Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.290
Filtrar
1.
Nat Commun ; 11(1): 4706, 2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32943618

RESUMO

Yeast physiology is temporally regulated, this becomes apparent under nutrient-limited conditions and results in respiratory oscillations (YROs). YROs share features with circadian rhythms and interact with, but are independent of, the cell division cycle. Here, we show that YROs minimise energy expenditure by restricting protein synthesis until sufficient resources are stored, while maintaining osmotic homeostasis and protein quality control. Although nutrient supply is constant, cells sequester and store metabolic resources via increased transport, autophagy and biomolecular condensation. Replete stores trigger increased H+ export which stimulates TORC1 and liberates proteasomes, ribosomes, chaperones and metabolic enzymes from non-membrane bound compartments. This facilitates translational bursting, liquidation of storage carbohydrates, increased ATP turnover, and the export of osmolytes. We propose that dynamic regulation of ion transport and metabolic plasticity are required to maintain osmotic and protein homeostasis during remodelling of eukaryotic proteomes, and that bioenergetic constraints selected for temporal organisation that promotes oscillatory behaviour.


Assuntos
Metabolismo Energético/fisiologia , Células Eucarióticas/fisiologia , Proteostase/fisiologia , Autofagia/fisiologia , Reatores Biológicos , Ritmo Circadiano , Glicogênio/metabolismo , Resposta ao Choque Térmico , Ionomicina , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Metabolômica , Chaperonas Moleculares , Concentração Osmolar , Pressão Osmótica , Oxigênio/metabolismo , Biossíntese de Proteínas , Processamento de Proteína Pós-Traducional , Proteoma , Proteômica , Ribossomos , Leveduras/fisiologia
2.
Nat Commun ; 11(1): 4480, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32900992

RESUMO

Macroautophagy initiates by formation of isolation membranes, but the source of phospholipids for the membrane biogenesis remains elusive. Here, we show that autophagic membranes incorporate newly synthesized phosphatidylcholine, and that CTP:phosphocholine cytidylyltransferase ß3 (CCTß3), an isoform of the rate-limiting enzyme in the Kennedy pathway, plays an essential role. In starved mouse embryo fibroblasts, CCTß3 is initially recruited to autophagic membranes, but upon prolonged starvation, it concentrates on lipid droplets that are generated from autophagic degradation products. Omegasomes and isolation membranes emanate from around those lipid droplets. Autophagy in prolonged starvation is suppressed by knockdown of CCTß3 and is enhanced by its overexpression. This CCTß3-dependent mechanism is also present in U2OS, an osteosarcoma cell line, and autophagy and cell survival in starvation are decreased by CCTß3 depletion. The results demonstrate that phosphatidylcholine synthesis through CCTß3 activation on lipid droplets is crucial for sustaining autophagy and long-term cell survival.


Assuntos
Autofagia/fisiologia , Colina-Fosfato Citidililtransferase/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Animais , Autofagossomos/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular , Colina-Fosfato Citidililtransferase/antagonistas & inibidores , Colina-Fosfato Citidililtransferase/genética , Meios de Cultura , Ativação Enzimática , Técnicas de Silenciamento de Genes , Humanos , Gotículas Lipídicas/metabolismo , Camundongos , Modelos Biológicos , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , Osteossarcoma/metabolismo , Osteossarcoma/patologia , Fosfatidilcolinas/metabolismo
3.
Nat Commun ; 11(1): 4150, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32811819

RESUMO

The systemic decline in autophagic activity with age impairs homeostasis in several tissues, leading to age-related diseases. A mechanistic understanding of adipocyte dysfunction with age could help to prevent age-related metabolic disorders, but the role of autophagy in aged adipocytes remains unclear. Here we show that, in contrast to other tissues, aged adipocytes upregulate autophagy due to a decline in the levels of Rubicon, a negative regulator of autophagy. Rubicon knockout in adipocytes causes fat atrophy and hepatic lipid accumulation due to reductions in the expression of adipogenic genes, which can be recovered by activation of PPARγ. SRC-1 and TIF2, coactivators of PPARγ, are degraded by autophagy in a manner that depends on their binding to GABARAP family proteins, and are significantly downregulated in Rubicon-ablated or aged adipocytes. Hence, we propose that age-dependent decline in adipose Rubicon exacerbates metabolic disorders by promoting excess autophagic degradation of SRC-1 and TIF2.


Assuntos
Adipócitos/metabolismo , Envelhecimento/fisiologia , Autofagia/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Doenças Metabólicas/metabolismo , Adipócitos/patologia , Adipogenia/genética , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Adiposidade/genética , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Autofagia/fisiologia , Fígado Gorduroso/genética , Fígado Gorduroso/metabolismo , Técnicas de Inativação de Genes , Glucose/genética , Glucose/metabolismo , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Metabolismo dos Lipídeos/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/metabolismo , Coativador 1 de Receptor Nuclear/metabolismo , Coativador 2 de Receptor Nuclear/metabolismo , PPAR gama/metabolismo
4.
Nat Commun ; 11(1): 4056, 2020 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-32792483

RESUMO

Autophagy has been associated with oncogenesis with one of its emerging key functions being its contribution to the metabolism of tumors. Therefore, deciphering the mechanisms of how autophagy supports tumor cell metabolism is essential. Here, we demonstrate that the inhibition of autophagy induces an accumulation of lipid droplets (LD) due to a decrease in fatty acid ß-oxidation, that leads to a reduction of oxidative phosphorylation (OxPHOS) in acute myeloid leukemia (AML), but not in normal cells. Thus, the autophagic process participates in lipid catabolism that supports OxPHOS in AML cells. Interestingly, the inhibition of OxPHOS leads to LD accumulation with the concomitant inhibition of autophagy. Mechanistically, we show that the disruption of mitochondria-endoplasmic reticulum (ER) contact sites (MERCs) phenocopies OxPHOS inhibition. Altogether, our data establish that mitochondria, through the regulation of MERCs, controls autophagy that, in turn finely tunes lipid degradation to fuel OxPHOS supporting proliferation and growth in leukemia.


Assuntos
Autofagia/fisiologia , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Leucemia Mieloide Aguda/metabolismo , Leucemia/metabolismo , Mitocôndrias/metabolismo , Animais , Autofagia/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Proliferação de Células/fisiologia , Citometria de Fluxo , Humanos , Leucemia/genética , Leucemia Mieloide Aguda/patologia , Metabolismo dos Lipídeos/genética , Metabolismo dos Lipídeos/fisiologia , Lipogênese/genética , Lipogênese/fisiologia , Camundongos , Mitocôndrias/genética , Oxirredução , Fosforilação Oxidativa
5.
Nat Commun ; 11(1): 4051, 2020 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-32792548

RESUMO

The RNA genome of the human immunodeficiency virus (HIV) is reverse-transcribed into DNA and integrated into the host genome, resulting in latent infections that are difficult to clear. Here we show an approach to eradicate HIV infections by selective elimination of host cells harboring replication-competent HIV (SECH), which includes viral reactivation, induction of cell death, inhibition of autophagy and the blocking of new infections. Viral reactivation triggers cell death specifically in HIV-1-infected T cells, which is promoted by agents that induce apoptosis and inhibit autophagy. SECH treatments can clear HIV-1 in >50% mice reconstituted with a human immune system, as demonstrated by the lack of viral rebound after withdrawal of treatments, and by adoptive transfer of treated lymphocytes into uninfected humanized mice. Moreover, SECH clears HIV-1 in blood samples from HIV-1-infected patients. Our results suggest a strategy to eradicate HIV infections by selectively eliminating host cells capable of producing HIV.


Assuntos
Infecções por HIV/prevenção & controle , HIV-1/patogenicidade , Animais , Antígenos CD34/metabolismo , Apoptose/efeitos dos fármacos , Autofagia/fisiologia , Azepinas/farmacologia , Linfócitos T CD4-Positivos/metabolismo , Humanos , Camundongos , Organofosfatos/farmacologia , Piperazinas/farmacologia , Piridinas/farmacologia , Pirimidinonas/farmacologia , RNA Viral/metabolismo , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , Triazóis/farmacologia
6.
Nat Commun ; 11(1): 4286, 2020 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-32855403

RESUMO

Intracellular galectins are carbohydrate-binding proteins capable of sensing and repairing damaged lysosomes. As in the physiological conditions glycosylated moieties are mostly in the lysosomal lumen but not cytosol, it is unclear whether galectins reside in lysosomes, bind to glycosylated proteins, and regulate lysosome functions. Here, we show in gut epithelial cells, galectin-9 is enriched in lysosomes and predominantly binds to lysosome-associated membrane protein 2 (Lamp2) in a Asn(N)-glycan dependent manner. At the steady state, galectin-9 binding to glycosylated Asn175 of Lamp2 is essential for functionality of lysosomes and autophagy. Loss of N-glycan-binding capability of galectin-9 causes its complete depletion from lysosomes and defective autophagy, leading to increased endoplasmic reticulum (ER) stress preferentially in autophagy-active Paneth cells and acinar cells. Unresolved ER stress consequently causes cell degeneration or apoptosis that associates with colitis and pancreatic disorders in mice. Therefore, lysosomal galectins maintain homeostatic function of lysosomes to prevent organ pathogenesis.


Assuntos
Galectinas/metabolismo , Proteína 2 de Membrana Associada ao Lisossomo/metabolismo , Lisossomos/metabolismo , Pâncreas/patologia , Celulas de Paneth/patologia , Células Acinares/metabolismo , Células Acinares/patologia , Animais , Autofagia/fisiologia , Colite/metabolismo , Colite/patologia , Estresse do Retículo Endoplasmático , Galectinas/genética , Células HT29 , Humanos , Proteína 2 de Membrana Associada ao Lisossomo/genética , Lisossomos/genética , Lisossomos/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pâncreas/metabolismo , Pancreatite/metabolismo , Pancreatite/patologia , Celulas de Paneth/metabolismo
7.
Life Sci ; 258: 118213, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32768583

RESUMO

AIMS: Intermittent cyclic tension stimulation(ICMT) was shown to promote degeneration of endplate chondrocytes and induce autophagy. However, enhancing autophagy can alleviate degeneration partly. Studies have shown that curcumin can induce autophagy and protect chondrocytes, we speculated that regulation of autophagy by curcumin might be an effective method to improve the stress resistance of endplate cartilage. In this study, human cervical endplate cartilage specimens were collected, and expression of autophagy markers was detected and compared. MAIN METHODS: Human cervical endplate chondrocytes were cultured to establish a tension-induced degeneration model, for which changes of functional metabolism and autophagy levels were detected under different tension loading conditions. Changes in functional metabolism of endplate chondrocytes were observed under high-intensity tension loading in the presence of inhibitors, inducers, and curcumin to regulate the autophagy level of cells. In addition, a rat model of lumbar instability was established to observe the degeneration of lumbar disc after curcumin administration. KEY FINDINGS: Through a series of experiments, we found that low-intensity tension stimulation can maintain a stable phenotype of endplate chondrocytes, but high-intensity tension stimulation has a negative effect. Moreover, with increasing tension intensity, the degree of degeneration of endplate chondrocytes was gradually aggravated and the level of autophagy increased. Besides, curcumin upregulated autophagy, inhibited apoptosis, and reduced phenotype loss of endplate chondrocytes induced by high-intensity tension loading, thereby relieving intervertebral disc degeneration induced by mechanical imbalance. SIGNIFICANCE: Curcumin mediated autophagy and enhanced the adaptability of endplate chondrocytes to high-intensity tension load, thereby relieving intervertebral disc degeneration.


Assuntos
Anti-Inflamatórios não Esteroides/uso terapêutico , Autofagia/efeitos dos fármacos , Cartilagem/efeitos dos fármacos , Curcumina/uso terapêutico , Degeneração do Disco Intervertebral/tratamento farmacológico , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Autofagia/fisiologia , Cartilagem/patologia , Curcumina/farmacologia , Feminino , Degeneração do Disco Intervertebral/patologia , Vértebras Lombares/efeitos dos fármacos , Vértebras Lombares/patologia , Masculino , Ratos , Ratos Sprague-Dawley
8.
Life Sci ; 258: 118243, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32791154

RESUMO

AIMS: Although autophagy impairment is a well-established cause of muscle atrophy and P300 has recently been identified as an important regulator of autophagy, the effects of P300 on autophagy and muscle atrophy in type 2 diabetes (T2D) remain unexplored. We aimed at characterizing the role of P300 in diabetic muscle and its underlying mechanism. MAIN METHODS: Protein levels of phosphorylated P300, total P300, acetylated histone H3, LC3, p62 and myosin heavy chain, and mRNA levels of Atrogin-1 and MuRF1 were analyzed in palmitic acid (PA)-treated myotubes and db/db mice. Autophagic flux was assessed using transmission electron microscopy, immunofluorescence and mRFP-GFP-LC3 lentivirus transfection in cells. Muscle weight, blood glucose and grip strength were measured in mice. Hematoxylin and eosin (H&E) staining was performed to determine changes in muscle fiber size. To investigate the effects of P300 on autophagy and myofiber remodeling, a P300 specific inhibitor, c646, was utilized. 3-Methyladenine (3-MA) was utilized to inhibit autophagosomes formation, and chloroquine (CQ) was used to block autophagic flux. KEY FINDINGS: Phosphorylation of P300 in response to PA enhanced its activity and subsequently suppressed autophagic flux, leading to atrophy-related morphological and molecular changes in myotubes. Inhibition of P300 reestablished autophagic flux and ameliorated PA-induced myotubes atrophy. However, this effect was largely abolished by co-treatment with the autophagy inhibitor CQ. In vivo results demonstrated that inhibition of P300 partially rescued muscle wasting in db/db mice, accompanied with autophagy reactivation. SIGNIFICANCE: The findings revealed that T2D-induced overactivation of P300 contributes to muscle atrophy by blocking autophagic flux.


Assuntos
Autofagia/fisiologia , Diabetes Mellitus Tipo 2/metabolismo , Proteína p300 Associada a E1A/metabolismo , Atrofia Muscular/metabolismo , Animais , Linhagem Celular , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patologia , Proteína p300 Associada a E1A/genética , Força da Mão/fisiologia , Masculino , Camundongos , Camundongos Transgênicos , Atrofia Muscular/genética , Atrofia Muscular/patologia , Mioblastos/metabolismo , Mioblastos/patologia
9.
Life Sci ; 257: 118021, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32621919

RESUMO

AIMS: Tribbles homolog 3 (TRIB3) is emerging as a multifunctional oncoprotein associated with various cellular events in different tumors. However, the regulatory mechanism of TRIB3 in acute myeloid leukemia (AML) remains unknown. This study aims to investigate the molecular mechanisms and uncover the functions of TRIB3 in AML. METHODS: Western blotting and quantitative real-time PCR were used to analyze the expression levels of TRIB3, peroxisome proliferator-activated receptor α (PPARα), apoptosis markers and autophagy markers in AML cells. Flow cytometry was used to assess cell apoptosis. The interaction of TRIB3 and PPARα was evaluated by immunofluorescence, coimmunoprecipitation, and in vivo ubiquitination assays. KEY FINDINGS: We demonstrated that downregulating TRIB3 in leukemic cells effectively induced apoptosis and autophagy by regulating the degradation of PPARα. Mechanistically, TRIB3 interacted with PPARα and contributed to its destabilization by promoting its ubiquitination. When PPARα was activated by its specific agonist clofibrate, the apoptosis and autophagy of AML cells were significantly enhanced. These results were confirmed by rescue experiments. Blocking PPARα expression using the PPARα inhibitor GW6471 reversed the functional influence of TRIB3 on AML cells. SIGNIFICANCE: The aim of this study is to provide evidence of the degradation of PPARα by TRIB3 via ubiquitin-dependent proteasomal degradation. This process meditates the progression of AML and prolongs the survival of leukemic cells. As a result, these data indicate that TRIB3 is a novel and promising therapeutic target for AML treatment.


Assuntos
Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Leucemia Mieloide Aguda/genética , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Apoptose/fisiologia , Autofagia/fisiologia , Bases de Dados Genéticas , Humanos , Leucemia Mieloide Aguda/metabolismo , PPAR alfa/genética , PPAR alfa/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteostase/fisiologia , Transdução de Sinais/fisiologia , Ubiquitina/metabolismo , Ubiquitinação
10.
Life Sci ; 257: 118015, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32629000

RESUMO

BACKGROUND: Cardiovascular disease (CVD) is the leading cause of mortality worldwide. Cardiac fibrosis is the scarring process occurs commonly with CVDs impairing the function and structure of heart. Herein, we investigated the role of circPAN3 in the pathogenesis of cardiac fibrosis. METHODS: A rat myocardial infarction (MI) model was constructed to evaluate the role of circPAN3. Expression of circPAN3 in MI was determined, and si-circPAN3 was applied to verify its profibrotic effects. With an in vitro model, cardiac fibroblasts were stimulated by transforming growth factor beta 1 (TGFß1). Immunofluorescent staining was employed to assess the fibrosis-related markers, as well as autophagy activity. CCK-8 and transwell assays were performed to determine cell proliferation and migration. Luciferase reporter assay and RNA pull-down were subjected to verify the interaction of circPAN3/miR-221. The enrichment of FoxO3 on the promoter region of ATG7 was detected using CHIP assay. RESULTS: Elevated circPAN3 was found in rat MI heart tissue, of which knockdown attenuated cardiac fibrosis after MI. In an in vitro model exposing with TGFß1, increasing cell proliferation and migration were observed, whereas these effects were abolished by circPAN3 knockdown, as well as autophagy activity. miR-221 was identified as a target to be involved in circPAN3-mediated cardiac fibrosis after MI. miR-221 negatively regulated FoxO3, thus causing the inhibition of ATG7 transcription. The regulatory network of circPAN3/miR-221/FoxO3/ATG7 in cardiac fibrosis was further determined in vivo. CONCLUSION: circPAN3 exhibited profibrotic effects during autophagy-mediated cardiac fibrosis via miR-221/FoxO3/ATG7 axis, which may serve as potential biomarkers for cardiac fibrosis therapeutics.


Assuntos
Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , RNA Circular/genética , Animais , Autofagia/genética , Autofagia/fisiologia , Proteína 7 Relacionada à Autofagia/metabolismo , Proliferação de Células/genética , Modelos Animais de Doenças , Fibroblastos/metabolismo , Fibrose/metabolismo , Proteína Forkhead Box O3/metabolismo , Masculino , MicroRNAs/genética , MicroRNAs/metabolismo , Miocárdio/metabolismo , RNA Circular/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/genética
11.
Proc Natl Acad Sci U S A ; 117(29): 17003-17010, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32632011

RESUMO

Rubicon is a potent negative regulator of autophagy and a potential target for autophagy-inducing therapeutics. Rubicon-mediated inhibition of autophagy requires the interaction of the C-terminal Rubicon homology (RH) domain of Rubicon with Rab7-GTP. Here we report the 2.8-Å crystal structure of the Rubicon RH domain in complex with Rab7-GTP. Our structure reveals a fold for the RH domain built around four zinc clusters. The switch regions of Rab7 insert into pockets on the surface of the RH domain in a mode that is distinct from those of other Rab-effector complexes. Rubicon residues at the dimer interface are required for Rubicon and Rab7 to colocalize in living cells. Mutation of Rubicon RH residues in the Rab7-binding site restores efficient autophagic flux in the presence of overexpressed Rubicon, validating the Rubicon RH domain as a promising therapeutic target.


Assuntos
Proteínas Relacionadas à Autofagia , Autofagia/fisiologia , Proteínas rab de Ligação ao GTP , Proteínas Relacionadas à Autofagia/química , Proteínas Relacionadas à Autofagia/metabolismo , Proteínas Relacionadas à Autofagia/fisiologia , Cristalografia por Raios X , Células HeLa , Humanos , Modelos Moleculares , Ligação Proteica , Domínios Proteicos/fisiologia , Proteínas rab de Ligação ao GTP/química , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab de Ligação ao GTP/fisiologia
12.
Toxicol Lett ; 332: 155-163, 2020 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-32645460

RESUMO

Chronic exposure to arsenic increases the risk of developing a variety of human cancers including lung carcinomas. However, the exact molecular mechanism underlying arsenic carcinogenicity remains largely unknown. Autophagy is a conserved catabolic process for maintaining cellular protein homeostasis whose defects might result in accumulation of dysfunctional organelles and damaged proteins thus promoting tumorigenesis. In the present study, we found that chronic exposure of human bronchial epithelial BEAS-2B cells to sub-lethal dose of sodium arsenite led to autophagy activation and induced an epithelial-to-mesenchymal transition (EMT) to enhance cell migratory and invasive capability. The malignant transformation was mediated via activation of MEK/ERK1/2 signaling. Importantly, inhibition of autophagy in these arsenic-exposed cells by pharmacological intervention or genetic deletion further promoted the EMT and increased the generation of inflammasomes. Both autophagy inhibitor and genetic deletion of autophagy core gene Beclin-1 produced similar effects. These results may suggest the important role of autophagy in sodium arsenite-induced lung tumorigenesis which may serve as a potential target in prevention and treatment of arsenic-imposed lung cancer.


Assuntos
Arsênico/toxicidade , Autofagia/fisiologia , Brônquios/patologia , Neoplasias Brônquicas/induzido quimicamente , Neoplasias Brônquicas/patologia , Transformação Celular Neoplásica/induzido quimicamente , Transformação Celular Neoplásica/patologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Proteína Beclina-1/genética , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Humanos , Inflamassomos/efeitos dos fármacos , Cicatrização/efeitos dos fármacos
13.
Anticancer Res ; 40(7): 3723-3732, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32620611

RESUMO

BACKGROUND/AIM: Skin melanoma belongs to the most invasive malignancies with no cure for a progressing disease. Personalized therapy would allow for the selection of patients that will benefit from treatment. For this purpose, proper predictive biomarkers must be defined. MATERIALS AND METHODS: Allogeneic whole-cell gene-modified therapeutic melanoma vaccine (AGI-101H) was applied in advanced melanoma patients. Humoral responses were analyzed using SEREX, and in silico gene expression analysis in TCGA melanoma patients was performed. RESULTS: A specific antibody response was raised against an antigen identified as BNIP3L, which correlated with a good prognosis. Moreover, AGI-101H directs an immune response against autophagy, as BNIP3L is a marker of this process. Medium and high expression of BNIP3L was also linked with longer overall survival. CONCLUSION: BNIP3L is a candidate prognostic marker of clinical outcome of melanoma patients treated with AGI-101H, and may be considered as a prediction marker for patient survival.


Assuntos
Autofagia/fisiologia , Biomarcadores Tumorais/metabolismo , Melanoma/metabolismo , Melanoma/patologia , Proteínas de Membrana/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Proteínas Supressoras de Tumor/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Vacinas Anticâncer/imunologia , Feminino , Humanos , Masculino , Melanoma/imunologia , Pessoa de Meia-Idade , Prognóstico , Estudos Retrospectivos , Neoplasias Cutâneas/imunologia
14.
Adv Cancer Res ; 148: 27-67, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32723566

RESUMO

Vascular mimicry is induced by a wide array of genes with functions related to cancer stemness, hypoxia, angiogenesis and autophagy. Vascular mimicry competent (VM-competent) cells that form de novo blood vessels are common in solid tumors facilitating tumor cell survival and metastasis. VM-competent cells display increased levels of vascular mimicry selecting for stem-like cells in an O2-gradient-dependent manner in deeply hypoxic tumor regions, while also aiding in maintaining tumor cell metabolism and stemness. Three of the principal drivers of vascular mimicry are EphA2, Nodal and HIF-1α, however, directly or indirectly many of these molecules affect VE-Cadherin (VE-Cad), which forms gap-junctions to bind angiogenic blood vessels together. During vascular mimicry, the endothelial-like functions of VM-competent cancer stem cells co-opt VE-Cad to bind cancer cells together to create cancer cell-derived blood conducting vessels. This process potentially compensates for the lack of access to blood and nutrient in avascular tumors, simultaneously providing nutrients and enhancing cancer invasion and metastasis. Current evidence also supports that vascular mimicry promotes cancer malignancy and metastasis due to the cooperation of oncogenic signaling molecules driving cancer stemness and autophagy. While a number of currently used cancer therapeutics are effective inhibitors of vascular mimicry, developing a new class of vascular mimicry specific inhibitors could allow for the treatment of angiogenesis-resistant tumors, inhibit cancer metastasis and improve patient survival. In this review, we describe the principal vascular mimicry pathways in addition to emphasizing the roles of hypoxia, autophagy and select proangiogenic oncogenes in this process.


Assuntos
Neoplasias/irrigação sanguínea , Neoplasias/patologia , Animais , Autofagia/fisiologia , Hipóxia Celular/fisiologia , Modelos Animais de Doenças , Humanos , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia
15.
Med Hypotheses ; 143: 110083, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32679425

RESUMO

The outbreak of CoronaVirus Disease19 (COVID19) in December 2019 posed a serious threat to public safety, and its rapid spread caused a global health emergency. Clinical data show that in addition to respiratory system damage, some male patients with COVID-19 are also accompanied by abnormal renal function and even renal damage. As the main receptor of syndrome coronavirus 2 (SARS-CoV-2), angiotensin converting enzyme 2 (ACE2) is also found to be highly expressed not only in respiratory mucosa and alveolar epithelial cells, but also in renal tubule cells, testicular Leydig cells and seminiferous tubule cells. This suggests that SARS-CoV-2 has the possibility of infecting the male reproductive system, and the recent detection of SARS-CoV-2 in the patient's semen further confirms this theory. In previous studies, it has been found that ACE2 has the ability to regulate autophagy. Not only that, recent studies have also found that SARS-CoV-2 infection can also lead to a reduction in autophagy. All of these associate SARS-CoV-2 with autophagy. Furthermore, autophagy has been shown to have an effect on male reproduction in many studies. Based on these, we propose the hypothesis that SARS-CoV-2 affects male reproductive function by regulating autophagy. This hypothesis may provide a new idea for future treatment of COVID-19 male patients with reproductive function injury, and it can also prompt medical staff and patients to consciously check their reproductive function.


Assuntos
Autofagia/fisiologia , Betacoronavirus , Infecções por Coronavirus/fisiopatologia , Pneumonia Viral/fisiopatologia , Reprodução/fisiologia , Betacoronavirus/patogenicidade , Infecções por Coronavirus/complicações , Infecções por Coronavirus/patologia , Genitália Masculina/patologia , Genitália Masculina/fisiopatologia , Genitália Masculina/virologia , Humanos , Infertilidade Masculina/etiologia , Infertilidade Masculina/patologia , Infertilidade Masculina/fisiopatologia , Masculino , Modelos Biológicos , Pandemias , Peptidil Dipeptidase A/fisiologia , Pneumonia Viral/complicações , Pneumonia Viral/patologia , Espermatozoides/patologia , Espermatozoides/virologia
16.
Nat Commun ; 11(1): 3148, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32561715

RESUMO

Macroautophagy ("autophagy") is the main lysosomal catabolic process that becomes activated under nutrient-depleted conditions, like amino acid (AA) starvation. The mechanistic target of rapamycin complex 1 (mTORC1) is a well-conserved negative regulator of autophagy. While leucine (Leu) is a critical mTORC1 regulator under AA-starved conditions, how Leu regulates autophagy is poorly understood. Here, we describe that in most cell types, including neurons, Leu negatively regulates autophagosome biogenesis via its metabolite, acetyl-coenzyme A (AcCoA). AcCoA inhibits autophagy by enhancing EP300-dependent acetylation of the mTORC1 component raptor, with consequent activation of mTORC1. Interestingly, in Leu deprivation conditions, the dominant effects on autophagy are mediated by decreased raptor acetylation causing mTORC1 inhibition, rather than by altered acetylation of other autophagy regulators. Thus, in most cell types we examined, Leu regulates autophagy via the impact of its metabolite AcCoA on mTORC1, suggesting that AcCoA and EP300 play pivotal roles in cell anabolism and catabolism.


Assuntos
Autofagia/fisiologia , Leucina/metabolismo , Proteína Regulatória Associada a mTOR/metabolismo , Acetilcoenzima A/metabolismo , Acetilação , Animais , Autofagossomos , Linhagem Celular , Proteína p300 Associada a E1A/metabolismo , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Cultura Primária de Células , Inanição/metabolismo
17.
Life Sci ; 256: 117992, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32569781

RESUMO

AIMS: C1q/tumor necrosis factor-related protein-1 (CTRP1) is a newly identified adiponectin paralog that modulates metabolism and inflammation. However, the cerebral function of CTRP1 remains unknown. This study aimed to determine its role and mechanism in cerebral ischemia and reperfusion injury. MAIN METHODS: Serum level of CTRP1 as well as high-sensitivity C reactive protein (hs-CRP) in stroke patients was measured by ELISA assay. The levels of TNF-α, IL-1ß, and IL-6 were analyzed using ELISA kits. Quantitative RT-PCR, western blot analysis were conducted to detect indicated genes. KEY FINDINGS: CTRP1 was significantly upregulated in sera from patients with stroke and positive correlation with hs-CRP. CTRP1 was significantly upregulated in BV2 microglia exposed to oxygen and glucose deprivation and reperfusion (OGD/R). Knockdown of CTRP1 by si-CTRP1 transfection markedly enhanced OGD/R-induced autophagy and accelerated the inflammatory response in BV2 cells, as indicated by increased expression of LC3-II/LC3-I and beclin1, as well as increased concentration of the proinflammatory cytokines TNF-α, IL-1ß, and IL-6. However, recombinant CTRP1 or overexpression of CTRP1 attenuated OGD/R-induced autophagy and inflammatory response in BV2 cells. Further study demonstrated that knockdown of CTRP1 decreased, while recombinant CTRP1 increased the phosphorylation of Akt and mTOR in BV2 cells. IGF-1, which activates PI3-kinase and MEK1/2, abolished the promotive effect of si-CTRP1, while inhibition of Akt with A6730 reversed the inhibitory effect of recombinant CTRP1 on BV2 cells autophagy and inflammation response. SIGNIFICANCE: CTRP1 inhibited microglia autophagy and inflammation response by regulating the Akt/mTOR pathway.


Assuntos
Autofagia/fisiologia , Microglia/metabolismo , Proteínas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/fisiologia , Serina-Treonina Quinases TOR/metabolismo , Adulto , Animais , Linhagem Celular , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Acidente Vascular Cerebral/metabolismo
18.
PLoS One ; 15(6): e0234180, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32511278

RESUMO

The autophagy-endolysosomal pathway is an evolutionally conserved degradation system that is tightly linked to a wide variety of physiological processes. Dysfunction of this system is associated with many pathological conditions such as cancer, inflammation and neurodegenerative diseases. Therefore, monitoring the cellular autophagy-endolysosomal activity is crucial for studies on the pathogenesis as well as therapeutics of such disorders. To this end, we here sought to create a novel means exploiting Keima, an acid-stable fluorescent protein possessing pH-dependent fluorescence excitation spectra, for precisely monitoring the autophagy-endolysosomal system. First, we generated three lines of transgenic (tg) mouse expressing monomeric Keima-fused MAP1LC3B (mKeima-LC3B). Then, these tg mice were subjected to starvation by food-restriction, and also challenged to neurodegeneration by genetically crossing with a mouse model of amyotrophic lateral sclerosis; i.e., SOD1H46R transgenic mouse. Unexpectedly, despite that a lipidated-form of endogenous LC3 (LC3-II) was significantly increased, those of mKeima-LC3B (mKeima-LC3B-II) were not changed under both stressed conditions. It was also noted that mKeima-LC3B-positive aggregates were progressively accumulated in the spinal cord of SOD1H46R;mKeima-LC3B double-tg mice, suggestive of acid-resistance and aggregate-prone natures of long-term overexpressed mKeima-LC3B in vivo. Next, we characterized mouse embryonic fibroblasts (MEFs) derived from mKeima-LC3B-tg mice. In contrast with in vivo, levels of mKeima-LC3B-I were decreased under starved conditions. Furthermore, when starved MEFs were treated with chloroquine (CQ), the abundance of mKeima-LC3B-II was significantly increased. Remarkably, when cultured medium was repeatedly changed between DMEM (nutrient-rich) and EBSS (starvation), acidic/neutral signal ratios of mKeima-LC3B-positive compartments were rapidly and reversibly shifted, which were suppressed by the CQ treatment, indicating that intraluminal pH of mKeima-LC3B-positive vesicles was changeable upon nutritional conditions of culture media. Taken together, although mKeima-LC3B-tg mice may not be an appropriate tool to monitor the autophagy-endolysosomal system in vivo, mKeima-LC3B must be one of the most sensitive reporter molecules for monitoring this system under in vitro cultured conditions.


Assuntos
Autofagia/fisiologia , Endossomos/metabolismo , Proteínas Luminescentes/genética , Lisossomos/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Animais , Células Cultivadas , Meios de Cultura/farmacologia , Endossomos/genética , Feminino , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/fisiologia , Humanos , Concentração de Íons de Hidrogênio , Proteínas Luminescentes/metabolismo , Lisossomos/genética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Associadas aos Microtúbulos/metabolismo , Mutação , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Inanição , Superóxido Dismutase-1/genética , Imagem com Lapso de Tempo
19.
Nat Commun ; 11(1): 2958, 2020 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-32528010

RESUMO

The high incidence of aneuploidy in the embryo is considered the principal cause for low human fecundity. However, the prevalence of aneuploidy dramatically declines as pregnancy progresses, with the steepest drop occurring as the embryo completes implantation. Despite the fact that the plasticity of the embryo in dealing with aneuploidy is fundamental to normal development, the mechanisms responsible for eliminating aneuploid cells are unclear. Here, using a mouse model of chromosome mosaicism, we show that aneuploid cells are preferentially eliminated from the embryonic lineage in a p53-dependent process involving both autophagy and apoptosis before, during and after implantation. Moreover, we show that diploid cells in mosaic embryos undertake compensatory proliferation during the implantation stages to confer embryonic viability. Together, our results indicate a close link between aneuploidy, autophagy, and apoptosis to refine the embryonic cell population and ensure only chromosomally fit cells proceed through development of the fetus.


Assuntos
Aneuploidia , Apoptose/fisiologia , Autofagia/fisiologia , Animais , Apoptose/genética , Autofagia/genética , Proliferação de Células/genética , Proliferação de Células/fisiologia , Diploide , Implantação do Embrião , Embrião de Mamíferos/metabolismo , Embriologia , Desenvolvimento Embrionário/fisiologia , Feminino , Imunofluorescência , Camadas Germinativas/metabolismo , Camundongos , Mosaicismo
20.
Nat Commun ; 11(1): 2979, 2020 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-32532981

RESUMO

NMDA receptor-dependent long-term depression (NMDAR-LTD) is a long-lasting form of synaptic plasticity. Its expression is mediated by the removal of AMPA receptors from postsynaptic membranes. Under basal conditions, endocytosed AMPA receptors are rapidly recycled back to the plasma membrane. In NMDAR-LTD, however, they are diverted to late endosomes for degradation. The mechanism for this switch is largely unclear. Additionally, the inducibility of NMDAR-LTD is greatly reduced in adulthood. The underlying mechanism and physiological significance of this phenomenon are elusive. Here, we report that autophagy inhibition is essential for the induction and developmental dampening of NMDAR-LTD. Autophagy is inhibited during NMDAR-LTD to decrease endocytic recycling. Autophagy inhibition is both necessary and sufficient for LTD induction. In adulthood, autophagy is up-regulated to make LTD induction harder, thereby preventing the adverse effect of excessive LTD on memory consolidation. These findings reveal the unrecognized functions of autophagy in synaptic plasticity, endocytic recycling, and memory.


Assuntos
Autofagia/fisiologia , Endocitose/fisiologia , Depressão Sináptica de Longo Prazo/fisiologia , Plasticidade Neuronal/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/fisiologia , Animais , Autofagia/genética , Células Cultivadas , Hipocampo/citologia , Hipocampo/metabolismo , Hipocampo/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Neurônios/metabolismo , Neurônios/fisiologia , Técnicas de Cultura de Tecidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA