Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35.203
Filtrar
1.
Ecotoxicol Environ Saf ; 208: 111747, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33396073

RESUMO

Residues of the psychoactive drug diazepam (DZP) may pose potential risks to fish in aquatic environments, especially by disrupting their behavioral traits. In this study, female and male zebrafish were subjected to chronic exposure (21 days) to sublethal doses (120 and 12 µg/L) of DZP, aimed to compare the characteristics of their behavioral responses to DZP exposure, and to investigate the possible links between those behavioral responses and variations in their brain γ-aminobutyric acid (GABA) and acetylcholinesterase (AChE) levels. Chronic exposure to DZP significantly decreased the swimming velocity and locomotor activity of both genders, indicating a typical sedative effect. Compared with males, whose locomotor activity was only significantly decreased by exposure to DZP for 21 days, females became hypoactive on day 14 (i.e., more sensitive), and they developed tolerance to the hypoactive effect induced by 120 µg/L DZP by day 21. Exposure to DZP significantly disturbed the behavioral traits related to social interactions in females but not in males. Those results indicate that DZP exhibits sex-dependent effects on the behaviors of fish. Moreover, exposure to DZP for 21 days significantly disturbed almost all of the tested behavioral traits associated with courtship when both genders were put together. Sex-dependent responses in brain GABA and AChE levels due to DZP exposure were also identified. Significant relationships between the brain GABA/AChE levels and some behavioral parameters related to locomotor activity were detected in females, but not in males.


Assuntos
Diazepam/toxicidade , Testes de Toxicidade Crônica , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/fisiologia , Acetilcolinesterase/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Diazepam/administração & dosagem , Feminino , Masculino , Atividade Motora/efeitos dos fármacos , Natação , Peixe-Zebra/metabolismo , Ácido gama-Aminobutírico/farmacologia
2.
Aquat Toxicol ; 230: 105694, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33316747

RESUMO

Psychotropics, especially benzodiazepines, are commonly prescribed worldwide. Poorly eliminated at wastewater treatment plants, they belong to a group of emerging contaminants. Due to their interaction with the GABAA receptor, they may affect the function of the nervous system of non-target organisms, such as aquatic organisms. The toxicity of oxazepam, a very frequently detected benzodiazepine in continental freshwater, has been largely studied in aquatic vertebrates over the last decade. However, its effects on freshwater non-vertebrates have received much less attention. We aimed to evaluate the long-term effects of oxazepam on the juvenile stage of a freshwater gastropod widespread in Europe, Radix balthica. Juveniles were exposed for a month to environmentally-relevant concentrations of oxazepam found in rivers (0.8 µg/L) and effluents (10 µg/L). Three main physiological functions were studied: feeding, growth, and locomotion. Additionally, gene expression analysis was performed to provide insights into toxicity mechanisms. There was a strong short-term activation of the feeding rate at low concentration, whereas the high dose resulted in long-term inhibition of food intake. A significant decrease in mortality rate was observed in juveniles exposed to the lowest dose. Shell growth and locomotor activity did not appear to be affected by oxazepam. Transcriptomic analysis revealed global over-expression of genes involved in the nervous regulation of the feeding, digestive, and locomotion systems after oxazepam exposure. The molecular analysis also revealed a possible interference of animal manipulation with the molecular effects induced by oxazepam exposure. Overall, these results improve our understanding of the effects of the psychoactive drug oxazepam on an aquatic mollusc gastropod.


Assuntos
Organismos Aquáticos/efeitos dos fármacos , Comportamento Alimentar/efeitos dos fármacos , Gastrópodes/efeitos dos fármacos , Oxazepam/toxicidade , Transcriptoma/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Organismos Aquáticos/genética , Organismos Aquáticos/crescimento & desenvolvimento , Relação Dose-Resposta a Droga , Gastrópodes/genética , Gastrópodes/crescimento & desenvolvimento , Atividade Motora/efeitos dos fármacos , Oxazepam/análise , Rios/química , Poluentes Químicos da Água/análise
3.
Int J Nanomedicine ; 15: 10113-10125, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33363370

RESUMO

Background: The excess production of reactive oxygen species (ROS) after traumatic spinal cord injury (TSCI) has been identified as a leading cause of secondary injury, which can significantly exacerbate acute damage in the injured spinal cord. Thus, scavenging of ROS has emerged as an effective route to ameliorate secondary spinal cord injury. Purpose: Selenium-doped carbon quantum dots (Se-CQDs) with the ability to scavenge reactive oxygen species were prepared and used for efficiently ameliorating secondary injury in TSCI. Methods: Water-soluble Se-CQDs were easily synthesized via hydrothermal treatment of l-selenocystine. The chemical structure, size, and morphology of the Se-CQDs were characterized in detail. The biocompatibility and protective effects of the Se-CQDs against H2O2-induced oxidative damage were investigated in vitro. Moreover, the behavioral test, bladder function, histological observation, Western blot were used to investigate the neuroprotective effect of Se-CQDs in a rat model of contusion TSCI. Results: The obtained Se-CQDs exhibited good biocompatibility and remarkable protective effect against H2O2-induced oxidative damage in astrocytes and PC12 cells. Moreover, Se-CQDs displayed marked anti-inflammatory and anti-apoptotic activities, which thereby reduced the formation of glial scars and increased the survival of neurons with unscathed myelin sheaths in vivo. As a result, Se-CQDs were capable of largely improving locomotor function of rats with TSCI. Conclusion: This study suggests that Se-CQDs can be used as a promising therapeutic platform for ameliorating secondary injury in TSCI.


Assuntos
Carbono/química , Pontos Quânticos/química , Espécies Reativas de Oxigênio/metabolismo , Selênio/farmacologia , Traumatismos da Medula Espinal/patologia , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Astrócitos/efeitos dos fármacos , Astrócitos/patologia , Modelos Animais de Doenças , Feminino , Camundongos , Atividade Motora/efeitos dos fármacos , Neuroglia/efeitos dos fármacos , Neuroglia/patologia , Neuroproteção/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Células PC12 , Pontos Quânticos/ultraestrutura , Ratos , Ratos Sprague-Dawley , Recuperação de Função Fisiológica/efeitos dos fármacos , Medula Espinal/efeitos dos fármacos , Medula Espinal/patologia , Medula Espinal/fisiopatologia , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/fisiopatologia
4.
Mar Drugs ; 18(12)2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33339145

RESUMO

Tobacco smoking has become a prominent health problem faced around the world. The α3ß4 nicotinic acetylcholine receptor (nAChR) is strongly associated with nicotine reward and withdrawal symptom. α-Conotoxin TxID, cloned from Conus textile, is a strong α3ß4 nAChR antagonist, which has weak inhibition activity of α6/α3ß4 nAChR. Meanwhile, its analogue [S9K]TxID only inhibits α3ß4 nAChR (IC50 = 6.9 nM), and has no inhibitory activity to other nAChRs. The present experiment investigates the effect of α3ß4 nAChR antagonists (TxID and [S9K]TxID) on the expression and reinstatement of nicotine-induced conditioned place preference (CPP) and explores the behaviors of acute nicotine in mice. The animal experimental results showed that TxID and [S9K] TxID could inhibit the expression and reinstatement of CPP, respectively. Moreover, both had no effect in acute nicotine experiment and the locomotor activity in mice. Therefore, these findings reveal that the α3ß4 nAChR may be a potential target for anti-nicotine addiction treatment. [S9K]TxID, α3ß4 nAChR antagonist, exhibit a superior effect for anti-nicotine addiction, which is promising to develop a novel smoking cessation drug.


Assuntos
Condicionamento Operante/efeitos dos fármacos , Conotoxinas/farmacologia , Nicotina/antagonistas & inibidores , Nicotina/farmacologia , Agonistas Nicotínicos/farmacologia , Antagonistas Nicotínicos/farmacologia , Animais , Conotoxinas/síntese química , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , Antagonistas Nicotínicos/síntese química , Receptores Nicotínicos/efeitos dos fármacos
5.
Arch Osteoporos ; 15(1): 154, 2020 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-33009959

RESUMO

The purpose was to determine if increasing serum 25(OH)D and calcium in postmenopausal women increased skeletal muscle size, strength, balance, and functional task performance while decreasing muscle fatigue. PCSA of the vastus lateralis increased and ascent of stairs time decreased after 6 months of increased serum 25(OH)D. PURPOSE: The Institute of Medicine recommends ≥ 20 ng/ml of serum 25-hydroxyvitamin D [25(OH)D] for bone and overall health. Serum 25(OH)D levels have been associated with physical performance, postural sway, and falls. The purpose of this study was to determine if increasing postmenopausal women's serum 25(OH)D levels from 20-30 ng/ml to 40-50 ng/ml improved skeletal muscle size, strength, balance, and functional performance while decreasing skeletal muscle fatigue. METHODS: Twenty-six post-menopausal women (60-85 years old) with baseline serum 25(OH)D levels between 20 and 30 ng/ml were recruited. Oral over-the-counter (OTC) vitamin D3 and calcium citrate were prescribed to increase subjects' serum 25(OH)D to levels between 40 and 50 ng/ml, serum calcium levels above 9.2 mg/dl, and PTH levels below 60 pg/ml, which were confirmed at 6 and 12 weeks. Outcome measures assessed at baseline and 6 months included muscle physiological cross-sectional area (PCSA), muscle strength, postural balance, time to perform functional tasks, and muscle fatigue. Repeated measures comparisons between baseline and follow-up were performed. RESULTS: Nineteen subjects completed the study. One individual could not afford the time commitment for the repeated measures. Three individuals did not take their vitamin D as recommended. Two subjects were lost to follow-up (lack of interest), and one did not achieve targeted serum 25(OH)D. Vastus lateralis PCSA increased (p = 0.007) and ascent of stair time decreased (p = 0.042) after 6 months of increasing serum 25(OH)D levels from 20-30 ng/ml to 40-50 ng/ml. Isometric strength was unchanged. Anterior-posterior center of pressure (COP) excursion and COP path length decreased (p < 0.1) albeit non-significantly, suggesting balance may improve from increased serum 25(OH)D and calcium citrate levels. CONCLUSIONS: Several measures of muscle structure and function were sensitive to elevated serum 25(OH)D and calcium levels indicating that further investigation of this phenomenon in post-menopausal women is warranted.


Assuntos
Citrato de Cálcio/administração & dosagem , Cálcio/sangue , Colecalciferol/administração & dosagem , Fadiga Muscular/efeitos dos fármacos , Força Muscular/efeitos dos fármacos , Pós-Menopausa/sangue , Deficiência de Vitamina D/prevenção & controle , Vitamina D/análogos & derivados , Absorciometria de Fóton/métodos , Idoso , Idoso de 80 Anos ou mais , Conservadores da Densidade Óssea/administração & dosagem , Conservadores da Densidade Óssea/uso terapêutico , Citrato de Cálcio/uso terapêutico , Colecalciferol/uso terapêutico , Relação Dose-Resposta a Droga , Feminino , Humanos , Pessoa de Meia-Idade , Atividade Motora/efeitos dos fármacos , Projetos Piloto , Análise e Desempenho de Tarefas , Resultado do Tratamento , Vitamina D/sangue , Deficiência de Vitamina D/sangue , Deficiência de Vitamina D/tratamento farmacológico , Vitaminas/administração & dosagem , Vitaminas/uso terapêutico
6.
Toxicol Lett ; 334: 102-109, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33002525

RESUMO

Beauvericin is an ubiquitous mycotoxin with relevant occurrence in food and feed. It causes a high toxicity in several cell lines, but its general mechanism of action is not fully understood and only limited in vivo studies have been performed. We used Caenorhabditis elegans as a model organism to investigate effects of beauvericin. The mycotoxin displays a moderate acute toxicity at 100 µM; at this concentration also reproductive toxicity occurred (reduction of total progeny to 32.1 %), developmental toxicity was detectable at 250 µM. However, even lower concentrations were capable to reduce stress resistance and life span of the nematode: A significant reduction was detected at 10 µM beauvericin (decrease in mean survival time of 4.3 % and reduction in life span of 12.9 %). An increase in lipofuscin fluorescence was demonstrated starting at 10 µM suggesting oxidative stress as a mechanism of beauvericin toxicity. Beauvericin (100 µM) increases the number of apoptotic germ cells comparable to the positive control UV-C (400 J/m2). Conclusion: Low concentrations of beauvericin are capable to cause adverse effects in C. elegans, which may be relevant for hazard identification of this compound.


Assuntos
Apoptose/efeitos dos fármacos , Caenorhabditis elegans/efeitos dos fármacos , Depsipeptídeos/toxicidade , Células Germinativas/efeitos dos fármacos , Lipofuscina/metabolismo , Longevidade/efeitos dos fármacos , Micotoxinas/toxicidade , Animais , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/metabolismo , Relação Dose-Resposta a Droga , Fertilidade/efeitos dos fármacos , Contaminação de Alimentos , Células Germinativas/patologia , Atividade Motora/efeitos dos fármacos , Testes de Toxicidade Aguda
7.
PLoS One ; 15(9): e0239473, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32997682

RESUMO

BACKGROUND: Fibromyalgia patients experience cardiovascular complications in addition to musculoskeletal pain. This study aimed to investigate the cardiac effects of a prolonged shallow water gait in a fibromyalgia-induced young mouse model. METHODS: To produce a fibromyalgia mouse model, wild-type mice were administered an intraperitoneal injection of reserpine once a day for three days, and two primary experiments were performed. First, three types of gait tests were performed before and after the reserpine injections as follows: (i) 5 minutes of free gait outside the water, (ii) 1 minute of free gait in shallow warm water, and (iii) 5 minutes of free gait in shallow warm water. Second, electrocardiogram recordings were taken before and after the three gait tests. The average heart rate and heart rate irregularity scores were analyzed. RESULTS: Exercise-induced cardiac arrhythmia was observed at 1-minute gait in shallow water during the acute stage of induced FM in young mice. Further, both cardiac arrhythmia and a decrease in HR have occurred at 5-minute gait in shallow water at the same mice. However, this phenomenon was not observed in the wild-type mice under any test conditions. CONCLUSION: Although a short-term free gait in shallow warm water may be advantageous for increasing the motor activity of FM-model mice, we should be aware of the risk of prolonged and excessive exercise-induced cardiac arrhythmia. For gait exercises in shallow water as a treatment in FM patients. We suggest a gradual increase in exercise duration may be warranted.


Assuntos
Arritmias Cardíacas/fisiopatologia , Fibromialgia/fisiopatologia , Condicionamento Físico Animal/fisiologia , Animais , Modelos Animais de Doenças , Marcha/fisiologia , Frequência Cardíaca/efeitos dos fármacos , Frequência Cardíaca/fisiologia , Masculino , Camundongos , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Reserpina/farmacologia
8.
Aquat Toxicol ; 228: 105611, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32949974

RESUMO

Bifenthrin is a pyrethroid insecticide commonly used in agricultural and urban sectors, and is found in watersheds worldwide. As a sodium channel blocker, at sublethal concentrations it causes off-target effects, including disruption of calcium signaling and neuronal growth. At the whole organism level, sublethal concentrations of bifenthrin cause behavioral effects in fish species, raising concerns about the neurotoxic properties of the compound on fish populations. Here we describe the application of a high-throughput behavioral system to evaluate contaminant impacts on the sensitive early-life stages of Delta smelt (Hypomesus transpacificus), a critically endangered teleost species endemic to the San Francisco Bay Delta (SFBD), California, USA. Leveraging the natural behavior of early-larval Delta smelt, whereby they increase movement in bright light and decrease movement in the dark, we developed a test using a cycle of light and dark periods in a closed chamber to test hyper- or hypoactivity for this species. We show that early-larval Delta smelt have a significant preference to move toward light, and utilized the behavioral test to evaluate the impact of exposure to bifenthrin at concentrations found in habitats where Delta smelt reportedly spawn, ranging up to concentrations detected in tributaries to these habitats. All tested concentrations of bifenthrin (nominal 2, 10, or 100 ng/L) caused hyperactivity, over a 96 h exposure, with noted significance determined during the light period of the test. To further understand the impact of bifenthrin exposure, expression of a suite of genes relevant to neurodevelopment, the mechanistic target of rapamycin (mTOR) signaling pathway, and biotransformation in exposed larvae were also measured. Following exposure to picomolar concentrations of bifenthrin, expression of genes in the mTOR signaling and neurogenesis pathways were altered alongside behavior. This study demonstrates how light and dark cycle behavioral tests can be used to assess sensitive alterations in swimming activity in Delta smelt at early developmental stages and how gene expression can complement these assays. This approach can be used to assess the impact of multiple compounds that occur within the restricted habitat of Delta smelt, thus having the potential to greatly inform conservation management strategies for this critically sensitive life stage.


Assuntos
Espécies em Perigo de Extinção , Larva/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Osmeriformes/crescimento & desenvolvimento , Piretrinas/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Relação Dose-Resposta a Droga , Ecossistema , Osmeriformes/fisiologia , Estações do Ano , Natação
9.
J Pharmacol Sci ; 144(3): 119-122, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32921392

RESUMO

Multiple sclerosis (MS) is a demyelinating disease of the central nervous system, characterized by apoptotic death of mature oligodendrocytes, neuroinflammation, and motor dysfunction. A pentacyclic triterpenoid compound, ursolic acid (UA), has various pharmacological activities, such as anti-inflammatory, anti-oxidative, and anti-apoptotic effects. In the present study, we investigated the effects of UA on cuprizone-induced demyelination, which is a model of MS. Oral administration of UA effectively suppressed cuprizone-induced demyelination and motor dysfunction via the enhancement of IGF-1 levels in the demyelinating lesions. Our results suggest that UA might be therapeutically useful for demyelination in MS.


Assuntos
Cuprizona/efeitos adversos , Doenças Desmielinizantes/tratamento farmacológico , Doenças Desmielinizantes/genética , Expressão Gênica/efeitos dos fármacos , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/metabolismo , Atividade Motora/efeitos dos fármacos , Atividade Motora/genética , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/genética , Triterpenos/administração & dosagem , Triterpenos/farmacologia , Regulação para Cima/efeitos dos fármacos , Administração Oral , Animais , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/fisiopatologia , Modelos Animais de Doenças , Camundongos , Esclerose Múltipla/induzido quimicamente , Esclerose Múltipla/fisiopatologia
10.
PLoS Med ; 17(9): e1003222, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32956407

RESUMO

BACKGROUND: Treatment with corticosteroids is recommended for Duchenne muscular dystrophy (DMD) patients to slow the progression of weakness. However, chronic corticosteroid treatment causes significant morbidities. Vamorolone is a first-in-class anti-inflammatory investigational drug that has shown evidence of efficacy in DMD after 24 weeks of treatment at 2.0 or 6.0 mg/kg/day. Here, open-label efficacy and safety experience of vamorolone was evaluated over a period of 18 months in trial participants with DMD. METHODS AND FINDINGS: A multicenter, open-label, 24-week trial (VBP15-003) with a 24-month long-term extension (VBP15-LTE) was conducted by the Cooperative International Neuromuscular Research Group (CINRG) and evaluated drug-related effects of vamorolone on motor outcomes and corticosteroid-associated safety concerns. The study was carried out in Canada, US, UK, Australia, Sweden, and Israel, from 2016 to 2019. This report covers the initial 24-week trial and the first 12 months of the VBP15-LTE trial (total treatment period 18 months). DMD trial participants (males, 4 to <7 years at entry) treated with 2.0 or 6.0 mg/kg/day vamorolone for the full 18-month period (n = 23) showed clinical improvement of all motor outcomes from baseline to month 18 (time to stand velocity, p = 0.012 [95% CI 0.010, 0.068 event/second]; run/walk 10 meters velocity, p < 0.001 [95% CI 0.220, 0.491 meters/second]; climb 4 stairs velocity, p = 0.001 [95% CI 0.034, 0.105 event/second]; 6-minute walk test, p = 0.001 [95% CI 31.14, 93.38 meters]; North Star Ambulatory Assessment, p < 0.001 [95% CI 2.702, 6.662 points]). Outcomes in vamorolone-treated DMD patients (n = 46) were compared to group-matched participants in the CINRG Duchenne Natural History Study (corticosteroid-naïve, n = 19; corticosteroid-treated, n = 68) over a similar 18-month period. Time to stand was not significantly different between vamorolone-treated and corticosteroid-naïve participants (p = 0.088; least squares [LS] mean 0.042 [95% CI -0.007, 0.091]), but vamorolone-treated participants showed significant improvement compared to group-matched corticosteroid-naïve participants for run/walk 10 meters velocity (p = 0.003; LS mean 0.286 [95% CI 0.104, 0.469]) and climb 4 stairs velocity (p = 0.027; LS mean 0.059 [95% CI 0.007, 0.111]). The vamorolone-related improvements were similar in magnitude to corticosteroid-related improvements. Corticosteroid-treated participants showed stunting of growth, whereas vamorolone-treated trial participants did not (p < 0.001; LS mean 15.86 [95% CI 8.51, 23.22]). Physician-reported incidences of adverse events (AEs) for Cushingoid appearance, hirsutism, weight gain, and behavior change were less for vamorolone than published incidences for prednisone and deflazacort. Key limitations to the study were the open-label design, and use of external comparators. CONCLUSIONS: We observed that vamorolone treatment was associated with improvements in some motor outcomes as compared with corticosteroid-naïve individuals over an 18-month treatment period. We found that fewer physician-reported AEs occurred with vamorolone than have been reported for treatment with prednisone and deflazacort, and that vamorolone treatment did not cause the stunting of growth seen with these corticosteroids. This Phase IIa study provides Class III evidence to support benefit of motor function in young boys with DMD treated with vamorolone 2.0 to 6.0 mg/kg/day, with a favorable safety profile. A Phase III RCT is underway to further investigate safety and efficacy. TRIAL REGISTRATION: Clinical trials were registered at www.clinicaltrials.gov, and the links to each trial are as follows (as provided in manuscript text): VBP15-002 [NCT02760264] VBP15-003 [NCT02760277] VBP15-LTE [NCT03038399].


Assuntos
Atividade Motora/efeitos dos fármacos , Distrofia Muscular de Duchenne/tratamento farmacológico , Pregnadienodiois/uso terapêutico , Corticosteroides/efeitos adversos , Criança , Pré-Escolar , Progressão da Doença , Glucocorticoides/efeitos adversos , Humanos , Masculino , Prednisona/uso terapêutico , Pregnadienodiois/metabolismo , Resultado do Tratamento , Caminhada/fisiologia
11.
Cerebrovasc Dis ; 49(4): 346-354, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32756048

RESUMO

BACKGROUND: Inflammatory response exerts an important role in ischemia/reperfusion (I/R) injury. TLR4 and myeloid differentiation factor 88 (MyD88) are key components in inflammation and are involved in the cerebral I/R injury. Irisin is a skeletal muscle-derived myokine produced after exercise, which was found to suppress inflammation. In this study, we investigated whether irisin could protect the brain from I/R injury through the TLR4/MyD88 pathway. METHODS: Male Sprague Dawley rats (20 months, 190 ∼ 240 g) were pretreated with irisin at 10, 50, or 100 mg/kg for consecutive 3 days and then subjected to surgery of middle cerebral artery occlusion or sham operation. Infarct size and neuron loss were measured to evaluate brain damage. The mRNA and protein levels of TLR4 and MyD88 were measured by in situ hybridization and immunohistochemistry, respectively. NF-κB activation was assessed by electrophoretic mobility shift assay. Neurological function was evaluated by neurobehavior score test and passive avoidance test. RESULTS: Irisin could reduce neuronal damage and neurofunctional impairment after I/R injury. This effect was mediated by downregulating the TLR4/MyD88 and inhibiting NF-κB activation. CONCLUSION: Irisin plays a beneficial effect in I/R injury through regulating the TLR4/MyD88 pathway.


Assuntos
Encéfalo/efeitos dos fármacos , Fibronectinas/farmacologia , Infarto da Artéria Cerebral Média/tratamento farmacológico , Fator 88 de Diferenciação Mieloide/metabolismo , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Traumatismo por Reperfusão/prevenção & controle , Receptor 4 Toll-Like/metabolismo , Animais , Aprendizagem da Esquiva/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/fisiopatologia , Modelos Animais de Doenças , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/patologia , Infarto da Artéria Cerebral Média/fisiopatologia , Masculino , Atividade Motora/efeitos dos fármacos , NF-kappa B/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Ratos Sprague-Dawley , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/fisiopatologia , Transdução de Sinais
12.
Life Sci ; 261: 118359, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32861795

RESUMO

AIMS: The aim of this study is to investigate the anxiolytic activity of perampanel, a non-competitive antagonist of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)-type glutamate receptors, which is approved for partial-onset seizures in patients with epilepsy, and its mechanism of action. MAIN METHODS: The anxiolytic activity of perampanel at the doses of 0.25, 0.5, 1, 2, and 4 mg/kg intraperitoneally (i.p.) was investigated in mice using elevated plus-maze, hole-board, and open-field tests. The findings were compared to the anxiolytic activity of gamma-aminobutyric acid type A benzodiazepine (GABAA/BZ) receptor allosteric modulator diazepam (1 mg/kg, i.p.) and AMPA antagonist GYKI-53655 (5 mg/kg, i.p.). The mechanisms of action of perampanel were evaluated by pre-treatment with GABAA/BZ receptor antagonist flumazenil (3 mg/kg, i.p.), serotonin 5-hydroxytryptamine 1A (5-HT1A) antagonist WAY-100635 (1 mg/kg, i.p.), and α2-adrenoreceptor antagonist yohimbine (5 mg/kg, i.p.). KEY FINDINGS: In the elevated plus-maze and open-field tests, perampanel at the dose of 0.5 mg/kg, and in the hole-board test, at the doses of 0.25, 0.5, and 1 mg/kg demonstrated an anxiolytic effect without altering the locomotor activity. The effect of perampanel was comparable to the effect of diazepam. Stimulation of GABAA/BZ and α2-adrenergic receptors contributed to the anxiolytic effect of perampanel, since significant antagonisms were determined in various behavioral parameters by the antagonist pre-treatments. SIGNIFICANCE: AMPA antagonism is believed to provide the determined anxiolytic activity of perampanel. Increased GABAergic tonus induced by AMPA receptor antagonism along with other systems, especially the noradrenergic system, might be involved in the anxiolytic activity.


Assuntos
Ansiolíticos/uso terapêutico , Ansiedade/tratamento farmacológico , Piridonas/uso terapêutico , Animais , Ansiolíticos/farmacologia , Ansiedade/fisiopatologia , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Atividade Motora/efeitos dos fármacos , Piridonas/farmacologia , Receptores Adrenérgicos alfa 2/metabolismo , Receptores de GABA/metabolismo
13.
PLoS One ; 15(7): e0235232, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32735618

RESUMO

The tamoxifen-dependent Cre/lox system in transgenic mice has become an important research tool across all scientific disciplines for manipulating gene expression in specific cell types. In these mouse models, Cre-recombination is not induced until tamoxifen is administered, which allows researchers to have temporal control of genetic modifications. Interestingly, tamoxifen has been identified as a potential therapy for spinal cord injury (SCI) and traumatic brain injury patients due to its neuroprotective properties. It is also reparative in that it stimulates oligodendrocyte differentiation and remyelination after toxin-induced demyelination. However, it is unknown whether tamoxifen is neuroprotective and neuroreparative when administration is delayed after SCI. To properly interpret data from transgenic mice in which tamoxifen treatment is delayed after SCI, it is necessary to identify the effects of tamoxifen alone on anatomical and functional recovery. In this study, female and male mice received a moderate mid-thoracic spinal cord contusion. Mice were then gavaged with corn oil or a high dose of tamoxifen from 19-22 days post-injury, and sacrificed 42 days post-injury. All mice underwent behavioral testing for the duration of the study, which revealed that tamoxifen treatment did not impact hindlimb motor recovery. Similarly, histological analyses revealed that tamoxifen had no effect on white matter sparing, total axon number, axon sprouting, glial reactivity, cell proliferation, oligodendrocyte number, or myelination, but tamoxifen did decrease the number of neurons in the dorsal and ventral horn. Semi-thin sections confirmed that axon demyelination and remyelination were unaffected by tamoxifen. Sex-specific responses to tamoxifen were also assessed, and there were no significant differences between female and male mice. These data suggest that delayed tamoxifen administration after SCI does not change functional recovery or improve tissue sparing in female or male mice.


Assuntos
Neurônios/efeitos dos fármacos , Remielinização/efeitos dos fármacos , Traumatismos da Medula Espinal/tratamento farmacológico , Tamoxifeno/administração & dosagem , Tempo para o Tratamento , Administração Oral , Animais , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Membro Posterior/inervação , Membro Posterior/fisiologia , Humanos , Masculino , Camundongos , Atividade Motora/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Oligodendroglia/efeitos dos fármacos , Recuperação de Função Fisiológica/efeitos dos fármacos , Fatores Sexuais , Corno Dorsal da Medula Espinal/citologia , Corno Dorsal da Medula Espinal/efeitos dos fármacos , Corno Ventral da Medula Espinal/citologia , Corno Ventral da Medula Espinal/efeitos dos fármacos
14.
J Thorac Cardiovasc Surg ; 160(2): e55-e66, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32689704

RESUMO

OBJECTIVES: This study aims to evaluate the protective effects of progesterone on white matter injury and brain immaturity in neonatal rats with chronic hypoxia. METHODS: Three-day old Sprague-Dawley rats were randomly divided into 3 groups: (1) control (n = 48), rats were exposed to normoxia (fraction of inspired oxygen: 21% ± 0%); (2) chronic hypoxia (n = 48), rats were exposed to hypoxia (fraction of inspired oxygen: 10.5% ± 1.0%); and (3) progesterone (n = 48), rats were exposed to hypoxia and administrated with progesterone (8 mg/kg/d). Hematoxylin-eosin staining, immunohistochemistry, real-time quantitative polymerase chain reaction, and Western blot analyses were compared on postnatal day 14 in different groups. Motor skill and coordination abilities of rats were assessed via rotation experiments. RESULTS: Increased brain weights (P < .05), narrowed ventricular sizes (P < .01), and rotarod experiment scores (P < .01) were better in the progesterone group than in the chronic hypoxia group. The number of mature oligodendrocytes and myelin basic protein expression increased in the progesterone group compared with the chronic hypoxia group (P < .01). The polarization of M1 microglia cells in the corpus callosum of chronic hypoxia-induced hypomyelination rats was significantly increased, whereas there were fewer M2 microglia cells. Conversely, progesterone therapy had an opposite effect and caused an increase in M2 microglia polarization versus a reduction in M1 microglia cells. CONCLUSIONS: Progesterone could prevent white matter injury and improve brain maturation in a neonatal hypoxic rat model; this may be associated with inducing a switch from M1 to M2 in microglia.


Assuntos
Encéfalo/efeitos dos fármacos , Hipóxia/tratamento farmacológico , Leucoencefalopatias/prevenção & controle , Fármacos Neuroprotetores/farmacologia , Progesterona/farmacologia , Substância Branca/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Comportamento Animal/efeitos dos fármacos , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Plasticidade Celular/efeitos dos fármacos , Doença Crônica , Modelos Animais de Doenças , Feminino , Hipóxia/metabolismo , Hipóxia/patologia , Hipóxia/fisiopatologia , Leucoencefalopatias/metabolismo , Leucoencefalopatias/patologia , Leucoencefalopatias/fisiopatologia , Masculino , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microglia/patologia , Atividade Motora/efeitos dos fármacos , Proteína Básica da Mielina/metabolismo , Oligodendroglia/efeitos dos fármacos , Oligodendroglia/metabolismo , Oligodendroglia/patologia , Ratos Sprague-Dawley , Substância Branca/metabolismo , Substância Branca/patologia , Substância Branca/fisiopatologia
15.
Life Sci ; 258: 118107, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32682919

RESUMO

Cognitive impairment has been widely recognized as a common symptom of chronic stress. Ginsenoside Rd (GRd), the major active compound in Panax ginseng, was previously reported in various neurological researches. However, little research is available regarding on the effect of GRd on cognitive improvement in mice subjected to chronic stress. In the present study, we investigated the neuroprotective effects of GRd in chronic restraint stress (CRS)-induced cognitive deficits and explored the potential mechanism in male C57BL/6J mice. Our results demonstrated that oral administration of GRd for 28 days markedly increased the spontaneous alternation in Y-maze and the relative discrimination index in novel object or location recognition tests following CRS. Additionally, GRd treatment considerably increased the antioxidant enzymes activities in the hippocampus. The expression levels of hippocampus and serum inflammation factors in the CRS groups were also counter-regulated by GRd treatment. Meanwhile, GRd treatment could reverse CRS-induced the decrease in phosphorylated phosphoinositide 3-kinase (PI3K), camp-reflecting element binding protein (CREB), brain-derived neurotrophic factor (BDNF) and tyrosine kinase B (TrkB) expression in the hippocampus. These findings provided evidences that GRd improves cognitive impairment in CRS mice by mitigating oxidative stress and inflammation, while upregulating the hippocampal BDNF-mediated CREB signaling pathway.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Ginsenosídeos/uso terapêutico , Restrição Física , Transdução de Sinais , Estresse Psicológico/tratamento farmacológico , Animais , Doença Crônica , Disfunção Cognitiva/sangue , Disfunção Cognitiva/fisiopatologia , Modelos Animais de Doenças , Ginsenosídeos/química , Ginsenosídeos/farmacologia , Hipocampo/efeitos dos fármacos , Hipocampo/enzimologia , Hipocampo/patologia , Hipocampo/fisiopatologia , Inflamação/sangue , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Memória de Curto Prazo/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Atividade Motora/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Receptor trkB/metabolismo , Transdução de Sinais/efeitos dos fármacos , Estresse Psicológico/sangue , Estresse Psicológico/fisiopatologia
16.
PLoS One ; 15(7): e0236251, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32692754

RESUMO

This study investigated the effects of kaempferol and zinc gluconate on neurobehavioural and oxidative stress changes in Wistar rats exposed to noise. Thirty (30) rats were randomly divided into five groups: Groups I and II were administered with deionized water (DW); Group III, kaempferol (K); Group IV, zinc gluconate (Zn); Group V, kaempferol + zinc gluconate. Groups II, III, IV, and V were subjected to noise stress (N) induced by exposing rats to 100 dB (4 h/day) for 15 days, from day 33 to day 48 after starting the drug treatments. Neuromuscular coordination, motor coordination, motor strength, sensorimotor reflex, and learning and memory, were evaluated using standard laboratory methods. Levels of nitric oxide (NO), malondialdehyde (MDA) and activities of glutathione peroxidase (GPx), catalase and superoxide dismutase (SOD) were evaluated in the hippocampus. Exposure of rats to noise, induced significant neurobehavioural deficits and oxidative stress while the combined administration of kaempferol and zinc gluconate significantly (P < 0.05) improved open-field performance, motor coordination, motor strength, sensorimotor reflex, and learning and memory. Co-administration of kaempferol and zinc gluconate ameliorated noise-induced oxidative stress as demonstrated by the significantly increased activities of GPx, catalase, and SOD, and decreased levels of NO and MDA (P < 0.05 and P < 0.01 respectively), compared to the DW + N group. Our results suggest that oxidative stress, evidenced by increased NO and MDA concentration and decreased activities of GPx, catalase and SOD, were involved in the molecular mechanism underlying neurobehavioural impairment in Wistar rats, exposed to noise stress. Single treatment of kaempferol exerted a more potent mitigative effect than zinc gluconate, while their combination produced an improved outcome.


Assuntos
Comportamento Animal/efeitos dos fármacos , Encéfalo/patologia , Gluconatos/farmacologia , Quempferóis/farmacologia , Ruído/efeitos adversos , Animais , Encéfalo/efeitos dos fármacos , Masculino , Malondialdeído/metabolismo , Memória/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Junção Neuromuscular/efeitos dos fármacos , Junção Neuromuscular/fisiopatologia , Óxido Nítrico/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos Wistar , Reflexo/efeitos dos fármacos , Zinco/farmacologia
17.
J Pharmacol Sci ; 144(1): 1-8, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32576439

RESUMO

Methamphetamine (METH) is a psychostimulant drug that acts on monoaminergic systems in the brain. There are several lines of evidence indicating the devastating effects of addictive drugs on the cerebellum. Moreover, it was shown that circular RNAs (circRNAs) have an important role in neurodegenerative disorders. Herein, we explored the effects of METH on neuronal degeneration, motor coordination and muscle activity. We also inspected METH-mediated changes in circRNA expression profiling in the cerebellum. Accordingly, exposure to METH triggered destructive effects on the coordination of movement of rats along with disturbed muscle activity. The fluorescent staining exhibited a significant increase in neurodegeneration in the cerebellum under the influence of METH. Besides, the number of calbindin positive Purkinje cells noticeably declined in METH-treated group compared with the control. In this regard, we identified and characterized differentially expressed (DE) circRNAs in the cerebellum under METH treatment, mainly located in dendritic spines. Moreover, based on feature and function analyzes of host genes of DE circRNAs, a large number of these genes were essentially involved in cell growth, death, inflammation and oxidative metabolism. Taken together, this data might imply the potential involvement of circRNAs in METH neurotoxicity as well as motor activity deficits.


Assuntos
Estimulantes do Sistema Nervoso Central/efeitos adversos , Cerebelo/metabolismo , Expressão Gênica/efeitos dos fármacos , Metanfetamina/efeitos adversos , Metanfetamina/toxicidade , Atividade Motora/efeitos dos fármacos , Degeneração Neural/induzido quimicamente , RNA Circular/genética , RNA Circular/metabolismo , Animais , Cerebelo/citologia , Masculino , Degeneração Neural/genética , Células de Purkinje/patologia , RNA Circular/fisiologia , Ratos Sprague-Dawley
18.
Life Sci ; 256: 117892, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32502538

RESUMO

BACKGROUND: Organophosphorus pesticides exert their toxic effects mainly by the inhibition of acetylcholinesterase (AChE), which is related to emotional disorders, such as depression. Atropine-oximes therapy is commonly used; however, the efficacy of oximes in the reactivation of AChE has been inconsistent. The objective of this study was to investigate the possible neuroprotective effect of (3Z)-5-Chloro-3-(hydroxyimino)indolin-2-one (Cℓ-HIN), a compound that combines the isatin and oxime functional groups, in rats exposed to malathion. The effect of Cℓ-HIN on the AChE activity and the BDNF-Trkß pathway in the prefrontal cortex of malathion-exposed rats were tested. METHODS: Wistar male rats were co-treated with Cℓ-HIN [50 mg/kg (p.o.) (3 mL/kg)] and/or malathion [250 mg/kg (i.p.) (5 mL/kg)] and performed behavioral tests twelve hours after these exposures. RESULTS: The Cℓ-HIN reversed the increased immobility time in the forced swimming test and the decreased grooming time in the splash test induced by malathion, but any significant difference was observed in locomotion analysis. These results demonstrate the antidepressant-like effect of Cℓ-HIN. The cortical AChE activity was reactivated by Cℓ-HIN in rats exposed to malathion. Malathion induced an increase in Trkß and a decrease in BDNF levels in the prefrontal cortex of rats, which were avoided by Cℓ-HIN. CONCLUSION: These findings support the hypothesis that Cℓ-HIN is an AChE reactivator with antidepressant-like properties, which is related to the improvement of BDNF-Trkß signaling after acute exposure to malathion in rats. Thus, the results allow suggesting the potential use of Cℓ-HIN as an oxime-based therapy against the neurotoxic effects of malathion.


Assuntos
Acetilcolinesterase/metabolismo , Antidepressivos/farmacologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Indóis/farmacologia , Malation/toxicidade , Oxindois/farmacologia , Receptor trkB/metabolismo , Transdução de Sinais , Animais , Antidepressivos/administração & dosagem , Antidepressivos/química , Antidepressivos/uso terapêutico , Comportamento Animal/efeitos dos fármacos , Depressão/tratamento farmacológico , Indóis/administração & dosagem , Indóis/química , Indóis/uso terapêutico , Masculino , Atividade Motora/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Oxindois/administração & dosagem , Oxindois/química , Oxindois/uso terapêutico , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos
19.
Life Sci ; 256: 117959, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32531375

RESUMO

Resveratrol has the ability to promote functional recovery after sciatic nerve crush injury (SNCI), though the mechanism through which this occurs in not fully understood. Resveratrol can promote autophagy, a key process in Wallerian degeneration; thus, we hypothesized that resveratrol could promote recovery from SNCI by promoting Schwann cell autophagy and acceleration of Wallerian degeneration. Motor function recovery was assessed by calculating Sciatic Function Indexes (SFIs) at days 7, 14, 21, 28 post SNCI. Autophagy and myelin clearance were assessed by microtubule-associated protein light chain 3B (LC3B) and myelin protein zero (MPZ) immunofluorescence and Western blot analysis on the fourth day after SNCI. The autophagy of Schwann cells following resveratrol administration was quantified by immunofluorescence in RSC96 cells. Immunofluorescence and Transmission electron microscopy (TEM) were also used in Resveratrol treated sciatic nerve four days post-SNCI to find LC3B positive areas and typical double membrane structures represent for autophagy. The SNCI+resveratrol (crush+Res) groups recovered faster than the SNCI+vehicles (crush+V) group. On day four, almost all of the myelin had regenerated in the crush+Res rats, while the crush+V group's myelin remained intact and the expression levels of LC3-II/I was the highest. On day 28 post-injury, both the control and crush+Res groups' myelin neurofibers reached peak numbers as did the thickness of the myelin sheath. Both in vitro and in vivo immunofluorescence showed that LC3B was colocalized with Schwann cells. This is the first study to observe that resveratrol can promote recovery from SCNI by accelerating the myelin clearance process by promoting autophagy of Schwann cells.


Assuntos
Autofagia/efeitos dos fármacos , Lesões por Esmagamento/fisiopatologia , Compressão Nervosa , Recuperação de Função Fisiológica/efeitos dos fármacos , Resveratrol/farmacologia , Células de Schwann/patologia , Nervo Isquiático/patologia , Nervo Isquiático/fisiopatologia , Animais , Axônios/efeitos dos fármacos , Axônios/patologia , Lesões por Esmagamento/patologia , Masculino , Proteínas Associadas aos Microtúbulos/metabolismo , Atividade Motora/efeitos dos fármacos , Proteína P0 da Mielina/metabolismo , Bainha de Mielina/efeitos dos fármacos , Bainha de Mielina/metabolismo , Fibras Nervosas/efeitos dos fármacos , Fibras Nervosas/patologia , Regeneração Nervosa/efeitos dos fármacos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Células de Schwann/efeitos dos fármacos , Células de Schwann/metabolismo , Nervo Isquiático/efeitos dos fármacos
20.
Artigo em Inglês | MEDLINE | ID: mdl-32479008

RESUMO

Glutamatergic N-methyl-D-aspartate (NMDA) receptors have critical roles in several neurological and psychiatric diseases. Dizocilpine (MK-801) is a ligand at phencyclidine recognition sites that is associated with NMDA receptor-coupled cation channels, where it acts as a potent noncompetitive antagonist of central glutamate receptors. In this study, we investigate the effect of clozapine on MK-801-induced neurochemical and neurobehavioral alterations in the prefrontal cortex of mice. Acute administration of NMDA noncompetitive antagonist MK-801 impairs motor coordination, grip strength, and locomotor activity. Clozapine is the only medication that is indicated for treating refractory schizophrenia, due to its superior efficacy among all antipsychotic agents; however, its mechanism is not well understood. To understand its mechanism, we investigated the effects of clozapine on motor coordination, locomotor activity, and grip strength in mice against the NMDA receptor antagonist MK-801. MK-801 induced elevations in acetylcholinesterase (AChE) activity, monoamine oxidase (MAO) activity, and c-fos expression. The administration of clozapine inhibited the effects caused by MK-801 (0.2 mg/kg body weight). Motor coordination and grip strength paradigms that had been altered by MK-801 were restored by clozapine. Moreover, clozapine also ameliorated MK-801-induced elevation in AChE and MAO activity. Our immunostaining results demonstrated that clozapine treatment reduced overexpression of the neuronal activity marker c-fos in cortices of the brain. Results of the current study determine that clozapine ameliorated cognition in MK-801-treated mice via cholinergic and neural mechanisms. These findings show that clozapine possesses the potential to augment cognition in diseases such as schizophrenia.


Assuntos
Clozapina/farmacologia , Maleato de Dizocilpina/toxicidade , Aprendizagem/efeitos dos fármacos , Memória/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Esquizofrenia/tratamento farmacológico , Antagonistas da Serotonina/farmacologia , Animais , Antipsicóticos/farmacologia , Antagonistas de Aminoácidos Excitatórios/toxicidade , Masculino , Camundongos , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/fisiopatologia , Esquizofrenia/induzido quimicamente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA