RESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Zhimu-Huangbo (ZB) herb pair is a common prescription drug used by physicians of all dynasties, and has significant neuroprotective effect, such as the ZB can significantly promote neuronal cell regeneration, repair neuronal damage, and improve cognitive disorders. However, its ingredients are urgently needed to be identified and mechanisms is remained unclear. AIM OF THE STUDY: Using ultra performance liquid chromatography-quadrupole-time of flight-mass spectrometry (UPLC-Q-TOF-MS), the study of neuroprotective mechanism of Zhimu-Huangbo extract (ZBE) is investigated, and the network pharmacology technology and experimental validation is also performed. MATERIAL AND METHODS: Firstly, UPLC-Q-TOF-MS technology was used to characterize the chemical components contained in the ZBE. After that, the TCMSP database and the Swiss Target Prediction method were used to search for potential target genes for ZBE compounds. At the same time, the OMIM and GeneCards disease databases were used to search for Alzheimer's disease (AD) targets and expanded with the GEO database. Then, GO and KEGG enrichment analysis was performed using OECloud tools. Subsequently, the potential mechanism of ZBE therapeutic AD predicted by network pharmacological analysis was experimentally studied and verified in vitro. RESULTS: In the UPLC-Q-TOF-MS analysis of the ZBE, a total of 39 compounds were characterized including Neomangiferin, Oxyberberine, Timosaponin D, Berberine, Timosaponin A-III, Anemarsaponin E, Timosaponin A-I, Smilagenin and so on. A total of 831 potential targets and 13995 AD-related target genes were screened. A further analysis revealed the number of common targets between ZBE and AD is 698. Through GO and KEGG enrichment analysis, we found that ZBE's anti-AD targets were significantly enriched in autophagy and mitochondrial autophagy related pathways. The results of cell experiments also confirmed that ZBE can promote mitochondrial autophagy induced by D-galactose (D-gal) HT22 cells through the PTEN-induced kinase 1/Parkin (PINK1/Parkin) pathway. CONCLUSION: ZBE can promote autophagy of mitochondria and play a protective role on damaged neurons.
Assuntos
Doença de Alzheimer , Medicamentos de Ervas Chinesas , Fármacos Neuroprotetores , Humanos , Fármacos Neuroprotetores/farmacologia , Galactose , Neuroproteção , Autofagia , Mitocôndrias , Medicamentos de Ervas Chinesas/farmacologia , Simulação de Acoplamento MolecularRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Polycystic ovary syndrome (PCOS) is a common gynecological endocrine and metabolic disorder. Chinese herbal medicine has some advantages in the treatment of PCOS with its unique theoretical system and rich clinical practice experiences. AIM OF THE STUDY: The present study was to investigate the potential mechanisms of Bu-Shen-Jian-Pi Formula (BSJPF) on the treatment of PCOS. MATERIAL AND METHODS: The combination of ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC/Q-TOF-MS/MS) rapid analysis, network pharmacology, molecular docking analysis and bio-experiments were firstly conducted to identify the main effective components of BSJPF, and to predict the potential mechanisms. The ovarian granulosa cell line (KGN) was treated with testosterone to construct the PCOS model in vitro, and the cells were further treated with the lyophilized powder of BSJPF. The levels of proliferation, autophagy and apoptosis were detected to explore the mechanisms of BSJPF on treating PCOS. RESULTS: Firstly, thirty-six active compounds were identified in BSJPF and thirty-one potential targets on PCOS were found. Then, PI3K and PDK1 were verified to have good binding activity with the active compounds through molecular docking analysis. In bio-experiments, BSJPF significantly alleviated the arrested proliferation of KGN cells in G0/G1 phase and reduced the active levels of autophagy and apoptosis of KGN cells induced by testosterone. Additionally, the inhibition of autophagy diminished apoptosis, while the repression apoptosis enhanced autophagy. Finally, BSJPF significantly decreased the FOXO1 expression levels induced by testosterone, especially for nuclear FOXO1, and significantly activated the PI3K/AKT pathway. CONCLUSIONS: BSJPF significantly alleviated the activated autophagy and apoptosis in KGN induced by testosterone through PI3K/AKT1/FOXO1pathway, which is an effective treatment for PCOS.
Assuntos
Medicamentos de Ervas Chinesas , Síndrome do Ovário Policístico , Feminino , Humanos , Testosterona , Medicamentos de Ervas Chinesas/farmacologia , Fosfatidilinositol 3-Quinases , Simulação de Acoplamento Molecular , Síndrome do Ovário Policístico/tratamento farmacológico , Espectrometria de Massas em Tandem , Células da Granulosa , Apoptose , Autofagia , Bussulfano , Proteína Forkhead Box O1 , Proteínas Proto-Oncogênicas c-aktRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Wuzi Yanzong Prescription (WZ), a classic traditional Chinese medicine formula, has the properties of kidney nourishing and essence strengthening, and it is widely used to treat male infertility with a long history. Sertoli cells are injured with aging, resulting in testicular dysfunction, and WZ effectively rejuvenates the age-related decline of testicular function. However, whether the therapeutic effects of WZ on aging-related testicular dysfunction are dependent on the restoration of Sertoli cell function remains unclear. AIM OF THE STUDY: In a mouse model of natural aging, we explored the protective effects of WZ and its potential mechanisms. MATERIALS AND METHODS: Fifteen-month-old C57BL/6 mice were randomized to receive either standard diet or WZ (2 and 8 g/kg) for 3 months. Meanwhile, 10 1-month-old mice were considered the adult control group and received standard diet for 3 months. The testis and epididymis were rapidly collected, and the sperm quality, testicular histology, Sertoli cell numbers, tight junction (TJ) ultrastructure, and blood-testis barrier-associated protein expression and localization were assessed. RESULTS: WZ significantly increased sperm concentration and sperm viability, improved the degenerative histomorphology and elevated the seminiferous epithelium height. Furthermore, WZ increased the number of Sertoli cells, restored the ultrastructure of the Sertoli cell TJ, and upregulated the expression of TJ-associated proteins (zonula occludens-1 and Claudin11), ectoplasm specialized-associated proteins (N-Cadherin, E-Cadherin and ß-Catenin), and gap junction-associated protein (connexin 43), but did not affect the expression of Occludin and cytoskeletal protein (Vimentin). In addition, WZ did not change the localization of zonula occludens-1 and ß-Catenin in aged testis. Moreover, WZ increased the expression of autophagy-associated proteins (light chain 3 beta and autophagy related 5) and decreased the expression of p62, phosphorylated mammalian target of rapamycin, and phosphorylated AKT in Sertoli cells. Finally, we found that WZ attenuated mTOR complex 1 (mTORC1) activity and upregulated mTORC2 activity, as evidenced by inhibition of the expression of the regulatory-associated protein of mTOR, phosphorylated p70 S6K, and phosphorylated ribosomal protein s6 and enhancement of the expression of Rictor in the Sertoli cells of aging mice. CONCLUSIONS: WZ improves the injury of Sertoli cells by restoring AKT/mTOR-mediated autophagy and the mTORC1-mTROC2 balance in Sertoli cells during aging. Our findings provide a new mechanism of WZ in the treatment of aging-induced testicular dysfunction.
Assuntos
Proteínas Proto-Oncogênicas c-akt , Células de Sertoli , Masculino , Camundongos , Animais , Células de Sertoli/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , beta Catenina/metabolismo , Camundongos Endogâmicos C57BL , Sêmen , Envelhecimento , Testículo , Serina-Treonina Quinases TOR/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/farmacologia , Autofagia , Mamíferos/metabolismoRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Ulcerative colitis (UC) is one of non-specific inflammatory bowel disease that mainly affects the colon. Recently, UC has become a significant social and economic problem worldwide. Baitouweng decoction (BD), a traditional Chinese medicine described in the "Treatise on Febrile Diseases", has been used for centuries to treat intestinal diseases. However, its underlying mechanism remains largely unexplored. AIM OF STUDY: In this study, we aimed to investigate the effect of BD on autophagy for repairing the colonic barrier in DSS-induced colitis mice and explored its role in regulating the autophagic signaling pathway AMPK/mTOR. MATERIALS AND METHODS: Mice with colitis were treated with 3% dextran sulfate sodium (DSS) for 7 days. The effectiveness of BD in treating DSS-induced colitis was evaluated through body weight, disease activity index (DAI), colon length, pathological changes, organ index, and proportion of blood cells. Moreover, intestinal epithelial permeability was analyzed by examining FITC-dextran leakage, the bacterial load of mesenteric lymph nodes (MLNs), and bacterial infiltration of colon tissues. Barrier function was evaluated by assessing the number and proportion of colonic goblet cells and the expression of tight junction proteins, including ZO-1, claudin-1, and occludin. Furthermore, the levels of autophagy were assessed by examining the number of autophagosomes and the expression of the autophagy-related proteins LC3, Beclin1, and P62. Additionally, network pharmacology research was conducted to analyze the potential mechanisms underlying the medicinal effects, as indicated by the role of AMPK/mTOR in regulating the autophagic signaling pathway. RESULTS: BD improved colitis symptoms in mice by restoring body weight and colon length and reducing inflammatory cell infiltration. Additionally, BD decreased the diffusion of FITC-dextran and bacterial translocation in MLNs, as well as bacterial infiltration of the colonic mucosa. The number and proportion of colonic goblet cells, the expression of ZO-1, Claudin-1, and Occludin, and the levels of autophagy were also increased by BD. Network pharmacology analysis suggested that BD might affect intestinal autophagy through the AMPK signaling pathway, which was confirmed by the activation of AMPK phosphorylation and the downregulation of mTOR expression following BD treatment. CONCLUSION: Our study demonstrated that BD repaired the intestinal epithelial barrier in DSS-induced colitis mice by activating AMPK phosphorylation and inhibiting mTOR expression to promote autophagy.
Assuntos
Colite Ulcerativa , Colite , Camundongos , Animais , Proteínas Quinases Ativadas por AMP/metabolismo , Ocludina/metabolismo , Claudina-1/metabolismo , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/patologia , Colo , Serina-Treonina Quinases TOR/metabolismo , Mucosa Intestinal , Autofagia , Peso Corporal , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Camundongos Endogâmicos C57BLRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: The prescription of Yiqi Jiedu decoction (YQJD) originated from the classic Chinese herbal prescriptions of Danggui Buxue Decoction and Wuzi Yanzong Pill. A previous study has shown that 4 Gy irradiation induced the apoptosis of spermatocytes and revealed autophagosomes in cells exposed to radiation. YQJD decoction has the effect of preventing radiation injury. AIM OF THE STUDY: We used spermatocytes (GC-2spd cell line) to investigate the relationship between autophagy and apoptosis of spermatogenic cells after radiation, and the mechanisms of YQJD decoction. MATERIALS AND METHODS: Establish an in vitro radiation injury model by irradiating GC-2spd cells with 60Co γ-rays (4 Gy or 8 Gy). Autophagy agonists, autophagy inhibitors and YQJD were used to intervene cells. Cell apoptosis and inflammatory factors were measured. NF-κB localization was observed by immunofluorescence. Autophagy and apoptosis-related proteins and IκBα/NF-κB pathway factors were detected. RESULTS: Ionizing radiation promoted the growth of spermatogenic autophagosomes. After radiation, NF-κB was translocated to the nucleus, inflammatory factors were secreted, and IκBα/NF-κB pathway was activated, which promoted autophagy and apoptosis. YQJD decoction can inhibit the phosphorylation of IκBα/NF-κB pathway related factors, regulate the expression of Beclin-1 and Bcl-2 proteins, and inhibit the occurrence of autophagy and apoptosis of irradiated spermatocyte. CONCLUSIONS: The research results indicate that ionizing radiation can activate the IκBα/NF-κB signaling pathway in spermatocytes, promote cell autophagy and apoptosis by regulating the expression of Beclin-1 and Bcl-2 factors. The YQJD decoction inhibits the IκBα/NF-κB signaling pathway so as to regulate Beclin-1 and Bcl-2.
Assuntos
NF-kappa B , Lesões por Radiação , Masculino , Humanos , NF-kappa B/metabolismo , Inibidor de NF-kappaB alfa , Proteína Beclina-1 , Apoptose , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Reguladoras de Apoptose , AutofagiaRESUMO
In this chapter, we provide an overview of the main techniques and experimental approaches that can be used to analyze autophagy flux in microglia, the brain-resident macrophages. For this purpose, we first briefly introduce the main peculiarities of microglial biology, describe the basic mechanisms and functions of autophagy, and summarize the evidence accumulated so far on the role of autophagy in the regulation of microglial survival and functions, mainly phagocytosis and inflammation. Then, we highlight conceptual and technical aspects of autophagic recycling and microglial physiology that need to be taken into account for the accurate evaluation of autophagy flux in microglia. Finally, we describe the main assays that can be used to analyze the complete sequence of autophagosome formation and degradation or autophagy flux, mainly in cultured microglia and in vivo. The main approaches include indirect tracking of autophagosomes by autophagic enzymes such as LC3 by western blot and fluorescence-based confocal microscopy, as well as direct analysis of autophagic vesicles by electron microscopy. We also discuss the advantages and disadvantages of using these methods in specific experimental contexts and highlight the need to complement LC3 and/or electron microscopy data with analysis of other autophagic effectors and lysosomal proteins that participate in the initiation and completion of autophagy flux, respectively. In summary, we provide an experimental guide for the analysis of autophagosome turnover in microglia, emphasizing the need to combine as many markers and complementary approaches as possible to fully characterize the status of autophagy flux in microglia.
Assuntos
Autofagia , Microglia , Macroautofagia , Autofagossomos , FagocitoseRESUMO
Ovarian cancer (OC) is the most deadly tumor that may develop in a woman's reproductive system. It is also one of the most common causes of death among those who have been diagnosed with cancer in women. An adapter protein known as sequestosome 1(SQSTM1) or p62 is primarily responsible for the transportation, degradation, and destruction of a wide variety of proteins. This adapter protein works in conjunction with the autophagy process as well as the ubiquitin proteasome degradation pathway. In addition, the ability of SQSTM1 to interact with multiple binding partners link SQSTM1 to various pathways in the context of antioxidant defense system and inflammation. In this review, we outline the processes underlying the control that SQSTM1 has on these pathways and how their dysregulation contributes to the development of OC. At the final, the therapeutic approaches based on SQSTM1 targeting have been discussed (AU)
Assuntos
Humanos , Feminino , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteína Sequestossoma-1/metabolismo , Neoplasias Ovarianas/metabolismo , Autofagia , InflamaçãoRESUMO
The development of cancers is aided by the accumulation of myeloid-derived suppressor cells (MDSCs) within tumors, which are highly effective at suppressing anti-tumor immune responses. Direct cell-to-cell interaction and the production of immunosuppressive mediators have both been proposed as pathways for MDSC-mediated suppression of anti-tumor immune responses. The majority of current cancer treatments focus on altering the development and activity of MDSCs so that they have more of an immunogenic character. Autophagy is a catabolic system that contributes to the breakdown of damaged intracellular material and the recycling of metabolites. However, depending on the stage of tumor growth, autophagy can play both a prophylactic and a therapeutic function in carcinogenesis. However, several indirect lines of research have indicated that autophagy is a significant regulator of MDSC activity. The purpose of this work was to outline the interactions between MDSC and autophagy in cancer (AU)
Assuntos
Humanos , Células Supressoras Mieloides/metabolismo , Neoplasias/patologia , Autofagia , Carcinogênese/patologia , Antineoplásicos ImunológicosRESUMO
Minimal change disease (MCD) is the common type of nephrotic syndrome (NS) in children. Currently, there is an urgent need to explore new treatments because of the significant side effects of long-term use of glucocorticoids and immunosuppressive drugs and the failure to reduce proteinuria in some patients. Angiopoietin-like protein 3 (Angptl3) is an essential target of NS, and anti-ANGPTL3-FLD monoclonal antibody (mAb) significantly reduces proteinuria in mice with adriamycin nephropathy (AN). However, some proteinuria is persistent. Minnelide, a water-soluble prodrug of triptolide, has been used for the treatment of glomerular disease. Therefore, the present study aimed to investigate whether minnelide combined with mAb could further protect mice with AN and the underlying mechanisms. 8-week-old C57BL/6 female mice were injected with 25 mg/kg of Adriamycin (ADR) by tail vein to establish the AN model. A dose of 200 µg/kg of minnelide or 20 mg/kg of mAb was administered intraperitoneally for the treatment. In vitro, the podocytes were treated with 0.4 µg/mL of ADR for 24 h to induce podocyte injury, and pretreatment with 10 ng/mL of triptolide for 30 min or 100 ng/mL of mAb for 1 h before ADR exposure was used to treat. The results showed that minnelide combined with mAb almost completely ameliorates proteinuria and restores the ultrastructure of the podocytes in mice with AN. In addition, minnelide combined with mAb restores the distribution of Nephrin, Podocin, and CD2AP and reduces the level of inflammatory factors in mice with AN. Mechanistically, minnelide combined with mAb could further alleviate apoptosis and promote autophagy in mice with AN by inhibiting the mTOR signaling pathway. In vitro, triptolide combined with mAb increases the expression of Nephrin, Podocin, and CD2AP, alleviates apoptosis, and promotes autophagy. Overall, minnelide combined with mAb completely protects the mice with AN by promoting autophagy and inhibiting apoptosis.
Assuntos
Anticorpos Monoclonais , Nefropatias , Feminino , Animais , Camundongos , Camundongos Endogâmicos C57BL , Anticorpos Monoclonais/farmacologia , Proteinúria/tratamento farmacológico , Apoptose , Autofagia , Doxorrubicina/farmacologiaRESUMO
Autophagosome formation, a crucial step in macroautophagy (autophagy), requires the covalent conjugation of LC3 proteins to the amino headgroup of phosphatidylethanolamine (PE) lipids. Atg3, an E2-like enzyme, catalyzes the transfer of LC3 from LC3-Atg3 to PEs in targeted membranes. Here we show that the catalytically important C-terminal regions of human Atg3 (hAtg3) are conformationally dynamic and directly interact with the membrane, in collaboration with its N-terminal membrane curvature-sensitive helix. The functional relevance of these interactions was confirmed by in vitro conjugation and in vivo cellular assays. Therefore, highly curved phagophoric rims not only serve as a geometric cue for hAtg3 recruitment, but also their interaction with hAtg3 promotes LC3-PE conjugation by targeting its catalytic center to the membrane surface and bringing substrates into proximity. Our studies advance the notion that autophagosome biogenesis is directly guided by the spatial interactions of Atg3 with highly curved phagophoric rims.
Assuntos
Autofagia , Fosfatidiletanolaminas , Humanos , Macroautofagia , Fenômenos Químicos , MembranasRESUMO
In recent years, inhibiting tumor cell activity by triggering cell ferroptosis has become a research hotspot. The development of generic targeted nanotherapeutics might bring new ideas for noninvasive applications. Currently, the potential mechanism underlying the universal application of paclitaxel (PTX)loaded iron oxide nanoparticles (IONP@PTX) to different types of tumors is unclear. The present study aimed to prepare IONP@PTX for targeted cancer therapy and further explore the potential mechanisms underlying the inhibitory effects of this material on the NCIH446 human small cell lung cancer and brain M059K malignant glioblastoma cell lines. First, a CCK8 assay was performed to determine cell viability, and then the combination index for evaluating drug combination interaction effect was evaluated. Intracellular reactive oxygen species (ROS) and lipid peroxidation levels were monitored using a DCFHDA fluorescent probe and a C11BODIPY™ fluorescent probe, respectively. Furthermore, western blotting assay was performed to determine the expression of autophagy and iron deathrelated proteins. The experimental results showed that, compared with either IONP monotherapy, PTX monotherapy, or IONP + PTX, IONP@PTX exerted a synergistic effect on the viability of both cell types, with significantly increased total iron ion concentration, ROS levels and lipid peroxidation levels. IONP@PTX significantly increased the expression of autophagyrelated proteins Beclin 1 and histone deacetylase 6 (HDAC6) in both cell lines (P<0.05), increased the expression of light chain 3 (LC3)II/I in NCIH446 cells (P<0.05) and decreased that of sequestosome1 (p62) in M059K cells (P<0.05). Moreover, the addition of rapamycin enhanced the IONP@PTXinduced the upregulation of Beclin 1, LC3II/I and HDAC6 and the downregulation of mTORC1 protein in both cell lines (P<0.05). Moreover, rapamycin enhanced the IONP@PTXinduced downregulation of p62 protein in NCIH446 cells (P<0.05), suggesting that IONP@PTX induces ferroptosis, most likely through autophagy. Collectively, the present findings show that IONP works synergistically with PTX to induce ferroptosis via the autophagic pathway.
Assuntos
Neoplasias Encefálicas , Ferroptose , Humanos , Proteína Beclina-1 , Corantes Fluorescentes , Espécies Reativas de Oxigênio , Autofagia , Anticorpos , Nanopartículas Magnéticas de Óxido de FerroRESUMO
Berberine exhibits anticancer efficacy against a variety of malignancies, including breast cancer (BRCA). However, the underlying mechanism is ambiguous. This study sought to explore the targets and the probable mechanism of berberine regulating autophagy in BRCA through network pharmacology, bioinformatics, and molecular docking. The targets of berberine and autophagy-modulated genes were derived from online databases, and the Cancer Genome Atlas database was used to identify the differentially expressed genes of BRCA. Then, through intersections, the autophagy-modulated genes regulated by berberine (AMGRBs) in BRCA were obtained. Next, we established a protein-protein interaction network using the Search Tool for the Retrieval of Interacting Genes database. Afterward, gene ontology and Kyoto encyclopedia of genes and genomes enrichment analyses were employed to explore the targets' biological functions. Additionally, molecular docking was conducted to verify the binding ability of berberine to the targets. Finally, to determine the prognostic value of AMGRBs in BRCA, we performed overall survival analyses. We identified 29 AMGRBs in BRCA, including CASP3, MTOR, AKT1, GSK3B, PIK3CA, and others. Gene ontology enrichment analysis showed that the AMGRBs in BRCA were associated with autophagy regulation, negative regulation of catabolic process, macroautophagy, and other biological processes. Kyoto encyclopedia of genes and genomes enrichment analyses indicated that AMGRBs in BRCA were involved in epidermal growth factor receptor tyrosine kinase inhibitor resistance, PI3K/Akt signaling pathway, JAK-STAT signaling pathway, and others. Molecular docking results proved that berberine had strong binding affinities with AMGRBs in BRCA. Survival analyses indicated that ATM, HTR2B, LRRK2, PIK3CA, CDK5, and IFNG were associated with the prognosis of BRCA. This study identified the targets and pathways of berberine for regulating autophagy in BRCA, which contributed to a better understanding of berberine's function in BRCA and serve as a foundation and reference for further study and therapeutic application of berberine.
Assuntos
Berberina , Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Simulação de Acoplamento Molecular , Berberina/farmacologia , Berberina/uso terapêutico , Farmacologia em Rede , Fosfatidilinositol 3-Quinases , Autofagia , Biologia Computacional , Classe I de Fosfatidilinositol 3-QuinasesRESUMO
Metallic nanoparticles (mNPs) are widely used as food additives and can interact with gliadin triggering an immune response, but evaluation of the effects on crypts, hypertrophic in celiac subjects, is still lacking. This study evaluated the effects of gold and silver mNPs in combination with gliadin on crypt-like cells (HIEC-6). Transmission electron microscopy (TEM) was used to evaluate gliadin-mNP aggregates in cells. Western blot and immunofluorescence analysis assessed autophagy-related molecule levels (p62, LC3, beclin-1, EGFR). Lysosome functionality was tested with acridine orange (AO) and Magic Red assays. TEM identified an increase in autophagic vacuoles after exposure to gliadin + mNPs, as also detected by significant increments in LC3-II and p62 expression. Immunofluorescence confirmed the presence of mature autophagosomes, showing LC3 and p62 colocalization, indicating an altered autophagic flux, further assessed with EGFR degradation, AO and Magic Red assays. The results showed a significant reduction in lysosomal enzyme activity and a modest reduction in acidity. Thus, gliadin + mNPs can block the autophagic flux inducing a lysosomal defect. The alteration of this pathway, essential for cell function, can lead to cell damage and death. The potential effects of this copresence in food should be further characterized to avoid a negative impact on celiac disease subjects.
Assuntos
Ouro , Nanopartículas , Humanos , Glutens , Prata , Gliadina , Autofagia , Laranja de Acridina , Receptores ErbBRESUMO
Multiple Sclerosis (MS) is a chronic inflammatory disease that affects the brain and spinal cord. Inflammation, demyelination, synaptic alteration, and neuronal loss are hallmarks detectable in MS. Experimental autoimmune encephalomyelitis (EAE) is an animal model widely used to study pathogenic aspects of MS. Autophagy is a process that maintains cell homeostasis by removing abnormal organelles and damaged proteins and is involved both in protective and detrimental effects that have been seen in a variety of human diseases, such as cancer, neurodegenerative diseases, inflammation, and metabolic disorders. This study is aimed at investigating the autophagy signaling pathway through the analysis of the main autophagic proteins including Beclin-1, microtubule-associated protein light chain (LC3, autophagosome marker), and p62 also called sequestosome1 (SQSTM1, substrate of autophagy-mediated degradation) in the hippocampus of EAE-affected mice. The expression levels of Beclin-1, LC3, and p62 and the Akt/mTOR pathway were examined by Western blot experiments. In EAE mice, compared to control animals, significant reductions of expression levels were detectable for Beclin-1 and LC3 II (indicating the reduction of autophagosomes), and p62 (suggesting that autophagic flux increased). In parallel, molecular analysis detected the deregulation of the Akt/mTOR signaling. Immunofluorescence double-labeling images showed co-localization of NeuN (neuronal nuclear marker) and Beclin-1, LC3, and p62 throughout the CA1 and CA3 hippocampal subfields. Taken together, these data demonstrate that activation of autophagy occurs in the neurons of the hippocampus in this experimental model.
Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Humanos , Animais , Camundongos , Esclerose Múltipla/genética , Proteína Beclina-1/genética , Proteínas Proto-Oncogênicas c-akt , Autofagia , Encefalomielite Autoimune Experimental/genética , Biomarcadores , Hipocampo , InflamaçãoRESUMO
Heat stress (HS) is becoming an increasingly large problem for food security as global warming progresses. As sessile species, plants have evolved different mechanisms to cope with the disruption of cellular homeostasis, which can impede plant growth and development. Here, we summarize the mechanisms underlying transcriptional regulation mediated by transcription factors, epigenetic regulators, and regulatory RNAs in response to HS. Additionally, cellular activities for adaptation to HS are discussed, including maintenance of protein homeostasis through protein quality control machinery, and autophagy, as well as the regulation of ROS homeostasis via a ROS-scavenging system. Plant cells harmoniously regulate their activities to adapt to unfavorable environments. Lastly, we will discuss perspectives on future studies for improving urban agriculture by increasing crop resilience to HS.
Assuntos
Aclimatação , Agricultura , Espécies Reativas de Oxigênio , Autofagia , Resposta ao Choque Térmico/genéticaRESUMO
Melanoma-associated antigen D2 (MAGED2) plays an essential role in activating the cAMP/PKA pathway under hypoxic conditions, which is crucial for stimulating renal salt reabsorption and thus explaining the transient variant of Bartter's syndrome. The cAMP/PKA pathway is also known to regulate autophagy, a lysosomal degradation process induced by cellular stress. Previous studies showed that two members of the melanoma-associated antigens MAGE-family inhibit autophagy. To explore the potential role of MAGED2 in stress-induced autophagy, specific MAGED2-siRNA were used in HEK293 cells under physical hypoxia and oxidative stress (cobalt chloride, hypoxia mimetic). Depletion of MAGED2 resulted in reduced p62 levels and upregulation of both the autophagy-related genes (ATG5 and ATG12) as well as the autophagosome marker LC3II compared to control siRNA. The increase in the autophagy markers in MAGED2-depleted cells was further confirmed by leupeptin-based assay which concurred with the highest LC3II accumulation. Likewise, under hypoxia, immunofluorescence in HEK293, HeLa and U2OS cell lines demonstrated a pronounced accumulation of LC3B puncta upon MAGED2 depletion. Moreover, LC3B puncta were absent in human fetal control kidneys but markedly expressed in a fetal kidney from a MAGED2-deficient subject. Induction of autophagy with both physical hypoxia and oxidative stress suggests a potentially general role of MAGED2 under stress conditions. Various other cellular stressors (brefeldin A, tunicamycin, 2-deoxy-D-glucose, and camptothecin) were analyzed, which all induced autophagy in the absence of MAGED2. Forskolin (FSK) inhibited, whereas GNAS Knockdown induced autophagy under hypoxia. In contrast to other MAGE proteins, MAGED2 has an inhibitory role on autophagy only under stress conditions. Hence, a prominent role of MAGED2 in the regulation of autophagy under stress conditions is evident, which may also contribute to impaired fetal renal salt reabsorption by promoting autophagy of salt-transporters in patients with MAGED2 mutation.
Assuntos
Autofagia , Melanoma , Humanos , Células HEK293 , Autofagia/genética , Estresse Oxidativo , Autofagossomos , Cloreto de Sódio , Cloreto de Sódio na Dieta , Antígenos de Neoplasias , Proteínas Adaptadoras de Transdução de SinalRESUMO
Eosinophils function in rapid innate immune responses and allergic reactions. Recent research has raised the possibility that the histone deacetylase inhibitor valproic acid (VPA) may be a promising therapeutic agent for treatment of allergic responses and certain cancers. However, its effects on eosinophils remain unclear. Utilizing the EoL-1 human eosinophil cell line as a model, we investigated the effects of VPA on oxidative stress- and autophagy-mediated immune responses. We found that VPA induced reactive oxidative species (ROS) generation and eosinophil activation without affecting cell viability. Moreover, VPA treatment suppressed the negative regulator of antioxidant transcription factor Nrf2, which is known to activate antioxidant defense. Interestingly, VPA was able to increase autophagic markers, as well as NLRP3 and NLRC4 mRNA activation, in Eol-1 cells in a dose-dependent manner. Collectively, our results indicate that VPA could increase the severity of allergic responses, and if so, it clearly would not be a suitable drug for the treatment of allergic reactions. However, VPA does have the potential to induce autophagy and to regulate the inflammatory responses via inflammasome-driven caspase-1 deactivation in a dose-dependent manner.
Assuntos
Hipersensibilidade , Ácido Valproico , Humanos , Ácido Valproico/farmacologia , Antioxidantes , Estresse Oxidativo , Inflamação/tratamento farmacológico , AutofagiaRESUMO
The interaction between nanoparticles and cells is closely associated with the therapeutic effects of nanomedicine. Nanoparticles could be transported among cells, but the process-related mechanism remains to be further explored. In this study, it was found that endocytosed cationic polymer nanoparticles (cNPs) could be excreted in an extracellular vesicle (EV)-coated form (cNP@EVs). It was deduced that cNPs may pass through early endosomes, multivesicular bodies (MVBs), and autophagic MVBs within cells. Moreover, a high level of autophagy facilitated the exocytosis process. Since EVs were the effective vehicles for conveying biological information and substances, cNP@EVs were proved to be efficient forms for the intercellular transportation of nanoparticles and have the potential as efficient biomimetic drug delivery systems. These properties endowed cNP@EVs with deep penetration and enhanced antitumor activity. Our findings provided a proof-of-concept for understanding the transfer process of nanoparticles among cells and may help us to further utilize EV-mediated transportation of nanoparticles, therefore, expanding its clinical application.
Assuntos
Vesículas Extracelulares , Nanopartículas , Neoplasias , Humanos , Autofagia , Vesículas Transportadoras , Polímeros , Neoplasias/tratamento farmacológicoRESUMO
BACKGROUND: The role of Pin2 telomeric repeat factor 1-interacting telomerase inhibitor 1 (PinX1) in tumorigenesis and development has been extensively studied. As we previously demonstrated, PinX1 plays an important role in modulating epithelial-mesenchymal transition (EMT), stemness, cell proliferation, and apoptosis in nasopharyngeal carcinoma (NPC). However, the relationship between PinX1, autophagy, and cell function in NPC remains unclear. This study aimed to investigate the mechanisms by which PinX1 regulates autophagy in NPC, and to explore its biological role and clinical significance in disease progression. METHODS: The proliferative capacity of NPC cells was assessed by MTT and xenograft tumorigenicity assays. Autophagic flux was monitored using a tandem monomeric DAPI-FITC-LC3 reporter assay. The rates of apoptosis and the cell cycle in NPC cells were analyzed using flow cytometry. The activation of autophagy and the signaling status of the AKT/mTOR and NF-κB/p65 pathways were evaluated by Western blot analysis. RESULTS: In addition to promoting autophagy and apoptosis, PinX1 overexpression suppressed proliferation, migration, invasion, and decelerated cell-cycle progression in NPC cells. These effects were reversed by inhibiting autophagy with 3-methyladenine. Mechanistic investigations clarified that PinX1 overexpression significantly reduced the expression of p-AKT, p-mTOR, p65, and p-p65. Chloroquine treatment in PinX1-overexpressing cells did not significantly alter p-AKT and p-mTOR levels, whereas 3-MA treatment in PinX1-overexpressing cells resulted in increased p65 and p-p65 expression, relative to untreated PinX1-overexpressing cells. CONCLUSIONS: It appears that PinX1 promotes autophagy by inhibiting the AKT/mTOR signaling pathway, which then inhibits NF-κB/p65 pathways, and consequently inhibiting cell proliferation and causing cell apoptosis in NPC cells.
Assuntos
NF-kappa B , Neoplasias Nasofaríngeas , Humanos , Apoptose , Autofagia , Proliferação de Células , Carcinoma Nasofaríngeo/genética , Neoplasias Nasofaríngeas/genética , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Serina-Treonina Quinases TOR , AnimaisRESUMO
Drugs causing ferroptosis, iron-mediated cell death, represent promising tools for cancer treatment. While exploring the effect of these drugs on breast cancer (BC), we found that a ferroptosis-inducing drug erastin dramatically inhibits tumorigenicity of human BC cells in mice but when used at a concentration known to effectively kill other cell types only modestly reduces such growth in 2D monolayer culture. BCs grow in vivo as 3D masses, and we found that ferroptosis inducers erastin and sulfasalazine inhibit growth of multiple human BC cell lines in 3D culture significantly stronger than in 2D culture. To understand the mechanism of this differential effect, we found that ferroptosis inducers upregulate mRNAs encoding multiple direct and indirect autophagy stimulators, such as ATG16L2, ATG9A, ATG4D, GABARAP, SQSTM/p62, SEC23A and BAX, in tumor cells growing in 2D but not in 3D culture. Furthermore, these drugs promoted autophagy of tumor cells growing in a 2D but not in a 3D manner. We observed that pharmacological inhibition of autophagy-stimulating protein kinase ULK1 or RNA interference-mediated knockdown of autophagy mediator ATG12 significantly sensitized tumor cells to erastin treatment in 2D culture. We also found that ferroptosis-promoting treatments upregulate heme oxygenase-1 (HO-1) in BC cells. HO-1 increases cellular free iron pool and can potentially promote ferroptosis. Indeed, we observed that HO-1 knockdown by RNA interference reversed the effect of ferroptosis inducers on BC cell 3D growth. Hence, the effect of these drugs on such growth is mediated by HO-1. In summary, autophagy triggered by ferroptosis-promoting drugs reduces their ability to kill BC growing in a 2D manner. This protection mechanism is inhibited in BC cells growing as a 3D mass, and ferroptosis-promoting drugs kill such cells more effectively. Moreover, this death is mediated by HO-1. Thus, ferroptosis induction represents a promising strategy for blocking 3D BC growth.