Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.768
Filtrar
1.
Stem Cell Res Ther ; 14(1): 321, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37936229

RESUMO

BACKGROUND: Macrophage polarization has been observed in the process of muscle injuries including rotator cuff (RC) muscle atrophy and fatty infiltration after large tendon tears. In our previous study, we showed that fibrogenesis and white adipogenesis of muscle residential fibro/adipogenic progenitors (FAPs) cause fibrosis and fatty infiltration and that brown/beige adipogenesis of FAPs promotes rotator cuff muscle regeneration. However, how polarized macrophages and their exosomes regulate FAP differentiation remains unknown. METHODS: We cultured FAPs with M0, M1, and M2 macrophages or 2 × 109 exosomes derived from M0, M1 and M2 with and without GW4869, an exosome inhibitor. In vivo, M0, M1, and M2 macrophages were transplanted or purified macrophage exosomes (M0, M1, M2) were injected into supraspinatus muscle (SS) after massive tendon tears in mice (n = 6). SS were harvested at six weeks after surgery to evaluate the level of muscle atrophy and fatty infiltration. RESULTS: Our results showed that M2 rather than M0 or M1 macrophages stimulates brown/beige fat differentiation of FAPs. However, the effect of GW4869, the exosome inhibitor, diminished this effect. M2 exosomes also promoted FAP Beige differentiation in vitro. The transplantation of M2 macrophages reduced supraspinatus muscle atrophy and fatty infiltration. In vivo injections of M2 exosomes significantly reduced muscle atrophy and fatty infiltration in supraspinatus muscle. CONCLUSION: Results from our study demonstrated that polarized macrophages directly regulated FAP differentiation through their exosomes and M2 macrophage-derived exosomes may serve as a novel treatment option for RC muscle atrophy and fatty infiltration.


Assuntos
Adipogenia , Exossomos , Camundongos , Animais , Manguito Rotador/patologia , Manguito Rotador/cirurgia , Atrofia Muscular/patologia , Macrófagos
2.
J Physiol Sci ; 73(1): 28, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37950170

RESUMO

Duchenne muscular dystrophy (DMD) is an inherited disorder with mutations in the dystrophin gene characterized by progressive muscle degeneration and weakness. Therapy such as administration of glucocorticoids, exon skipping of mutant genes and introduction of dystrophin mini-genes have been tried, but there is no radical therapy for DMD. In this study, we used C. elegans carrying mutations in the dys-1 gene as a model of DMD to examine the effects of febuxostat (FBX). We applied FBX to dys-1 mutant animals harboring a marker for muscle nuclei and mitochondria, and found that FBX ameliorates the muscle loss. We next used a severer model dys-1; unc-22 double mutant and found the dys-1 mutation causes a weakened muscle contraction. We applied FBX and other compounds to the double mutant animals and assayed the movement. We found that the administration of FBX in combination of uric acid has the best effects on the DMD model.


Assuntos
Proteínas de Caenorhabditis elegans , Transtornos dos Movimentos , Animais , Distrofina/genética , Caenorhabditis elegans/genética , Febuxostat/farmacologia , Proteínas de Caenorhabditis elegans/genética , Músculos/patologia , Transtornos dos Movimentos/patologia , Atrofia Muscular/patologia
3.
Int J Mol Sci ; 24(21)2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37958769

RESUMO

Mammalian hibernation is composed of multiple episodes of torpor bout, separated by phases of interbout arousal. During torpor, the skeletal muscles of mammals are undoubtedly inactive, but it has been proven to mitigate disuse atrophy. While interbout arousal has been implicated in the prevention of muscle atrophy, the underlying mechanisms sustaining muscle contraction remain to be explored. In the present study, Daurian ground squirrels (Spermophilus dauricus) were divided into four groups: pre-hibernation (PRE), torpor (TOR), interbout arousal (IBA), and post-hibernation (POST). The contractile performance of slow-twitch soleus muscle (SOL) and fast-twitch extensor digitorum longus muscle (EDL) was detected both in situ and in vitro. Concurrently, mitochondrial respiratory chain complex activity in these muscles was quantified. Our findings revealed that in situ contractile properties of both muscles, including force, power output, time duration, and force development/relaxation rates of twitch contraction, and force and power output of tetanic contraction declined in the TOR group compared to the PRE group, but improved in the IBA and POST groups. Fatigue resistance of muscles, determined by the power output of repetitive tetanic contractions in situ, decreased in the TOR group but recovered in the IBA and POST groups. In vitro studies demonstrated that tetanic contraction power output in isolated muscles increased with muscle temperature in both TOR and IBA groups. However, at the same temperature, power output was consistently lower in the TOR group compared to the IBA group. Moreover, the activity of the mitochondrial respiratory chain complex, especially Complexes I and II, decreased in the TOR group but showed recovery in the IBA and POST groups. These findings suggest that both the contractile performance and fatigue resistance of mammalian skeletal muscle are compromised during torpor but can be improved during interbout arousal and post-hibernation. The rebound in body temperature and rise in mitochondrial respiratory chain complex activity in skeletal muscle are involved in enhancing contractile performance and fatigue resistance. This study suggests that interbout arousal functions as a vital temporal interval during which skeletal muscles can transition from the inactivity induced by torpor to a state of restored contractile functionality. Thus, interbout arousal serves as a behavioral safeguard against disuse-induced damage to skeletal muscles during hibernation.


Assuntos
Músculo Esquelético , Sciuridae , Animais , Sciuridae/fisiologia , Músculo Esquelético/patologia , Atrofia Muscular/patologia , Contração Muscular , Nível de Alerta/fisiologia
4.
Exp Gerontol ; 183: 112318, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37913946

RESUMO

Sarcopenia involves in the loss of muscle mass associated with aging, which is the major cause of progressive muscle weakness and deterioration in older adults. Muscle atrophy is a direct presentation of sarcopenia, and it greatly contributes to the decline in quality of life among older adults. Neuromuscular junction (NMJ) stability is the key link to maintain muscle function. Besides, the degenerative change of NMJ promotes the process of muscle atrophy in the elderly. Based on previous transcriptome sequencing and bioinformatics analyses of aged muscle, this study used the 18-month-old aged mouse model and the 6-month-old young mouse model to deliberate the role and underlying mechanisms of Cullin-3 (Cul3) in age-related muscle atrophy. The results of reverse transcriptase polymerase chain reaction (RT-PCR) and immunoblotting analysis showed that the expression of CUL3 increased in aged muscle tissue, while the expression level of postsynaptic membrane nicotinic acetylcholine receptors (nAChRs) decreased significantly, which manfested a negative correlation. Meanwhile, immunofluorescence demonstrated that Cul3 was highly expressed in senile muscle NMJ. The results of ubiquitin indicated that the ubiquitin level of aged muscle nAChRs was evidently increased. Co-immunoprecipitation furtherly verified the correlation between Cul3 and nAChRs. Taken together, Cul3 may mediate the ubiquitination degradation of nAChRs protein at the NMJ site in aged mice, leading to NMJ degeneration and accelerated atrophy of fast-twitch muscle fibers in aged muscle. As a prominent element to maintain the stability of NMJ, Cul3 is supposed to be one of candidate intervention targets in sarcopenia.


Assuntos
Receptores Nicotínicos , Sarcopenia , Animais , Camundongos , Proteínas Culina/genética , Proteínas Culina/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/patologia , Junção Neuromuscular/fisiologia , Qualidade de Vida , Receptores Nicotínicos/metabolismo , Sarcopenia/patologia , Ubiquitinação , Ubiquitinas/metabolismo
5.
Int J Mol Sci ; 24(19)2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37834190

RESUMO

Mice are commonly used to study mandibular dynamics due to their similarity in chewing cycle patterns with humans. Adult mice treated unilaterally with botulinum toxin type A (BoNTA) in the masseter exhibit atrophy of this muscle characterized by an increase in the gene expression of atrophy-related molecular markers, and a reduction in both muscle fiber diameter and muscle mass at 14d. However, the impact of this muscle imbalance on the non-treated masticatory muscles remains unexplored. Here, we hypothesize that the unilateral masseter hypofunction leads to molecular and 3D morphometric signs of atrophy of the masseter and its agonist masticatory muscles in adult mice. Twenty-three 8-week-old male BALB/c mice received a single injection of BoNTA in the right masseter, whereas the left masseter received the same volume of saline solution (control side). Animals were euthanized at 2d, 7d, and 14d, and the masticatory muscles were analyzed for mRNA expression. Five heads were harvested at 14d, fixed, stained with a contrast-enhanced agent, and scanned using X-ray microtomography. The three-dimensional morphometric parameters (the volume and thickness) from muscles in situ were obtained. Atrogin-1/MAFbx, MuRF-1, and Myogenin mRNA gene expression were significantly increased at 2 and 7d for both the masseter and temporalis from the BoNTA side. For medial pterygoid, increased mRNA gene expression was found at 7d for Atrogin-1/MAFbx and at 2d-7d for Myogenin. Both the volume and thickness of the masseter, temporalis, and medial pterygoid muscles from the BoNTA side were significantly reduced at 14d. In contrast, the lateral pterygoid from the BoNTA side showed a significant increase in volume at 14d. Therefore, the unilateral hypofunction of the masseter leads to molecular and morphological signs of atrophy in both the BoNTA-injected muscle and its agonistic non-injected masticatory muscles. The generalized effect on the mouse masticatory apparatus when one of its components is intervened suggests the need for more clinical studies to determine the safety of BoNTA usage in clinical dentistry.


Assuntos
Toxinas Botulínicas Tipo A , Músculos da Mastigação , Adulto , Humanos , Camundongos , Masculino , Animais , Miogenina , Músculo Masseter/patologia , Músculo Masseter/fisiologia , Atrofia Muscular/patologia , RNA Mensageiro
6.
Nat Commun ; 14(1): 6581, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37853001

RESUMO

A comprehensive atlas of cis-regulatory elements and their dynamic activity is necessary to understand the transcriptional basis of cellular structure maintenance, metabolism, and responses to the environment. Here we show, using matched single-nucleus chromatin accessibility and RNA-sequencing from juvenile male C57BL6 mice, an atlas of accessible chromatin regions in both normal and denervated skeletal muscles. We identified cell-type-specific cis-regulatory networks, highlighting the dynamic regulatory circuits mediating transitions between myonuclear types. Through comparison of normal and perturbed muscle, we delineated the reprogramming of cis-regulatory networks in response to denervation, described the interplay of promoters/enhancers and target genes. We further unveil a hierarchical structure of transcription factors that delineate a regulatory network in atrophic muscle, identifying ELK4 as a key atrophy-related transcription factor that instigates muscle atrophy through TGF-ß1 regulation. This study furnishes a rich genomic resource, essential for decoding the regulatory dynamics of skeletal muscle in both physiological and pathological states.


Assuntos
Músculo Esquelético , Atrofia Muscular , Camundongos , Masculino , Animais , Camundongos Endogâmicos C57BL , Atrofia Muscular/patologia , Músculo Esquelético/metabolismo , Cromatina/genética , Cromatina/metabolismo , Regulação da Expressão Gênica , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
7.
Int J Biol Sci ; 19(15): 4898-4914, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37781506

RESUMO

Skeletal muscle wasting related to aging or pathological conditions is critically associated with the increased incidence and prevalence of secondary diseases including cardiovascular diseases, metabolic syndromes, and chronic inflammations. Much effort is made to develop agents to enhance muscle metabolism and function. Inonotus obliquus (I. obliquus; IO) is a mushroom popularly called chaga and has been widely employed as a folk medicine for inflammation, cardiovascular diseases, diabetes, and cancer in Eastern Europe and Asia. However, its effect on muscle health has not been explored. Here, we aimed to investigate the beneficial effect of IO extract in muscle regeneration and metabolism. The treatment of IO in C2C12 myoblasts led to increased myogenic differentiation and alleviation of dexamethasone-induced myotube atrophy. Network pharmacological analysis using the identified specific chemical constituents of IO extracts predicted protein kinase B (AKT)-dependent mechanisms to promote myogenesis and muscle regeneration. Consistently, IO treatment resulted in the activation of AKT, which suppressed muscle-specific ubiquitin E3 ligases induced by dexamethasone. IO treatment in mice improved the regeneration of cardiotoxin-injured muscles accompanied by elevated proliferation and differentiation of muscle stem cells. Furthermore, it elevated the mitochondrial content and muscle oxidative metabolism accompanied by the induction of peroxisome proliferator-activated receptor γ coactivator α (PGC-1α). Our current data suggest that IO is a promising natural agent in enhancing muscle regenerative capacity and oxidative metabolism thereby preventing muscle wasting.


Assuntos
Doenças Cardiovasculares , Proteínas Proto-Oncogênicas c-akt , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Doenças Cardiovasculares/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/etiologia , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Estresse Oxidativo , Dexametasona/farmacologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo
8.
JCI Insight ; 8(22)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37815864

RESUMO

Aging and many illnesses and injuries impair skeletal muscle mass and function, but the molecular mechanisms are not well understood. To better understand the mechanisms, we generated and studied transgenic mice with skeletal muscle-specific expression of growth arrest and DNA damage inducible α (GADD45A), a signaling protein whose expression in skeletal muscle rises during aging and a wide range of illnesses and injuries. We found that GADD45A induced several cellular changes that are characteristic of skeletal muscle atrophy, including a reduction in skeletal muscle mitochondria and oxidative capacity, selective atrophy of glycolytic muscle fibers, and paradoxical expression of oxidative myosin heavy chains despite mitochondrial loss. These cellular changes were at least partly mediated by MAP kinase kinase kinase 4, a protein kinase that is directly activated by GADD45A. By inducing these changes, GADD45A decreased the mass of muscles that are enriched in glycolytic fibers, and it impaired strength, specific force, and endurance exercise capacity. Furthermore, as predicted by data from mouse models, we found that GADD45A expression in skeletal muscle was associated with muscle weakness in humans. Collectively, these findings identify GADD45A as a mediator of mitochondrial loss, atrophy, and weakness in mouse skeletal muscle and a potential target for muscle weakness in humans.


Assuntos
Músculo Esquelético , Atrofia Muscular , Humanos , Camundongos , Animais , Músculo Esquelético/metabolismo , Atrofia Muscular/patologia , Mitocôndrias/metabolismo , Debilidade Muscular/metabolismo , Envelhecimento , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo
9.
Biomed Res ; 44(5): 199-207, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37779032

RESUMO

Myogenesis is required to generate skeletal muscle tissue and to maintain skeletal muscle mass. Decreased myogenesis under various pathogenic conditions results in muscular atrophy. Through a small screening of Japanese traditional (Kampo) medicines, hachimijiogan (HJG) was shown to promote the myogenic differentiation of C2C12 myoblasts through the upregulation of myogenin. In tumor-bearing cancer-cachectic mice, HJG was also found to have a protective effect against cancer-cachectic muscle wasting. This effect was significant when HJG was administered in combination with aerobic exercise by treadmill running. Moreover, HJG ameliorated the cellular atrophy of C2C12 myotubes induced by treatment with conditioned medium derived from a colon-26 cancer cell culture. In addition, HJG suppressed H2O2-dependent myotube atrophy, suggesting that HJG could reverse the atrophic phenotypes by eliminating reactive oxygen species.


Assuntos
Caquexia , Medicina Kampo , Neoplasias , Síndrome de Emaciação , Animais , Camundongos , Neoplasias do Colo/tratamento farmacológico , Peróxido de Hidrogênio/efeitos adversos , Peróxido de Hidrogênio/farmacologia , Fibras Musculares Esqueléticas/patologia , Músculo Esquelético/patologia , Atrofia Muscular/tratamento farmacológico , Atrofia Muscular/etiologia , Atrofia Muscular/patologia , Caquexia/etiologia , Síndrome de Emaciação/etiologia , Neoplasias/complicações , Desenvolvimento Muscular/genética , Desenvolvimento Muscular/fisiologia
10.
Int Immunopharmacol ; 124(Pt A): 110883, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37666067

RESUMO

Diabetes accelerates muscle atrophy, leading to the deterioration of skeletal muscles. This study aimed to assess the potential of the ß2-adrenoceptor agonist, salbutamol (SLB), to alleviate muscle atrophy in streptozotocin (STZ)-induced diabetic rats. Male Sprague Dawley rats were randomized into four groups (n=6): control, SLB, STZ (55 mg/kg, single i.p.), and STZ + SLB (6 mg/kg, orally for 4 weeks). After the final SLB dose, animals underwent tests to evaluate muscle strength and coordination, including forelimb grip strength, wire-hanging, actophotometer, rotarod, and footprint assessments. Rats were then sacrificed, and serum and gastrocnemius (GN) muscles were collected for further analysis. Serum evaluations included proinflammatory markers (tumor necrosis factor α, interleukin-1ß, interleukin-6), muscle markers (creatine kinase, myostatin), testosterone, and lipidemic markers. Muscle oxidative stress (malonaldehyde, protein carbonyl), antioxidants (glutathione, catalase, superoxide dismutase), and histology were also performed. Additionally, 1H nuclear magnetic resonance serum profiling was conducted. SLB notably enhanced muscle grip strength, coordination, and antioxidant levels, while reduced proinflammatory markers and oxidative stress in STZ-induced diabetic rats. Reduced serum muscle biomarkers, increased testosterone, restored lipidemic levels, and improved muscle cellular architecture indicated SLB's positive effect on muscle condition in diabetic rats. Metabolomics profiling revealed that the STZ group significantly increased the phenylalanine-to-tyrosine ratio (PTR), lactate-to-pyruvate ratio (LPR), acetate, succinate, isobutyrate, and histidine. SLB administration restored these perturbed serum metabolites in the STZ-induced diabetic group. In conclusion, salbutamol significantly protected against skeletal muscle wasting in STZ-induced diabetic rats.


Assuntos
Diabetes Mellitus Experimental , Ratos , Masculino , Animais , Ratos Sprague-Dawley , Estreptozocina , Diabetes Mellitus Experimental/metabolismo , Antioxidantes/farmacologia , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Estresse Oxidativo , Músculo Esquelético/patologia , Testosterona/metabolismo
11.
Biomed Pharmacother ; 167: 115517, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37738794

RESUMO

Skeletal muscle, the largest organ in the human body, plays a crucial role in supporting and defending the body and is essential for movement. It also participates in regulating the processes of protein synthesis and degradation. Inhibition of protein synthesis and activation of degradation metabolism can both lead to the development of skeletal muscle atrophy, a pathological condition characterized by a decrease in muscle mass and fiber size. Many physiological and pathological conditions can cause a decline in muscle mass, but the underlying mechanisms of its pathogenesis remain incompletely understood, and the selection of treatment strategies and efficacy evaluations vary. Moreover, the early symptoms of this condition are often not apparent, making it easily overlooked in clinical practice. Therefore, it is necessary to develop and use cell models to understand the etiology and influencing factors of skeletal muscle atrophy. In this review, we summarize the methods used to construct skeletal muscle cell models, including hormone, inflammation, cachexia, genetic engineering, drug, and physicochemical models. We also analyze, compare, and evaluate the various construction and assessment methods.


Assuntos
Músculo Esquelético , Atrofia Muscular , Humanos , Atrofia Muscular/patologia , Músculo Esquelético/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Caquexia/patologia , Biossíntese de Proteínas
12.
Am J Physiol Cell Physiol ; 325(5): C1276-C1293, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37746697

RESUMO

Disuse-induced muscle atrophy is a common clinical problem observed mainly in older adults, intensive care units patients, or astronauts. Previous studies presented biological sex divergence in progression of disuse-induced atrophy along with differential changes in molecular mechanisms possibly underlying muscle atrophy. The aim of this study was to perform transcriptomic profiling of male and female mice during the onset and progression of unloading disuse-induced atrophy. Male and female mice underwent hindlimb unloading (HU) for 24, 48, 72, and 168 h (n = 8/group). Muscles were weighed for each cohort and gastrocnemius was used for RNA-sequencing analysis. Females exhibited muscle loss as early as 24 h of HU, whereas males after 168 h of HU. In males, pathways related to proteasome degradation were upregulated throughout 168 h of HU, whereas in females these pathways were upregulated up to 72 h of HU. Lcn2, a gene contributing to regulation of myogenesis, was upregulated by 6.46- to 19.86-fold across all time points in females only. A reverse expression of Fosb, a gene related to muscle degeneration, was observed between males (4.27-fold up) and females (4.57-fold down) at 24-h HU. Mitochondrial pathways related to tricarboxylic acid (TCA) cycle were highly downregulated at 168 h of HU in males, whereas in females this downregulation was less pronounced. Collagen-related pathways were consistently downregulated throughout 168 h of HU only in females, suggesting a potential biological sex-specific protective mechanism against disuse-induced fibrosis. In conclusion, females may have protection against HU-induced skeletal muscle mitochondrial degeneration and fibrosis through transcriptional mechanisms, although they may be more vulnerable to HU-induced muscle wasting compared with males.NEW & NOTEWORTHY Herein, we have assessed the transcriptomic response across biological sexes during the onset and progression of unloading disuse-induced atrophy in mice. We have demonstrated an inverse expression of Fosb between males and females, as well as differentially timed patterns of expressing atrophy-related pathways between sexes that are concomitant to the accelerated atrophy in females. We also identified in females signs of mechanisms to combat disuse-induced mitochondrial degeneration and fibrosis.


Assuntos
Elevação dos Membros Posteriores , Transcriptoma , Humanos , Camundongos , Masculino , Feminino , Animais , Idoso , Elevação dos Membros Posteriores/fisiologia , Músculo Esquelético/metabolismo , Atrofia Muscular/patologia , Fibrose , Membro Posterior/metabolismo
13.
Muscle Nerve ; 68(6): 886-893, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37772693

RESUMO

INTRODUCTION/AIMS: Effective strategies for rapid recovery after surgery are needed. Therefore, we investigated the effects of exercise prehabilitation (EP) and hindlimb unloading (HU) on muscle loss and contractility. METHODS: Twenty-two Sprague-Dawley rats (12 wk old) were divided into normal control (NCON, n = 5), hindlimb unloading control (HCON, n = 10), and exercise prehabilitation followed by hindlimb unloading (Ex-preH, n = 7) groups. Ex-PreH performed exercise training for 14 days before hindlimb unloading for 14 days. Body composition was evaluated, along with muscle strength and function. The soleus (SOL) and extensor digitorum longus (EDL) muscle contractile properties were analyzed at the whole-muscle level. The titin concentration and myosin heavy chain (MHC) type composition were analyzed. RESULTS: There were no effects of Ex-preH on total mass, lean mass, or muscle weight. Physical function was significantly higher in the Ex-preH group than in the HCON group (39.5° vs. 35.7°). The SOL twitch force (19.6 vs. 7.1 mN/m2 ) and specific force (107.3 vs. 61.2 mN/m2 ) were greater in Ex-preH group than in HCON group. EDL shortening velocity was higher in Ex-preH group than in HCON group (13.2 vs. 5.0 FL/s). The SOL full-length titin level was higher in Ex-preH group than in HCON group. DISCUSSION: Exercise prehabilitation did not prevent muscle mass loss followed by muscle wasting, although it minimized the reduction of physical function. Therefore, exercise prehabilitation should be considered for rapid functional recovery after disuse due to surgery and injuries.


Assuntos
Elevação dos Membros Posteriores , Exercício Pré-Operatório , Humanos , Ratos , Animais , Ratos Sprague-Dawley , Conectina , Elevação dos Membros Posteriores/efeitos adversos , Elevação dos Membros Posteriores/fisiologia , Atrofia Muscular/etiologia , Atrofia Muscular/prevenção & controle , Atrofia Muscular/patologia , Músculo Esquelético , Membro Posterior
14.
ACS Biomater Sci Eng ; 9(10): 5782-5792, 2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-37769114

RESUMO

The high retear rate after a successful repair of the rotator cuff (RC) is a major clinical challenge. Muscle atrophy and fat accumulation of RC muscles over time adversely affect the rate of retear. Since current surgical techniques do not improve muscle degenerative conditions, new treatments are being developed to reduce muscle atrophy and fat accumulation. In the previous study, we have shown the efficacy of aligned electroconductive nanofibrous fabricated by coating poly(3,4-ethylene dioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) nanoparticles onto aligned poly(ε-caprolactone) (PCL) electrospun nanofibers (PEDOT:PSS matrix) to reduce muscle atrophy in acute and subacute models of RC tears (RCTs). In this study, we further evaluated the efficacy of the PEDOT:PSS matrix to reduce muscle atrophy and fat accumulation in a rat model of chronic massive full-thickness RCTs (MRCTs). The matrices were transplanted on the myotendinous junction to the belly of the supraspinatus and infraspinatus muscles at 16 weeks after MRCTs. The biomechanics and histological assessments showed the potential of the PEDOT:PSS matrix to suppress the progression of muscle atrophy, fat accumulation, and fibrosis in both supraspinatus and infraspinatus muscles at 24 and 32 weeks after MRCTs. We also demonstrated that the PEDOT:PSS matrix implantation significantly improved the tendon morphology and tensile properties compared with current surgical techniques.


Assuntos
Lesões do Manguito Rotador , Ratos , Animais , Lesões do Manguito Rotador/cirurgia , Lesões do Manguito Rotador/patologia , Ombro/patologia , Manguito Rotador/cirurgia , Manguito Rotador/patologia , Atrofia Muscular/patologia , Tendões/patologia
15.
Semin Nephrol ; 43(2): 151409, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37611335

RESUMO

Muscle wasting (ie, atrophy) is a serious consequence of chronic kidney disease (CKD) that reduces muscle strength and function. It reduces the quality of life for CKD patients and increases the risks of comorbidities and mortality. Current treatment strategies to prevent or reverse skeletal muscle loss are limited owing to the broad and systemic nature of the initiating signals and the multifaceted catabolic mechanisms that accelerate muscle protein degradation and impair protein synthesis and repair pathways. Recent evidence has shown how organs such as muscle, adipose, and kidney communicate with each other through interorgan exchange of proteins and RNAs during CKD. This crosstalk changes cell functions in the recipient organs and represents an added dimension in the complex processes that are responsible for muscle atrophy in CKD. This complexity creates challenges for the development of effective therapies to ameliorate muscle wasting and weakness in patients with CKD.


Assuntos
Qualidade de Vida , Insuficiência Renal Crônica , Humanos , Atrofia Muscular/etiologia , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Insuficiência Renal Crônica/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Proteólise
16.
BMC Musculoskelet Disord ; 24(1): 632, 2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37542244

RESUMO

BACKGROUND: Recent studies have shown that immobilization enhances reactive oxygen species (ROS) production and mitophagy activity in atrophic skeletal muscle. However, there are relatively few studies examining the biological changes and underlying mechanisms of skeletal muscle during remobilization. In this study, we aimed to investigate the effects of remobilization on skeletal muscle and explore the role of BNIP3-dependent mitophagy in this process. METHODS: Thirty rats were randomly divided into six groups based on immobilization and remobilization time: control (C), immobilization for two weeks (I-2w), and remobilization for one day (R-1d), three days (R-3d), seven days (R-7d), and two weeks (R-2w). At the end of the experimental period, the rectus femoris muscles were removed and weighed, and the measurements were expressed as the ratio of muscle wet weight to body weight (MWW/BW). Sirius Red staining was performed to calculate the values of cross-sectional area (CSA) of rectus femoris. Oxidative fluorescent dihydroethidium was used to evaluate the production of ROS, and the levels of superoxide dismutase (SOD) were also detected. The morphological changes of mitochondria and the formation of mitophagosomes in rectus femoris were examined and evaluated by transmission electron microscope. Immunofluorescence was employed to detect the co-localization of BNIP3 and LC3B, while Western blot analysis was performed to quantify the levels of proteins associated with mitophagy and mitochondrial biogenesis. The total ATP content of the rectus femoris was determined to assess mitochondrial function. RESULTS: Within the first three days of remobilization, the rats demonstrated decreased MWW/BW, CSA, and ATP concentration, along with increased ROS production and HIF-1α protein levels in the rectus femoris. Results also indicated that remobilization triggered BNIP3-dependent mitophagy, supported by the accumulation of mitophagosomes, the degradation of mitochondrial proteins (including HSP60 and COX IV), the elevation of BNIP3-dependent mitophagy protein markers (including BNIP3, LC3B-II/LC3B-I, and Beclin-1), and the accumulation of puncta representing co-localization of BNIP3 with LC3B. Additionally, PGC-1α, which is involved in the regulation of mitochondrial biogenesis, was upregulated within the first seven days of remobilization to counteract this adverse effect. CONCLUSION: Our findings suggested that BNIP3-denpendent mitophagy was sustained activated at the early stages of remobilization, and it might contribute to the worsening of skeletal muscle atrophy.


Assuntos
Mitofagia , Atrofia Muscular , Ratos , Animais , Mitofagia/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Atrofia Muscular/etiologia , Atrofia Muscular/patologia , Músculo Esquelético/patologia , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/farmacologia , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/farmacologia
17.
PLoS One ; 18(8): e0289185, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37582074

RESUMO

Early detection of skeletal muscle atrophy is important to prevent further muscle weakness. However, there are few non-invasive biomarkers for skeletal muscle atrophy. Recent studies have reported that the N-terminal fragment (N-titin) of titin, a giant sarcomeric protein, is detected in the urine of patients with muscle damage. In this study, we hypothesized that urinary N-titin would be a potential early biomarker of skeletal muscle atrophy in mice caused by sciatic nerve denervation. Male mice were randomly divided into control and denervation groups, and urinary N-titin levels were assessed daily for 9 days using an enzyme-linked immunosorbent assay system. Despite reduced titin protein levels in atrophic muscles 10 days after denervation, cleaved N-titin fragments were not increased in the urine of mice with denervation-induced muscle atrophy. Furthermore, we found no uptake of Evans blue dye from the extracellular space into the cytoplasm in atrophic muscles, suggesting that the sarcomeric membrane is intact in those muscles. The present results suggest that cleaved N-titin in the urine is not suitable as an early biomarker of skeletal muscle atrophy.


Assuntos
Denervação Muscular , Músculo Esquelético , Camundongos , Masculino , Animais , Conectina/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/patologia , Biomarcadores/metabolismo , Denervação/efeitos adversos , Proteínas Quinases/metabolismo
18.
Am J Sports Med ; 51(12): 3251-3260, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37621014

RESUMO

BACKGROUND: Progressive fatty infiltration and muscle atrophy after rotator cuff tears lead to tendon repair failure and poor outcomes. Fibro-adipogenic progenitors (FAPs) are involved in fatty infiltration and muscle homeostasis of skeletal muscle. Inducing FAP differentiation into brown adipocyte-like "beige adipocytes" suppresses fatty infiltration and muscle atrophy. HYPOTHESIS: Parathyroid hormone (PTH) suppresses fatty infiltration and muscle atrophy after rotator cuff tears in a rat model by browning of FAPs. STUDY DESIGN: Controlled laboratory study. METHODS: PTH was administered subcutaneously for 4 or 8 weeks to a rotator cuff tear model in rats. After treatment, fatty infiltration of supraspinatus muscles was assessed using Oil Red O staining and muscle atrophy using wet muscle weight and muscle fiber cross-sectional area. Costaining of platelet-derived growth factor receptor α (FAP marker) and uncoupling protein 1 (browning marker) was performed to confirm FAP browning by PTH. Mouse-isolated FAPs were cultured with PTH and evaluated for browning-related gene expression and adipogenic differentiation using BODIPY staining. Myogenic differentiation of C2C12 myoblasts was evaluated using coculture of PTH-treated browning FAPs with C2C12. RESULTS: PTH inhibited fatty infiltration after rotator cuff tear at 8 weeks. Rotator cuff wet muscle loss of PTH-treated rats was inhibited at 4 and 8 weeks. Furthermore, PTH-treated rats demonstrated larger myofiber cross-sectional area than did untreated rats at 4 and 8 weeks. Costaining indicated colocalization of platelet-derived growth factor receptor α and uncoupling protein 1 and promoted PTH-induced FAP browning. PTH increased the expression of browning-related genes in FAPs and suppressed fat droplet accumulation in vitro. Coculture with PTH-treated FAPs promoted C2C12 cell differentiation into myotubes. CONCLUSION: PTH induced FAP-derived beige adipocytes by upregulating browning-related gene expression, and the browning effect of PTH on FAPs inhibited fatty infiltration and muscle atrophy in the rat rotator cuff tear model. PTH might have potential as a therapeutic drug for fatty infiltration and muscle atrophy after rotator cuff tears. CLINICAL RELEVANCE: PTH may expand treatment options for rotator cuff tears by reducing fatty infiltration and muscle atrophy after rotator cuff tears by browning of FAPs.


Assuntos
Lesões do Manguito Rotador , Camundongos , Ratos , Animais , Lesões do Manguito Rotador/patologia , Roedores/metabolismo , Proteína Desacopladora 1 , Manguito Rotador/patologia , Atrofia Muscular/tratamento farmacológico , Atrofia Muscular/patologia , Receptores do Fator de Crescimento Derivado de Plaquetas/metabolismo , Tecido Adiposo/patologia
19.
J Cachexia Sarcopenia Muscle ; 14(5): 2076-2089, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37448295

RESUMO

BACKGROUND: Skeletal muscle mass and strength diminish during periods of disuse but recover upon return to weight bearing in healthy adults but are incomplete in old muscle. Efforts to improve muscle recovery in older individuals commonly aim at increasing myofibrillar protein synthesis via mammalian target of rapamycin (mTOR) stimulation despite evidence demonstrating that old muscle has chronically elevated levels of mammalian target of rapamycin complex 1 (mTORC1) activity. We hypothesized that protein synthesis is higher in old muscle than adult muscle, which contributes to a proteostatic stress that impairs recovery. METHODS: We unloaded hindlimbs of adult (10-month) and old (28-month) F344BN rats for 14 days to induce atrophy, followed by reloading up to 60 days with deuterium oxide (D2 O) labelling to study muscle regrowth and proteostasis. RESULTS: We found that old muscle has limited recovery of muscle mass during reloading despite having higher translational capacity and myofibrillar protein synthesis (0.029 k/day ± 0.002 vs. 0.039 k/day ± 0.002, P < 0.0001) than adult muscle. We showed that collagen protein synthesis was not different (0.005 k (1/day) ± 0.0005 vs. 0.004 k (1/day) ± 0.0005, P = 0.15) in old compared to adult, but old muscle had higher collagen concentration (4.5 µg/mg ± 1.2 vs. 9.8 µg/mg ± 0.96, P < 0.01), implying that collagen breakdown was slower in old muscle than adult muscle. This finding was supported by old muscle having more insoluble collagen (4.0 ± 1.1 vs. 9.2 ± 0.9, P < 0.01) and an accumulation of advanced glycation end products (1.0 ± 0.06 vs. 1.5 ± 0.08, P < 0.001) than adult muscle during reloading. Limited recovery of muscle mass during reloading is in part due to higher protein degradation (0.017 1/t ± 0.002 vs. 0.028 1/t ± 0.004, P < 0.05) and/or compromised proteostasis as evidenced by accumulation of ubiquitinated insoluble proteins (1.02 ± 0.06 vs. 1.22 ± 0.06, P < 0.05). Last, we showed that synthesis of individual proteins related to protein folding/refolding, protein degradation and neural-related biological processes was higher in old muscle during reloading than adult muscle. CONCLUSIONS: Our data suggest that the failure of old muscle to recover after disuse is not due to limitations in the ability to synthesize myofibrillar proteins but because of other impaired proteostatic mechanisms (e.g., protein folding and degradation). These data provide novel information on individual proteins that accumulate in protein aggregates after disuse and certain biological processes such as protein folding and degradation that likely play a role in impaired recovery. Therefore, interventions to enhance regrowth of old muscle after disuse should be directed towards the identified impaired proteostatic mechanisms and not aimed at increasing protein synthesis.


Assuntos
Atrofia Muscular , Transtornos Musculares Atróficos , Humanos , Ratos , Animais , Idoso , Atrofia Muscular/patologia , Envelhecimento/fisiologia , Músculo Esquelético/patologia , Transtornos Musculares Atróficos/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Colágeno/metabolismo , Mamíferos
20.
Mitochondrion ; 72: 33-58, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37451353

RESUMO

Skeletal muscle, which accounts for approximately 40% of total body weight, is one of the most dynamic and plastic tissues in the human body and plays a vital role in movement, posture and force production. More than just a component of the locomotor system, skeletal muscle functions as an endocrine organ capable of producing and secreting hundreds of bioactive molecules. Therefore, maintaining healthy skeletal muscles is crucial for supporting overall body health. Various pathological conditions, such as prolonged immobilization, cachexia, aging, drug-induced toxicity, and cardiovascular diseases (CVDs), can disrupt the balance between muscle protein synthesis and degradation, leading to skeletal muscle atrophy. Mitochondrial dysfunction is a major contributing mechanism to skeletal muscle atrophy, as it plays crucial roles in various biological processes, including energy production, metabolic flexibility, maintenance of redox homeostasis, and regulation of apoptosis. In this review, we critically examine recent knowledge regarding the causes of muscle atrophy (disuse, cachexia, aging, etc.) and its contribution to CVDs. Additionally, we highlight the mitochondrial signaling pathways involvement to skeletal muscle atrophy, such as the ubiquitin-proteasome system, autophagy and mitophagy, mitochondrial fission-fusion, and mitochondrial biogenesis. Furthermore, we discuss current strategies, including exercise, mitochondria-targeted antioxidants, in vivo transfection of PGC-1α, and the potential use of mitochondrial transplantation as a possible therapeutic approach.


Assuntos
Caquexia , Atrofia Muscular , Humanos , Caquexia/metabolismo , Caquexia/patologia , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Músculo Esquelético/metabolismo , Mitocôndrias/metabolismo , Antioxidantes/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...