and debris collected via vacuum devices) was developed. Fifty-one metagenomic samples from SAF clean rooms were sequenced and analyzed to identify microbes that could potentially survive spaceflight based on their microbial features and whether the microbes expressed any metabolic activity or growth. Additionally, an auxiliary testing was performed to determine the repeatability of our techniques and validate our analyses. We find evidence that JPL clean rooms carry microbes with attributes that may be problematic in space missions for their documented ability to withstand extreme conditions, such as psychrophilia and ability to form biofilms, spore-forming capacity, radiation resistance, and desiccation resistance. Samples from ISO-5 standard had lower microbial diversity than those conforming to ISO-6 or higher filters but still carried a measurable microbial load. CONCLUSIONS: Although the extensive cleaning processes limit the number of microbes capable of withstanding clean room condition, it is important to quantify thresholds and detect organisms that can inform ongoing Planetary Protection goals, provide a biological baseline for assembly facilities, and guide future mission planning. Video Abstract.


Assuntos
Metagenômica , Voo Espacial , Ambiente Controlado , Humanos , Metagenoma , Astronave
2.
J Vis Exp ; (167)2021 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-33522513

RESUMO

A technique to improve the combustion performance of a hybrid rocket engine using a novel fuel grain structure is presented. This technique utilizes the different regression rates of acrylonitrile butadiene styrene and paraffin-based fuels, which increase the exchanges of both matter and energy by swirl flow and recirculation zones formed at the grooves between the adjacent vanes. The centrifugal casting technique is used to cast the paraffin-based fuel into an acrylonitrile butadiene styrene substrate made by three-dimensional printing. Using oxygen as the oxidizer, a series of tests were conducted to investigate the combustion performance of the novel fuel grain. In comparison to paraffin-based fuel grains, the fuel grain with a nested helical structure, which can be maintained throughout the combustion process, showed significant improvement in the regression rate and great potential in improvement of combustion efficiency.


Assuntos
Gasolina/análise , Astronave , Oxigênio/química , Parafina/química , Pressão , Análise de Regressão , Reologia , Emissões de Veículos
3.
Aerosp Med Hum Perform ; 92(2): 129-134, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33468296

RESUMO

INTRODUCTION: In the 1990s, Canada, member states of the European Space Agency, Japan, the Russian Federation, and the United States entered into an international agreement Concerning Cooperation on the Civil International Space Station. Among the many unique infrastructure challenges, partners were to develop a comprehensive international medical system and related processes to enable crew medical certification and medical support for all phases of missions, in a framework to support a multilateral space program of unprecedented size, scope, and degree of integration. During the Shuttle/Mir Program, physicians and specialized experts from the United States and Russia studied prototype systems and developed and operated collaborative mechanisms. The 1998 NASA Memoranda of Understanding with each of the other four partners established the Multilateral Medial Policy Board, the Multilateral Space Medicine Board, and the Multilateral Medical Operations Panel as medical authority bodies to ensure International Space Station (ISS) crew health and performance. Since 1998, the medical system of the ISS Program has ensured health and excellent performance of the international crewsan essential prerequisite for the construction and operation of the ISSand prevented mission-impacting medical events and adverse health outcomes. As the ISS is completing its second decade of crewed operation, it is prudent to appraise its established medical framework for its utility moving forward in new space exploration initiatives. Not only the ISS Program participants, but other nations and space agencies as well, concomitant with commercial endeavors in human spaceflight, can benefit from this evidence for future human exploration programs.Doarn CR, Polk JD, Grigoriev A, Comtois J-M, Shimada K, Weerts G, Dervay JP, Taddeo TA, Sargsyan A. A framework for multinational medical support for the International Space Station: a model for exploration. Aerosp Med Hum Perform. 2021; 92(2):129134.


Assuntos
Medicina Aeroespacial , Astronautas , Voo Espacial , Astronave , Canadá , Europa (Continente) , Humanos , Cooperação Internacional , Japão , Federação Russa , Estados Unidos
4.
Microbiome ; 9(1): 27, 2021 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-33487169

RESUMO

BACKGROUND: Human health is closely interconnected with its microbiome. Resilient microbiomes in, on, and around the human body will be key for safe and successful long-term space travel. However, longitudinal dynamics of microbiomes inside confined built environments are still poorly understood. Herein, we used the Hawaii Space Exploration Analog and Simulation IV (HI-SEAS IV) mission, a 1 year-long isolation study, to investigate microbial transfer between crew and habitat, in order to understand adverse developments which may occur in a future outpost on the Moon or Mars. RESULTS: Longitudinal 16S rRNA gene profiles, as well as quantitative observations, revealed significant differences in microbial diversity, abundance, and composition between samples of the built environment and its crew. The microbiome composition and diversity associated with abiotic surfaces was found to be rather stable, whereas the microbial skin profiles of individual crew members were highly dynamic, resulting in an increased microbiome diversity at the end of the isolation period. The skin microbiome dynamics were especially pronounced by a regular transfer of the indicator species Methanobrevibacter between crew members within the first 200 days. Quantitative information was used to track the propagation of antimicrobial resistance in the habitat. Together with functional and phenotypic predictions, quantitative and qualitative data supported the observation of a delayed longitudinal microbial homogenization between crew and habitat surfaces which was mainly caused by a malfunctioning sanitary facility. CONCLUSIONS: This study highlights main routes of microbial transfer, interaction of the crew, and origins of microbial dynamics in an isolated environment. We identify key targets of microbial monitoring, and emphasize the need for defined baselines of microbiome diversity and abundance on surfaces and crew skin. Targeted manipulation to counteract adverse developments of the microbiome could be a highly important strategy to ensure safety during future space endeavors. Video abstract.


Assuntos
Astronautas , Meio Ambiente Extraterreno , Microbiota , Pele/microbiologia , Voo Espacial , Astronave , Adulto , Ambiente Construído , Feminino , Hawaii , Humanos , Masculino , Microbiota/genética , RNA Ribossômico 16S/genética
5.
J Allergy Clin Immunol Pract ; 8(10): 3247-3250, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32971311

RESUMO

NASA implements required medical tests and clinical monitoring to ensure the health and safety of its astronauts. These measures include a pre-launch quarantine to mitigate the risk of infectious diseases. During space missions, most astronauts experience perturbations to their immune system that manifest as a detectable secondary immunodeficiency. On return to Earth, after the stress of re-entry and landing, astronauts would be most vulnerable to infectious disease. In April 2020, a crew returned from International Space Station to NASA Johnson Space Center in Houston, Texas, during the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. Post-flight quarantine protocols (both crew and contacts) were enhanced to protect this crew from SARS-CoV-2. In addition, specific additional clinical monitoring was performed to determine post-flight immunocompetence. Given that coronavirus disease 2019 (COVID-19) prognosis is more severe for the immunocompromised, a countermeasures protocol for spaceflight suggested by an international team of scientists could benefit terrestrial patients with secondary immunodeficiency.


Assuntos
Astronautas , Infecções por Coronavirus/prevenção & controle , Hospedeiro Imunocomprometido/imunologia , Pandemias/prevenção & controle , Pneumonia Viral/prevenção & controle , Quarentena/métodos , Voo Espacial , Estresse Fisiológico/imunologia , Betacoronavirus , Contagem de Linfócito CD4 , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Infecções por Coronavirus/imunologia , Suplementos Nutricionais , Terapia por Exercício , Fator Estimulador de Colônias de Granulócitos/uso terapêutico , Humanos , Imunoglobulina G/uso terapêutico , Interleucina-2/uso terapêutico , Política Organizacional , Pneumonia Viral/imunologia , Quarentena/organização & administração , Astronave , Texas , Estados Unidos , United States National Aeronautics and Space Administration
7.
PLoS One ; 15(8): e0237971, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32833977

RESUMO

Satellite-based methods are proposed for the estimation of clear day average hourly illuminance from satellite data under local climate conditions. First, aerosol optical depth (AOD) data collected using a ground-based sun photometer were used to calibrate the satellite remote sensing AOD data. Next, we screened for the factors affecting the illuminance of clear sky and detected three important factors, namely the sine of the solar altitude angle, aerosol optical thickness, and atmospheric precise water content. Finally, based on the AOD data of satellite remote sensing, combined with the local illumination data and meteorological data, a clear sky average hourly illumination model in Chongqing was established via the regression method. There was good agreement between the calculated and the measured values of clear day average hourly illuminance, with a root mean square difference and mean bias difference of 22% and -0.05%, respectively. The model was used to map clear day annual, quarterly, and monthly average hourly illuminance. The maps show the clear day annual, seasonal, and monthly variations of average hourly illuminance in Chongqing.


Assuntos
Poluição do Ar , Monitoramento Ambiental/estatística & dados numéricos , Luz , Fenômenos Ópticos , China , Cidades , Modelos Estatísticos , Estações do Ano , Astronave
9.
Artigo em Inglês | MEDLINE | ID: mdl-32664611

RESUMO

I would like to commend Prescott and Bland [...].


Assuntos
Planetas , Saúde Pública , Extinção Biológica , Astronave
11.
J Vis Exp ; (160)2020 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-32597841

RESUMO

Satellite observations offer a great approach to investigate the features of major marine parameters, including sea surface chlorophyll (CHL), sea surface temperature (SST), sea surface height (SSH), and factors derived from these parameters (e.g., fronts). This study shows a step-by-step procedure to use satellite observations to describe major parameters and their relationships in seasonal and anomalous fields. This method is illustrated using satellite datasets from 2002-2017 that were used to describe the surface features of the South China Sea (SCS). Due to cloud coverage, monthly averaged data were used in this study. The empirical orthogonal function (EOF) was applied to describe the spatial distribution and temporal variabilities of different factors. The monsoon wind dominates the variability in the basin. Thus, wind from the reanalysis dataset was used to investigate its driving force on different parameters. The seasonal variability in CHL was prominent and significantly correlated with other factors in a majority of the SCS. In winter, a strong northeast monsoon induces a deep mixed layer and high level of chlorophyll throughout the basin. Significant correlation coefficients were found among factors at the seasonal cycle. In summer, high CHL levels were mostly found in the western SCS. Instead of a seasonal dependence, the region was highly dynamic, and factors correlated significantly in anomalous fields such that unusually high CHL levels were associated with abnormally strong winds and intense frontal activities. The study presents a step-by-step procedure to use satellite observations to describe major parameters and their relationships in seasonal and anomalous fields. The method can be applied to other global oceans and will be helpful for understanding marine dynamics.


Assuntos
Clorofila/análise , Monitoramento Ambiental , Oceanos e Mares , Astronave , China , Estações do Ano , Temperatura , Vento
13.
Health Secur ; 18(2): 132-138, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32324071

RESUMO

The normal scope of an adequate public health response to released biological material is framed by working with biological vectors with known pathogenicity and virulence. Defining the scope of a response to the release of biological material with unknown pathogenicity and virulence enters into a novel and yet to be framed domain. A current case, in which extraterrestrial samples returned from a location such as Mars, which may harbor life as we know it, requires framing a public health response. An unintentional release of biological material with unknown pathogenicity and virulence may occur when biological containment mechanisms in the Earth-returning transport method are lost. This article raises initial public health and healthcare response questions during a return of extraterrestrial samples to Earth, in the event of its release from biological containment mechanisms: How does the public health community prepare for a response when there is release of samples that may contain potential extraterrestrial organisms from a planetary body or hardy terrestrial organisms surviving a round trip? If a mishap occurs during the return of these samples, what considerations need to be made to confine, decontaminate, and collect material in regions around the mishap? How will the public health community work with relevant government organizations to prepare the general public? The unknowns of exposure, potential extraterrestrial pathogenicity, and decontamination approaches underscore gaps in biopreparedness for this novel case from federal to local levels.


Assuntos
Contenção de Riscos Biológicos/métodos , Descontaminação/métodos , Exobiologia , Meio Ambiente Extraterreno , Contenção de Riscos Biológicos/normas , Descontaminação/normas , Planeta Terra , Contaminação de Equipamentos/prevenção & controle , Humanos , Astronave
14.
Water Res ; 177: 115787, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32315899

RESUMO

Space exploration is demanding longer lasting human missions and water resupply from Earth will become increasingly unrealistic. In a near future, the spacecraft water monitoring systems will require technological advances to promptly identify and counteract contingent events of waterborne microbial contamination, posing health risks to astronauts with lowered immune responsiveness. The search for bio-analytical approaches, alternative to those applied on Earth by cultivation-dependent methods, is pushed by the compelling need to limit waste disposal and avoid microbial regrowth from analytical carryovers. Prospective technologies will be selected only if first validated in a flight-like environment, by following basic principles, advantages, and limitations beyond their current applications on Earth. Starting from the water monitoring activities applied on the International Space Station, we provide a critical overview of the nucleic acid amplification-based approaches (i.e., loop-mediated isothermal amplification, quantitative PCR, and high-throughput sequencing) and early-warning methods for total microbial load assessments (i.e., ATP-metry, flow cytometry), already used at a high readiness level aboard crewed space vehicles. Our findings suggest that the forthcoming space applications of mature technologies will be necessarily bounded by a compromise between analytical performances (e.g., speed to results, identification depth, reproducibility, multiparametricity) and detrimental technical requirements (e.g., reagent usage, waste production, operator skills, crew time). As space exploration progresses toward extended missions to Moon and Mars, miniaturized systems that also minimize crew involvement in their end-to-end operation are likely applicable on the long-term and suitable for the in-flight water and microbiological research.


Assuntos
Voo Espacial , Água , Humanos , Estudos Prospectivos , Reprodutibilidade dos Testes , Astronave
15.
PLoS One ; 15(4): e0231838, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32348348

RESUMO

The International Space Station (ISS) is a complex built environment physically isolated from Earth. Assessing the interplay between the microbial community of the ISS and its crew is important for preventing biomedical and structural complications for long term human spaceflight missions. In this study, we describe one crewmember's microbial profile from body swabs of mouth, nose, ear, skin and saliva that were collected at eight different time points pre-, during and post-flight. Additionally, environmental surface samples from eight different habitable locations in the ISS were collected from two flights. Environmental samples from one flight were collected by the crewmember and samples from the next flight were collected after the crewmember departed. The microbial composition in both environment and crewmember samples was measured using shotgun metagenomic sequencing and processed using the Livermore Metagenomics Analysis Toolkit. Ordination of sample to sample distances showed that of the eight crew body sites analyzed, skin, nostril, and ear samples are more similar in microbial composition to the ISS surfaces than mouth and saliva samples; and that the microbial composition of the crewmember's skin samples are more closely related to the ISS surface samples collected by the crewmember on the same flight than ISS surface samples collected by other crewmembers on different flights. In these collections, species alpha diversity in saliva samples appears to decrease during flight and rebound after returning to Earth. This is the first study to compare the ISS microbiome to a crewmember's microbiome via shotgun metagenomic sequencing. We observed that the microbiome of the surfaces inside the ISS resemble those of the crew's skin. These data support future crew and ISS microbial surveillance efforts and the design of preventive measures to maintain crew habitat onboard spacecraft destined for long term space travel.


Assuntos
Astronautas , Sistemas Ecológicos Fechados , Microbiota/genética , Voo Espacial/instrumentação , Astronave , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , Monitoramento Ambiental/métodos , Humanos , Metagenoma/genética , Saliva/microbiologia , Pele/microbiologia , Fatores de Tempo
17.
PLoS One ; 15(2): e0227152, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32074104

RESUMO

The opportunistic pathogens Burkholderia cepacia and Burkholderia contaminans, both genomovars of the Burkholderia cepacia complex (BCC), are frequently cultured from the potable water dispenser (PWD) of the International Space Station (ISS). Here, we sequenced the genomes and conducted phenotypic assays to characterize these Burkholderia isolates. All recovered isolates of the two species fall within monophyletic clades based on phylogenomic trees of conserved single-copy core genes. Within species, the ISS-derived isolates all demonstrate greater than 99% average nucleotide identity (with 95-99% of genomes aligning) and share around 90% of the identified gene clusters from a pangenomic analysis-suggesting that the two groups are each composed of highly similar genomic lineages and their members may have all stemmed from the same two founding populations. The differences that can be observed between the recovered isolates at the pangenomic level are primarily located within putative plasmids. Phenotypically, macrophage intracellularization and lysis occurred at generally similar rates between all ISS-derived isolates, as well as with their respective type-terrestrial strain references. All ISS-derived isolates exhibited antibiotic sensitivity similar to that of the terrestrial reference strains, and minimal differences between isolates were observed. With a few exceptions, biofilm formation rates were generally consistent across each species. And lastly, though isolation date does not necessarily provide any insight into how long a given isolate had been aboard the ISS, none of the assayed physiology correlated with either date of isolation or distances based on nucleotide variation. Overall, we find that while the populations of Burkholderia present in the ISS PWS each maintain virulence, they are likely are not more virulent than those that might be encountered on planet and remain susceptible to clinically used antibiotics.


Assuntos
Infecções por Burkholderia/microbiologia , Burkholderia cepacia , Burkholderia , Água Potável/microbiologia , Filogenia , Astronave , Burkholderia/classificação , Burkholderia/isolamento & purificação , Burkholderia/patogenicidade , Burkholderia cepacia/classificação , Burkholderia cepacia/isolamento & purificação , Burkholderia cepacia/patogenicidade , Virulência
18.
Biol Pharm Bull ; 43(2): 254-257, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32009114

RESUMO

The space habitat is a confined environment with a simple ecosystem that consists mainly of microorganisms and humans. Changes in the pathogenicity and virulence of bacteria, as well as in astronauts' immune systems, during spaceflight may pose potential hazards to crew health. To ensure microbiological safety in the space habitat, a comprehensive analysis of environmental microbiota is needed to understand the overall microbial world in this habitat. The resulting data contribute to evidence-based microbial monitoring, and continuous microbial monitoring will provide information regarding changes in bioburden and microbial ecosystem; this information is indispensable for microbiological management. Importantly, the majority of microbes in the environment are difficult to culture under conventional culture conditions. To improve understanding of the microbial community in the space habitat, culture-independent approaches are required. Furthermore, there is a need to assess the bioburden and physiological activity of microbes during future long-term space habitation, so that the "alert" and/or "action" level can be assessed based on real-time changes in the microbial ecosystem. Here, we review the microbial monitoring in the International Space Station-Kibo, and discuss how these results will be adapted to the microbial control in space habitation and pharmaceutical and food processing industries.


Assuntos
Bactérias , Técnicas Bacteriológicas/métodos , Voo Espacial , Astronave , Microbiologia do Ar , Ecossistema , Humanos
19.
Acta Trop ; 205: 105398, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32068030

RESUMO

Mosquito-borne diseases affect millions of individuals worldwide; the area of endemic transmission has been increasing due to several factors linked to globalization, urban sprawl, and climate change. The Aedes aegypti mosquito plays a central role in the dissemination of dengue, Zika, chikungunya, and urban yellow fever. Current preventive measures include mosquito control programs; however, identifying high-risk areas for mosquito infestation over a large geographic region based only on field surveys is labor-intensive and time-consuming. Thus, the objective of this study was to assess the potential of remote satellite images (WorldView) for determining land features associated with Ae. aegypti adult infestations in São José do Rio Preto/SP, Brazil. We used data from 60 adult mosquito traps distributed along four summers; the remote sensing images were classified by land cover types using a supervised classification method. We modeled the number of Ae. aegypti using a Poisson probability distribution with a geostatistical approach. The models were constructed in a Bayesian context using the Integrated nested Laplace Approximations and Stochastic Partial Differential Equation method. We showed that an infestation of Ae. aegypti adult mosquitoes was positively associated with the presence of asbestos roofing and roof slabs. This may be related to several other factors, such as socioeconomic or environmental factors. The usage of asbestos roofing may be more prevalent in socioeconomically poor areas, while roof slabs may retain rainwater and contribute to the generation of temporary mosquito breeding sites. Although preliminary, our results demonstrate the utility of satellite remote sensing in identifying landscape differences in urban environments using a geostatistical approach, and indicated directions for future research. Further analyses including other variables, such as land surface temperature, may reveal more complex relationships between urban mosquito micro-habitats and land cover features.


Assuntos
Aedes/fisiologia , Distribuição Animal/fisiologia , Tecnologia de Sensoriamento Remoto , Astronave , Animais , Teorema de Bayes , Brasil , Mudança Climática , Humanos , Controle de Mosquitos , Estações do Ano , Temperatura
20.
Curr Issues Mol Biol ; 38: 33-52, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31967575

RESUMO

Since the early time of space travel, planetary bodies undergoing chemical or biological evolution have been of particular interest for life detection missions. NASA's and ESA's Planetary Protection offices ensure responsible exploration of the solar system and aim at avoiding inadvertent contamination of celestial bodies with biomolecules or even living organisms. Life forms that have the potential to colonize foreign planetary bodies could be a threat to the integrity of science objectives of life detection missions. While standard requirements for assessing the cleanliness of spacecraft are still based on cultivation approaches, several molecular methods have been applied in the past to elucidate the full breadth of (micro)organisms that can be found on spacecraft and in cleanrooms, where the hardware is assembled. Here, we review molecular assays that have been applied in Planetary Protection research and list their significant advantages and disadvantages. By providing a comprehensive summary of the latest molecular methods yet to be applied in this research area, this article will not only aid in designing technological roadmaps for future Planetary Protection endeavors but also help other disciplines in environmental microbiology that deal with low biomass samples.


Assuntos
Bactérias/isolamento & purificação , Sistemas Ecológicos Fechados , Microbiologia Ambiental , Meio Ambiente Extraterreno/química , Voo Espacial , Trifosfato de Adenosina/química , Bactérias/crescimento & desenvolvimento , Sobrevivência Celular , Genômica , Metagenômica , Microbiota , RNA Ribossômico/química , RNA Ribossômico/isolamento & purificação , Astronave/normas , Esporos/isolamento & purificação , Esterilização , Estados Unidos , United States National Aeronautics and Space Administration , Ausência de Peso
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...