Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53.478
Filtrar
1.
Nat Commun ; 12(1): 5233, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34475387

RESUMO

Measles virus (MeV) is a highly contagious pathogen that enters the human host via the respiratory route. Besides acute pathologies including fever, cough and the characteristic measles rash, the infection of lymphocytes leads to substantial immunosuppression that can exacerbate the outcome of infections with additional pathogens. Despite the availability of effective vaccine prophylaxis, measles outbreaks continue to occur worldwide. We demonstrate that prophylactic and post-exposure therapeutic treatment with an orally bioavailable small-molecule polymerase inhibitor, ERDRP-0519, prevents measles disease in squirrel monkeys (Saimiri sciureus). Treatment initiation at the onset of clinical signs reduced virus shedding, which may support outbreak control. Results show that this clinical candidate has the potential to alleviate clinical measles and augment measles virus eradication.


Assuntos
Inibidores Enzimáticos/uso terapêutico , Sarampo/prevenção & controle , Morfolinas/uso terapêutico , Piperidinas/uso terapêutico , Pirazóis/uso terapêutico , RNA Polimerase Dependente de RNA/antagonistas & inibidores , Animais , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/farmacocinética , Tolerância Imunológica/efeitos dos fármacos , Imunidade Humoral/efeitos dos fármacos , Vírus do Sarampo/efeitos dos fármacos , Morfolinas/farmacocinética , Piperidinas/farmacocinética , Pirazóis/farmacocinética , Saimiri , Replicação Viral/efeitos dos fármacos , Eliminação de Partículas Virais/efeitos dos fármacos
2.
Nihon Yakurigaku Zasshi ; 156(5): 297-302, 2021.
Artigo em Japonês | MEDLINE | ID: mdl-34470935

RESUMO

Safety pharmacology studies have been clearly defined through discussions at the International Council for Harmonization of Pharmaceutical Regulations (ICH), and are conducted as non-clinical studies according to the ICH S7A and S7B to ensure the safety of subjects participating in clinical studies. The representative of in vitro studies of cardiovascular system is hERG assay, but CiPA recommendations by FDA/HESI (multi-ion channel assays, simulation with in silico model using the multi-ion channel data, human iPS cell-derived cardiomyocyte assay), a new clinical risk prediction strategy that makes effective use of non-clinical data is being established. In addition, regarding the risk of heart failure that induced by anticancer drugs, which are attracting attention as a social problem, technology development has been made centering on human iPS cell-derived cardiomyocytes. There are many issues to be solved, but active challenges are being taken globally to bridge the gap between clinical and non-clinical.


Assuntos
Arritmias Cardíacas , Miócitos Cardíacos , Avaliação Pré-Clínica de Medicamentos , Humanos , Canais Iônicos , Tecnologia
3.
J Opioid Manag ; 17(7): 69-76, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34520028

RESUMO

INTRODUCTION: Urine drug screens (UDS) assist in clinical planning and assessment of adherence in opioid agonist treatment (OAT). Urine drug screens may also be used in criminal justice and child protection settings. Buprenorphine (BPN) UDS testing is complex. Immunoassay often does not detect BPN and gas chromatography-mass spectrometry (GC-MS) is needed. A limited understanding of testing can negatively influence UDS interpretation and clinical decision making. OBJECTIVES: The primary aim was to determine detection rates of BPN in UDS in participants on BPN or buprenorphine/naloxone (BNX) treatment. The secondary aim was to identify if comorbidities, sex, co-prescribed medications, or dosing site and observation were associated with BPN detection. SETTING: Public outpatient clinic in a specialist addiction treatment service. DESIGN/PARTICIPANTS: In this retrospective observational study, records of clients on supervised BPN/BNX treatment between September 2017 and 2018 were reviewed. MEASURES: Data extracted included UDS results, age, sex, indication for BPN, frequency of observed doses, dose of BPN, dosing site, comorbid medical conditions, and medications. RESULTS: One hundred and sixty-one medical records were reviewed. Ninety-seven (60 percent) underwent screening urine immunoassay. Of these 97, 51 (53 percent) had further GC-MS testing for BPN of which 22 (43 percent) did not detect BPN despite directly observed OAT. Co-prescription of medications known to interact with cytochrome P450 3A4 was associated with nondetection of BPN (p < 0.05). No significant association between median dose, dosing site, and observed dosing and BPN detection was identified. CONCLUSION: Urine drug testing for BPN is complex. Failure to detect BPN does not betoken nonadherence to treatment and is associated with co-prescription of drugs interacting with cytochrome P450 3A4.


Assuntos
Buprenorfina , Transtornos Relacionados ao Uso de Opioides , Analgésicos Opioides/efeitos adversos , Buprenorfina/uso terapêutico , Combinação Buprenorfina e Naloxona/uso terapêutico , Criança , Avaliação Pré-Clínica de Medicamentos , Humanos , Naloxona/uso terapêutico , Antagonistas de Entorpecentes/uso terapêutico , Transtornos Relacionados ao Uso de Opioides/diagnóstico , Transtornos Relacionados ao Uso de Opioides/tratamento farmacológico , Transtornos Relacionados ao Uso de Opioides/epidemiologia
4.
Mol Syst Biol ; 17(8): e10239, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34339582

RESUMO

Understanding the mechanism of SARS-CoV-2 infection and identifying potential therapeutics are global imperatives. Using a quantitative systems pharmacology approach, we identified a set of repurposable and investigational drugs as potential therapeutics against COVID-19. These were deduced from the gene expression signature of SARS-CoV-2-infected A549 cells screened against Connectivity Map and prioritized by network proximity analysis with respect to disease modules in the viral-host interactome. We also identified immuno-modulating compounds aiming at suppressing hyperinflammatory responses in severe COVID-19 patients, based on the transcriptome of ACE2-overexpressing A549 cells. Experiments with Vero-E6 cells infected by SARS-CoV-2, as well as independent syncytia formation assays for probing ACE2/SARS-CoV-2 spike protein-mediated cell fusion using HEK293T and Calu-3 cells, showed that several predicted compounds had inhibitory activities. Among them, salmeterol, rottlerin, and mTOR inhibitors exhibited antiviral activities in Vero-E6 cells; imipramine, linsitinib, hexylresorcinol, ezetimibe, and brompheniramine impaired viral entry. These novel findings provide new paths for broadening the repertoire of compounds pursued as therapeutics against COVID-19.


Assuntos
Antivirais/farmacologia , COVID-19/tratamento farmacológico , Avaliação Pré-Clínica de Medicamentos/métodos , Internalização do Vírus/efeitos dos fármacos , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Anti-Inflamatórios não Esteroides/farmacologia , COVID-19/genética , COVID-19/virologia , Chlorocebus aethiops , Reposicionamento de Medicamentos , Células HEK293 , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Interações Hospedeiro-Patógeno/fisiologia , Humanos , Imidazóis/farmacologia , Pirazinas/farmacologia , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/patogenicidade , Xinafoato de Salmeterol/farmacologia , Células Vero
5.
Int J Mol Sci ; 22(15)2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34360558

RESUMO

Experimental screening of large sets of compounds against macromolecular targets is a key strategy to identify novel bioactivities. However, large-scale screening requires substantial experimental resources and is time-consuming and challenging. Therefore, small to medium-sized compound libraries with a high chance of producing genuine hits on an arbitrary protein of interest would be of great value to fields related to early drug discovery, in particular biochemical and cell research. Here, we present a computational approach that incorporates drug-likeness, predicted bioactivities, biological space coverage, and target novelty, to generate optimized compound libraries with maximized chances of producing genuine hits for a wide range of proteins. The computational approach evaluates drug-likeness with a set of established rules, predicts bioactivities with a validated, similarity-based approach, and optimizes the composition of small sets of compounds towards maximum target coverage and novelty. We found that, in comparison to the random selection of compounds for a library, our approach generates substantially improved compound sets. Quantified as the "fitness" of compound libraries, the calculated improvements ranged from +60% (for a library of 15,000 compounds) to +184% (for a library of 1000 compounds). The best of the optimized compound libraries prepared in this work are available for download as a dataset bundle ("BonMOLière").


Assuntos
Algoritmos , Descoberta de Drogas , Ensaios de Triagem em Larga Escala/normas , Proteínas/química , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Avaliação Pré-Clínica de Medicamentos , Ensaios de Triagem em Larga Escala/métodos , Humanos
6.
Life Sci Alliance ; 4(10)2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34353886

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic caused by the new coronavirus (SARS-CoV-2) is currently responsible for more than 3 million deaths in 219 countries across the world and with more than 140 million cases. The absence of FDA-approved drugs against SARS-CoV-2 has highlighted an urgent need to design new drugs. We developed an integrated model of the human cell and SARS-CoV-2 to provide insight into the virus' pathogenic mechanism and support current therapeutic strategies. We show the biochemical reactions required for the growth and general maintenance of the human cell, first, in its healthy state. We then demonstrate how the entry of SARS-CoV-2 into the human cell causes biochemical and structural changes, leading to a change of cell functions or cell death. A new computational method that predicts 20 unique reactions as drug targets from our models and provides a platform for future studies on viral entry inhibition, immune regulation, and drug optimisation strategies. The model is available in BioModels (https://www.ebi.ac.uk/biomodels/MODEL2007210001) and the software tool, findCPcli, that implements the computational method is available at https://github.com/findCP/findCPcli.


Assuntos
COVID-19/tratamento farmacológico , COVID-19/metabolismo , Desenvolvimento de Medicamentos/métodos , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/metabolismo , COVID-19/epidemiologia , Biologia Computacional/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Modelos Biológicos , Pandemias
7.
Sci Rep ; 11(1): 16629, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34404832

RESUMO

Since understanding molecular mechanisms of SARS-CoV-2 infection is extremely important for developing effective therapies against COVID-19, we focused on the internalization mechanism of SARS-CoV-2 via ACE2. Although cigarette smoke is generally believed to be harmful to the pathogenesis of COVID-19, cigarette smoke extract (CSE) treatments were surprisingly found to suppress the expression of ACE2 in HepG2 cells. We thus tried to clarify the mechanism of CSE effects on expression of ACE2 in mammalian cells. Because RNA-seq analysis suggested that suppressive effects on ACE2 might be inversely correlated with induction of the genes regulated by aryl hydrocarbon receptor (AHR), the AHR agonists 6-formylindolo(3,2-b)carbazole (FICZ) and omeprazole (OMP) were tested to assess whether those treatments affected ACE2 expression. Both FICZ and OMP clearly suppressed ACE2 expression in a dose-dependent manner along with inducing CYP1A1. Knock-down experiments indicated a reduction of ACE2 by FICZ treatment in an AHR-dependent manner. Finally, treatments of AHR agonists inhibited SARS-CoV-2 infection into Vero E6 cells as determined with immunoblotting analyses detecting SARS-CoV-2 specific nucleocapsid protein. We here demonstrate that treatment with AHR agonists, including FICZ, and OMP, decreases expression of ACE2 via AHR activation, resulting in suppression of SARS-CoV-2 infection in mammalian cells.


Assuntos
Enzima de Conversão de Angiotensina 2/antagonistas & inibidores , Fatores de Transcrição Hélice-Alça-Hélice Básicos/agonistas , COVID-19/tratamento farmacológico , Carbazóis/farmacologia , Omeprazol/farmacologia , Receptores de Hidrocarboneto Arílico/agonistas , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , COVID-19/virologia , Carbazóis/uso terapêutico , Chlorocebus aethiops , Citocromo P-450 CYP1A1/metabolismo , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Regulação da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Células Hep G2 , Humanos , Omeprazol/uso terapêutico , RNA-Seq , Receptores de Hidrocarboneto Arílico/metabolismo , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/patogenicidade , Transdução de Sinais/efeitos dos fármacos , Células Vero , Internalização do Vírus/efeitos dos fármacos
8.
Mo Med ; 118(4): 346-351, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34373670

RESUMO

Glioblastoma multiforme (GBM) is the most aggressive brain tumor, with median patient survival of 12-15 months even after treatment. To facilitate basic research as well as treatment development, bioengineered GBM models that adequately recapitulate aspects of the in vivo tumor microenvironment are greatly needed. Multicellular spheroids are a well-accepted model in tumor biology as well as drug screening because they recapitulate many of the solid tumor characteristics, such as hypoxic core and cell-cell communication. There are multiple approaches for growing GBM cells into tumor spheroids - non-adherent plastic dishes, hanging drop, bioreactors, and hydrogels, amongst others. Suspension spheroid models offer ease of growth, uniformity, and overall lower cost, but neglect the cell-matrix interactions, while hydrogel-based spheroids capture cell-matrix interactions and allow co-cultures with stromal cells. In this review, we summarize various approaches to fabricate GBM spheroid models as well as GBM spheroid characteristics and chemotherapeutic responsiveness as a function of hydrogel matrix encapsulation and properties, in order to advance therapies.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Neoplasias Encefálicas/tratamento farmacológico , Avaliação Pré-Clínica de Medicamentos , Glioblastoma/tratamento farmacológico , Humanos , Hidrogéis , Esferoides Celulares , Microambiente Tumoral
9.
Molecules ; 26(16)2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34443363

RESUMO

The antimicrobial properties of herbs from Papaveraceae have been used in medicine for centuries. Nevertheless, mutual relationships between the individual bioactive substances contained in these plants remain poorly elucidated. In this work, phytochemical composition of extracts from the aerial and underground parts of five Papaveraceae species (Chelidonium majus L., Corydalis cava (L.) Schweigg. and Körte, C. cheilanthifolia Hemsl., C. pumila (Host) Rchb., and Fumaria vaillantii Loisel.) were examined using LC-ESI-MS/MS with a triple quadrupole analyzer. Large differences in the quality and quantity of all analyzed compounds were observed between species of different genera and also within one genus. Two groups of metabolites predominated in the phytochemical profiles. These were isoquinoline alkaloids and, in smaller amounts, non-phenolic carboxylic acids and phenolic compounds. In aerial and underground parts, 22 and 20 compounds were detected, respectively. These included: seven isoquinoline alkaloids: protopine, allocryptopine, coptisine, berberine, chelidonine, sanguinarine, and chelerythrine; five of their derivatives as well as non-alkaloids: malic acid, trans-aconitic acid, quinic acid, salicylic acid, trans-caffeic acid, p-coumaric acid, chlorogenic acid, quercetin, and kaempferol; and vanillin. The aerial parts were much richer in phenolic compounds regardless of the plant species. Characterized extracts were studied for their antimicrobial potential against planktonic and biofilm-producing cells of S. aureus, P. aeruginosa, and C. albicans. The impact of the extracts on cellular metabolic activity and biofilm biomass production was evaluated. Moreover, the antimicrobial activity of the extracts introduced to the polymeric carrier made of bacterial cellulose was assessed. Extracts of C. cheilanthifolia were found to be the most effective against all tested human pathogens. Multiple regression tests indicated a high antimicrobial impact of quercetin in extracts of aerial parts against planktonic cells of S. aureus, P. aeruginosa, and C. albicans, and no direct correlation between the composition of other bioactive substances and the results of antimicrobial activity were found. Conclusively, further investigations are required to identify the relations between recognized and unrecognized compounds within extracts and their biological properties.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Produtos Biológicos/farmacologia , Papaveraceae/química , Extratos Vegetais/farmacologia , Antibacterianos/química , Biofilmes/crescimento & desenvolvimento , Produtos Biológicos/química , Avaliação Pré-Clínica de Medicamentos , Extratos Vegetais/química , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/fisiologia
10.
Int J Mol Sci ; 22(15)2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34360752

RESUMO

Polymeric-based nano drug delivery systems have been widely exploited to overcome protein instability during formulation. Presently, a diverse range of polymeric agents can be used, among which polysaccharides, such as chitosan (CS), hyaluronic acid (HA) and cyclodextrins (CDs), are included. Due to its unique biological and physicochemical properties, CS is one of the most used polysaccharides for development of protein delivery systems. However, CS has been described as potentially immunogenic. By envisaging a biosafe cytocompatible and haemocompatible profile, this paper reports the systematic development of a delivery system based on CS and derived with HA and CDs to nanoencapsulate the model human phenylalanine hydroxylase (hPAH) through ionotropic gelation with tripolyphosphate (TPP), while maintaining protein stability and enzyme activity. By merging the combined set of biopolymers, we were able to effectively entrap hPAH within CS nanoparticles with improvements in hPAH stability and the maintenance of functional activity, while simultaneously achieving strict control of the formulation process. Detailed characterization of the developed nanoparticulate systems showed that the lead formulations were internalized by hepatocytes (HepG2 cell line), did not reveal cell toxicity and presented a safe haemocompatible profile.


Assuntos
Quitosana , Enzimas Imobilizadas , Teste de Materiais , Nanopartículas/química , Fenilalanina Hidroxilase , Quitosana/química , Quitosana/farmacologia , Avaliação Pré-Clínica de Medicamentos , Estabilidade Enzimática , Enzimas Imobilizadas/química , Enzimas Imobilizadas/farmacologia , Células HEK293 , Células Hep G2 , Humanos , Fenilalanina Hidroxilase/química , Fenilalanina Hidroxilase/farmacologia
11.
Molecules ; 26(16)2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-34443693

RESUMO

The multi-step synthesis, physico-chemical characterization, and biological activity of novel valine-derived compounds, i.e., N-acyl-α-amino acids, 1,3-oxazol-5(4H)-ones, N-acyl-α-amino ketones, and 1,3-oxazoles derivatives, bearing a 4-[(4-chlorophenyl)sulfonyl]phenyl moiety are reported here. The structures of the newly synthesized compounds were confirmed by spectral (UV-Vis, FT-IR, MS, 1H- and 13C-NMR) data and elemental analysis results, and their purity was determined by RP-HPLC. The new compounds were assessed for their antimicrobial activity and toxicity to aquatic crustacean Daphnia magna. Also, in silico studies regarding their potential mechanism of action and toxicity were performed. The antimicrobial evaluation revealed that the 2-{4-[(4-chlorophenyl)sulfonyl]benzamido}-3-methylbutanoic acid and the corresponding 1,3-oxazol-5(4H)-one exhibited antimicrobial activity against Gram-positive bacterial strains and the new 1,3-oxazole containing a phenyl group at 5-position against the C. albicans strain.


Assuntos
Anti-Infecciosos/síntese química , Anti-Infecciosos/toxicidade , Ácido Benzoico/síntese química , Ácido Benzoico/toxicidade , Simulação por Computador , Animais , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Ácido Benzoico/química , Ácido Benzoico/farmacologia , Biofilmes/efeitos dos fármacos , Daphnia/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Testes de Sensibilidade Microbiana , Espectroscopia de Prótons por Ressonância Magnética , Testes de Toxicidade
12.
Int J Mol Sci ; 22(15)2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34360897

RESUMO

Inherited cardiomyopathies are among the major causes of heart failure and associated with significant mortality and morbidity. Currently, over 70 genes have been linked to the etiology of various forms of cardiomyopathy, some of which are X-linked. Due to the lack of appropriate cell and animal models, it has been difficult to model these X-linked cardiomyopathies. With the advancement of induced pluripotent stem cell (iPSC) technology, the ability to generate iPSC lines from patients with X-linked cardiomyopathy has facilitated in vitro modelling and drug testing for the condition. Nonetheless, due to the mosaicism of the X-chromosome inactivation, disease phenotypes of X-linked cardiomyopathy in heterozygous females are also usually more heterogeneous, with a broad spectrum of presentation. Recent advancements in iPSC procedures have enabled the isolation of cells with different lyonisation to generate isogenic disease and control cell lines. In this review, we will summarise the current strategies and examples of using an iPSC-based model to study different types of X-linked cardiomyopathy. The potential application of isogenic iPSC lines derived from a female patient with heterozygous Danon disease and drug screening will be demonstrated by our preliminary data. The limitations of an iPSC-derived cardiomyocyte-based platform will also be addressed.


Assuntos
Genes Ligados ao Cromossomo X , Doença de Depósito de Glicogênio Tipo IIb/genética , Doença de Depósito de Glicogênio Tipo IIb/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/metabolismo , Diferenciação Celular , Linhagem Celular , Avaliação Pré-Clínica de Medicamentos/métodos , Feminino , Doença de Depósito de Glicogênio Tipo IIb/classificação , Doença de Depósito de Glicogênio Tipo IIb/patologia , Heterozigoto , Humanos , Masculino , Mosaicismo , Inativação do Cromossomo X
13.
Int J Mol Sci ; 22(15)2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34360627

RESUMO

Fucosylation is involved in a wide range of biological processes from cellular adhesion to immune regulation. Although the upregulation of fucosylated glycans was reported in diseased corneas, its implication in ocular surface disorders remains largely unknown. In this study, we analyzed the expression of a fucosylated glycan on the ocular surface in two mouse models of dry eye disease (DED), the NOD.B10.H2b mouse model and the environmental desiccating stress model. We furthermore investigated the effects of aberrant fucosylation inhibition on the ocular surface and DED. Results demonstrated that the level of type 2 H antigen, an α(1,2)-fucosylated glycan, was highly increased in the cornea and conjunctiva both in NOD.B10.H2b mice and in BALB/c mice subjected to desiccating stress. Inhibition of α(1,2)-fucosylation by 2-deoxy-D-galactose (2-D-gal) reduced corneal epithelial defects and increased tear production in both DED models. Moreover, 2-D-gal treatment suppressed the levels of inflammatory cytokines in the ocular surface and the percentages of IFN-γ+CD4+ cells in draining lymph nodes, whereas it did not affect the number of conjunctival goblet cells, the MUC5AC level or the meibomian gland area. Together, the findings indicate that aberrant fucosylation underlies the pathogenesis of DED and may be a novel target for DED therapy.


Assuntos
Túnica Conjuntiva/metabolismo , Córnea/metabolismo , Síndromes do Olho Seco/etiologia , Galactose/análogos & derivados , Antígenos H-2/metabolismo , Animais , Túnica Conjuntiva/efeitos dos fármacos , Córnea/efeitos dos fármacos , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Síndromes do Olho Seco/tratamento farmacológico , Síndromes do Olho Seco/metabolismo , Fucose/metabolismo , Galactose/farmacologia , Galactose/uso terapêutico , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Polissacarídeos/metabolismo
14.
Int J Mol Sci ; 22(15)2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34360629

RESUMO

Macrophages play a critical role in the inflammatory response to environmental triggers, such as lipopolysaccharide (LPS). Inflammatory signaling through macrophages and the innate immune system are increasingly recognized as important contributors to multiple acute and chronic disease processes. Nitric oxide (NO) is a free radical that plays an important role in immune and inflammatory responses as an important intercellular messenger. In addition, NO has an important role in inflammatory responses in mucosal environments such as the ocular surface. Histatin peptides are well-established antimicrobial and wound healing agents. These peptides are important in multiple biological systems, playing roles in responses to the environment and immunomodulation. Given the importance of macrophages in responses to environmental triggers and pathogens, we investigated the effect of histatin-1 (Hst1) on LPS-induced inflammatory responses and the underlying molecular mechanisms in RAW264.7 (RAW) macrophages. LPS-induced inflammatory signaling, NO production and cytokine production in macrophages were tested in response to treatment with Hst1. Hst1 application significantly reduced LPS-induced NO production, inflammatory cytokine production, and inflammatory signaling through the JNK and NF-kB pathways in RAW cells. These results demonstrate that Hst1 can inhibit LPS-induced inflammatory mediator production and MAPK signaling pathways in macrophages.


Assuntos
Histatinas/farmacologia , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Animais , Citocinas/metabolismo , Avaliação Pré-Clínica de Medicamentos , Lipopolissacarídeos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Células RAW 264.7
15.
Nat Commun ; 12(1): 5049, 2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-34413304

RESUMO

Preclinical testing is a crucial step in evaluating cancer therapeutics. We aimed to establish a significant resource of patient-derived xenografts (PDXs) of prostate cancer for rapid and systematic evaluation of candidate therapies. The PDX collection comprises 59 tumors collected from 30 patients between 2012-2020, coinciding with availability of abiraterone and enzalutamide. The PDXs represent the clinico-pathological and genomic spectrum of prostate cancer, from treatment-naïve primary tumors to castration-resistant metastases. Inter- and intra-tumor heterogeneity in adenocarcinoma and neuroendocrine phenotypes is evident from bulk and single-cell RNA sequencing data. Organoids can be cultured from PDXs, providing further capabilities for preclinical studies. Using a 1 x 1 x 1 design, we rapidly identify tumors with exceptional responses to combination treatments. To govern the distribution of PDXs, we formed the Melbourne Urological Research Alliance (MURAL). This PDX collection is a substantial resource, expanding the capacity to test and prioritize effective treatments for prospective clinical trials in prostate cancer.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Organoides/patologia , Neoplasias da Próstata/patologia , Animais , Modelos Animais de Doenças , Genoma , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Mutação , Metástase Neoplásica , Organoides/metabolismo , Estudos Prospectivos , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Bancos de Tecidos , Transcriptoma , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Int J Mol Sci ; 22(16)2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34445332

RESUMO

More than 85% of pre-clinically tested drugs fail during clinical trials, which results in a long, inefficient and costly process, suggesting that animal models are often poor predictors of human biology [...].


Assuntos
Descoberta de Drogas/métodos , Células-Tronco Pluripotentes Induzidas/fisiologia , Animais , Técnicas de Cultura de Células , Diferenciação Celular , Células Cultivadas , Descoberta de Drogas/tendências , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Modelos Biológicos
17.
Sci Rep ; 11(1): 16307, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34381116

RESUMO

Structure-based drug design targeting the SARS-CoV-2 virus has been greatly facilitated by available virus-related protein structures. However, there is an urgent need for effective, safe small-molecule drugs to control the spread of the virus and variants. While many efforts are devoted to searching for compounds that selectively target individual proteins, we investigated the potential interactions between eight proteins related to SARS-CoV-2 and more than 600 compounds from a traditional Chinese medicine which has proven effective at treating the viral infection. Our original ensemble docking and cooperative docking approaches, followed by a total of over 16-micorsecond molecular simulations, have identified at least 9 compounds that may generally bind to key SARS-CoV-2 proteins. Further, we found evidence that some of these compounds can simultaneously bind to the same target, potentially leading to cooperative inhibition to SARS-CoV-2 proteins like the Spike protein and the RNA-dependent RNA polymerase. These results not only present a useful computational methodology to systematically assess the anti-viral potential of small molecules, but also point out a new avenue to seek cooperative compounds toward cocktail therapeutics to target more SARS-CoV-2-related proteins.


Assuntos
Antivirais/farmacologia , Avaliação Pré-Clínica de Medicamentos , Medicamentos de Ervas Chinesas/farmacologia , Medicina Tradicional Chinesa , SARS-CoV-2/efeitos dos fármacos , Proteínas Virais/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Antivirais/química , Antivirais/metabolismo , Gatos , Biologia Computacional , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/metabolismo , Flavonoides/metabolismo , Humanos , Simulação de Dinâmica Molecular , Ligação Proteica , RNA Polimerase Dependente de RNA/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Relação Estrutura-Atividade
18.
mBio ; 12(4): e0097021, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34340553

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic has caused significant morbidity and mortality on a global scale. The etiologic agent, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), initiates host cell entry when its spike protein (S) binds to its receptor, angiotensin-converting enzyme 2 (ACE2). In airway epithelia, the spike protein is cleaved by the cell surface protease TMPRSS2, facilitating membrane fusion and entry at the cell surface. This dependence on TMPRSS2 and related proteases suggests that protease inhibitors might limit SARS-CoV-2 infection in the respiratory tract. Here, we tested two serine protease inhibitors, camostat mesylate and nafamostat mesylate, for their ability to inhibit entry of SARS-CoV-2 and that of a second pathogenic coronavirus, Middle East respiratory syndrome coronavirus (MERS-CoV). Both camostat and nafamostat reduced infection in primary human airway epithelia and in the Calu-3 2B4 cell line, with nafamostat exhibiting greater potency. We then assessed whether nafamostat was protective against SARS-CoV-2 in vivo using two mouse models. In mice sensitized to SARS-CoV-2 infection by transduction with human ACE2, intranasal nafamostat treatment prior to or shortly after SARS-CoV-2 infection significantly reduced weight loss and lung tissue titers. Similarly, prophylactic intranasal treatment with nafamostat reduced weight loss, viral burden, and mortality in K18-hACE2 transgenic mice. These findings establish nafamostat as a candidate for the prevention or treatment of SARS-CoV-2 infection and disease pathogenesis. IMPORTANCE The causative agent of COVID-19, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), requires host cell surface proteases for membrane fusion and entry into airway epithelia. We tested the hypothesis that inhibitors of these proteases, the serine protease inhibitors camostat and nafamostat, block infection by SARS-CoV-2. We found that both camostat and nafamostat reduce infection in human airway epithelia, with nafamostat showing greater potency. We then asked whether nafamostat protects mice against SARS-CoV-2 infection and subsequent COVID-19 lung disease. We performed infections in mice made susceptible to SARS-CoV-2 infection by introducing the human version of ACE2, the SARS-CoV-2 receptor, into their airway epithelia. We observed that pretreating these mice with nafamostat prior to SARS-CoV-2 infection resulted in better outcomes, in the form of less virus-induced weight loss, viral replication, and mortality than that observed in the untreated control mice. These results provide preclinical evidence for the efficacy of nafamostat in treating and/or preventing COVID-19.


Assuntos
Benzamidinas/farmacologia , Ésteres/farmacologia , Guanidinas/farmacologia , SARS-CoV-2/efeitos dos fármacos , Serina Endopeptidases/metabolismo , Inibidores de Serino Proteinase/farmacologia , Internalização do Vírus/efeitos dos fármacos , Enzima de Conversão de Angiotensina 2/genética , Animais , COVID-19/tratamento farmacológico , Células Cultivadas , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Humanos , Pulmão/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Coronavírus da Síndrome Respiratória do Oriente Médio/efeitos dos fármacos , Mucosa Respiratória/patologia , Mucosa Respiratória/virologia , Glicoproteína da Espícula de Coronavírus/metabolismo
19.
J Enzyme Inhib Med Chem ; 36(1): 1874-1883, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34340614

RESUMO

A library of variously decorated N-phenyl secondary sulphonamides featuring the bicyclic tetrahydroquinazole scaffold was synthesised and biologically evaluated for their inhibitory activity against human carbonic anhydrase (hCA) I, II, IV, and IX. Of note, several compounds were identified showing submicromolar potency and excellent selectivity for the tumour-related hCA IX isoform. Structure-activity relationship data attained for various substitutions were rationalised by molecular modelling studies in terms of both inhibitory activity and selectivity.


Assuntos
Inibidores da Anidrase Carbônica/farmacologia , Biologia Computacional/métodos , Isoenzimas/antagonistas & inibidores , Quinazolinas/química , Sulfonamidas/farmacologia , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Inibidores da Anidrase Carbônica/síntese química , Inibidores da Anidrase Carbônica/química , Avaliação Pré-Clínica de Medicamentos , Simulação de Acoplamento Molecular , Espectroscopia de Prótons por Ressonância Magnética , Relação Estrutura-Atividade , Sulfonamidas/química
20.
Viruses ; 13(8)2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-34452405

RESUMO

Transcriptomics, proteomics and pathogen-host interactomics data are being explored for the in silico-informed selection of drugs, prior to their functional evaluation. The effectiveness of this kind of strategy has been put to the test in the current COVID-19 pandemic, and it has been paying off, leading to a few drugs being rapidly repurposed as treatment against SARS-CoV-2 infection. Several neglected tropical diseases, for which treatment remains unavailable, would benefit from informed in silico investigations of drugs, as performed in this work for Dengue fever disease. We analyzed transcriptomic data in the key tissues of liver, spleen and blood profiles and verified that despite transcriptomic differences due to tissue specialization, the common mechanisms of action, "Adrenergic receptor antagonist", "ATPase inhibitor", "NF-kB pathway inhibitor" and "Serotonin receptor antagonist", were identified as druggable (e.g., oxprenolol, digoxin, auranofin and palonosetron, respectively) to oppose the effects of severe Dengue infection in these tissues. These are good candidates for future functional evaluation and clinical trials.


Assuntos
Antivirais/uso terapêutico , Dengue/tratamento farmacológico , Transcriptoma , Adenosina Trifosfatases/antagonistas & inibidores , Antagonistas Adrenérgicos/farmacologia , Antagonistas Adrenérgicos/uso terapêutico , Antivirais/farmacologia , Encéfalo/metabolismo , Simulação por Computador , Dengue/sangue , Dengue/genética , Dengue/metabolismo , Descoberta de Drogas , Avaliação Pré-Clínica de Medicamentos , Reposicionamento de Medicamentos , Humanos , Fígado/metabolismo , Redes e Vias Metabólicas/efeitos dos fármacos , NF-kappa B/metabolismo , Antagonistas da Serotonina/farmacologia , Antagonistas da Serotonina/uso terapêutico , Dengue Grave/sangue , Dengue Grave/tratamento farmacológico , Dengue Grave/genética , Dengue Grave/metabolismo , Baço/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...