Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.350
Filtrar
1.
BMC Genomics ; 22(1): 276, 2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33863285

RESUMO

BACKGROUND: Stem rot caused by Sclerotium rolfsii is a very important soil-borne disease of peanut. S. rolfsii is a necrotrophic plant pathogenic fungus with an extensive host range and worldwide distribution. It can infect peanut stems, roots, pegs and pods, leading to varied yield losses. S. rolfsii strains GP3 and ZY collected from peanut in different provinces of China exhibited a significant difference in aggressiveness on peanut plants by artificial inoculation test. In this study, de-novo genome sequencing of these two distinct strains was performed aiming to reveal the genomic basis of difference in aggressiveness. RESULTS: Scleotium rolfsii strains GP3 and ZY, with weak and high aggressiveness on peanut plants, exhibited similar growth rate and oxalic acid production in laboratory. The genomes of S. rolfsii strains GP3 and ZY were sequenced by Pacbio long read technology and exhibited 70.51 Mb and 70.61 Mb, with contigs of 27 and 23, and encoded 17,097 and 16,743 gene models, respectively. Comparative genomic analysis revealed that the pathogenicity-related gene repertoires, which might be associated with aggressiveness, differed between GP3 and ZY. There were 58 and 45 unique pathogen-host interaction (PHI) genes in GP3 and ZY, respectively. The ZY strain had more carbohydrate-active enzymes (CAZymes) in its secretome than GP3, especially in the glycoside hydrolase family (GH), the carbohydrate esterase family (CBM), and the polysaccharide lyase family (PL). GP3 and ZY also had different effector candidates and putative secondary metabolite synthetic gene clusters. These results indicated that differences in PHI, secreted CAZymes, effectors and secondary metabolites may play important roles in aggressive difference between these two strains. CONCLUSIONS: The data provided a further understanding of the S. rolfsii genome. Genomic comparison provided clues to the difference in aggressiveness of S. rolfsii strains.


Assuntos
Arachis/genética , Arachis/microbiologia , Regulação da Expressão Gênica de Plantas , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Interações Hospedeiro-Patógeno , Doenças das Plantas/microbiologia , Arachis/imunologia , Basidiomycota , China , Genômica , Doenças das Plantas/imunologia
2.
BMC Plant Biol ; 21(1): 171, 2021 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-33838652

RESUMO

BACKGROUND: A better understanding of non-structural carbohydrate (NSC) dynamics in trees under drought stress is critical to elucidate the mechanisms underlying forest decline and tree mortality from extended periods of drought. This study aimed to assess the contribution of ectomycorrhizal (ECM) fungus (Suillus variegatus) to hydraulic function and NSC in roots, stems, and leaves of Pinus tabulaeformis subjected to different water deficit intensity. We performed a continuous controlled drought pot experiment from July 10 to September 10, 2019 using P. tabulaeformis seedlings under 80, 40, and 20% of the field moisture capacity that represented the absence of non-drought, moderate drought, and severe drought stress, respectively. RESULTS: Results indicated that S. variegatus decreased the mortality rate and increased height, root biomass, and leaf biomass of P. tabulaeformis seedlings under moderate and severe drought stress. Meanwhile, the photosynthetic rates, stomatal conductance, and transpiration rates of P. tabulaeformis were significantly increased after S. variegatus inoculation. Moreover, the inoculation of S. variegatus also significantly increased the NSC concentrations of all seedling tissues, enhanced the soluble sugars content, and increased the ratios of soluble sugars to starch on all tissues under severe drought. Overall, the inoculation of S. variegatus has great potential for improving the hydraulic function, increasing the NSC storage, and improving the growth of P. tabulaeformis under severe drought. CONCLUSIONS: Therefore, the S. variegatus can be used as a potential application strain for ecological restoration on arid regions of the Loess Plateau, especially in the P. tabulaeformis woodlands.


Assuntos
Basidiomycota/fisiologia , Metabolismo dos Carboidratos , Secas , Micorrizas/fisiologia , Pinus/fisiologia , Pinus/crescimento & desenvolvimento , Pinus/microbiologia , Estresse Fisiológico
3.
Mycorrhiza ; 31(3): 301-312, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33852063

RESUMO

Most green orchids form mycorrhizal associations with rhizoctonia fungi, a polyphyletic group including Serendipitaceae, Ceratobasidiaceae, and Tulasnellaceae. Although accumulating evidence indicated that partial mycoheterotrophy occurs in such so-called rhizoctonia-associated orchids, it remains unclear how much nutrition rhizoctonia-associated orchids obtain via mycoheterotrophic relationships. We investigated the physiological ecology of green and albino individuals of a rhizoctonia-associated orchid Cypripedium debile, by using molecular barcoding of the mycobionts and stable isotope (13C and 15 N) analysis. Molecular barcoding of the mycobionts indicated that the green and albino individuals harbored Tulasnella spp., which formed a clade with the previously reported C. debile mycobionts. In addition, stable isotope analysis showed that both phenotypes were significantly enriched in 13C but not in 15 N. Therefore, green and albino individuals were recognized as partial and full mycoheterotrophs, respectively. The green variants were estimated to obtain 42.5 ± 8.2% of their C from fungal sources, using the 13C enrichment factor of albino individuals as a mycoheterotrophic endpoint. The proportion of fungal-derived C in green C. debile was higher than that reported in other rhizoctonia-associated orchids. The high fungal dependence may facilitate the emergence of albino mutants. Our study provides the first evidence of partial mycoheterotrophy in the subfamily Cypripedioideae. Partial mycoheterotrophy may be more general than previously recognized in the family Orchidaceae.


Assuntos
Basidiomycota , Micorrizas , Orchidaceae , Basidiomycota/genética , Isótopos de Carbono/análise , Micorrizas/química , Micorrizas/genética , Fenótipo , Filogenia , Simbiose
4.
Molecules ; 26(6)2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33809760

RESUMO

Investigation of the methanol extract of the poroid fungus Fuscoporia torulosa resulted in the isolation of a novel triterpene, fuscoporic acid (1), together with inoscavin A and its previously undescribed Z isomer (2 and 3), 3,4-dihydroxy-benzaldehide (4), osmundacetone (5), senexdiolic acid (6), natalic acid (7), and ergosta-7,22-diene-3-one (8). The structures of fungal compounds were determined on the basis of NMR and MS spectroscopic analyses, as well as molecular modeling studies. Compounds 1, 6-8 were examined for their antibacterial properties on resistant clinical isolates, and cytotoxic activity on human colon adenocarcinoma cell lines. Compound 8 was effective against Colo 205 (IC50 11.65 ± 1.67 µM), Colo 320 (IC50 8.43 ± 1.1 µM) and MRC-5 (IC50 7.92 ± 1.42 µM) cell lines. Potentially synergistic relationship was investigated between 8 and doxorubicin, which revealed a synergism between the examined compounds with a combination index (CI) at the 50% growth inhibition dose (ED50) of 0.521 ± 0.15. Several compounds (1 and 6-8) were tested for P-glycoprotein modulatory effect in Colo 320 resistant cancer cells, but none of the compounds proved to be effective in this assay. Fungal metabolites 2-5 were evaluated for their antioxidant activity using the oxygen radical absorbance capacity (ORAC) and DPPH assays. Compounds 4 and 5 were found to have a considerable antioxidant effect with EC50 0.25 ± 0.01 (DPPH) and 12.20 ± 0.92 mmol TE/g (ORAC). The current article provides valuable information on both the chemical and pharmacological profiles of Fuscoporia torulosa, paving the way for future studies with this species.


Assuntos
Basidiomycota/química , Fenóis/química , Fenóis/farmacologia , Triterpenos/química , Triterpenos/farmacologia , Antibacterianos/química , Antibacterianos/farmacologia , Antioxidantes/química , Antioxidantes/fisiologia , Linhagem Celular Tumoral , Humanos , Metanol/química
5.
Microbiome ; 9(1): 86, 2021 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-33836842

RESUMO

BACKGROUND: Microbes benefit plants by increasing nutrient availability, producing plant growth hormones, and protecting against pathogens. However, it is largely unknown how plants change root microbial communities. RESULTS: In this study, we used a multi-cycle selection system and infection by the soilborne fungal pathogen Rhizoctonia solani AG8 (hereafter AG8) to examine how plants impact the rhizosphere bacterial community and recruit beneficial microorganisms to suppress soilborne fungal pathogens and promote plant growth. Successive plantings dramatically enhanced disease suppression on susceptible wheat cultivars to AG8 in the greenhouse. Accordingly, analysis of the rhizosphere soil microbial community using deep sequencing of 16S rRNA genes revealed distinct bacterial community profiles assembled over successive wheat plantings. Moreover, the cluster of bacterial communities formed from the AG8-infected rhizosphere was distinct from those without AG8 infection. Interestingly, the bacterial communities from the rhizosphere with the lowest wheat root disease gradually separated from those with the worst wheat root disease over planting cycles. Successive monocultures and application of AG8 increased the abundance of some bacterial genera which have potential antagonistic activities, such as Chitinophaga, Pseudomonas, Chryseobacterium, and Flavobacterium, and a group of plant growth-promoting (PGP) and nitrogen-fixing microbes, including Pedobacter, Variovorax, and Rhizobium. Furthermore, 47 bacteria isolates belong to 35 species were isolated. Among them, eleven and five exhibited antagonistic activities to AG8 and Rhizoctonia oryzae in vitro, respectively. Notably, Janthinobacterium displayed broad antagonism against the soilborne pathogens Pythium ultimum, AG8, and R. oryzae in vitro, and disease suppressive activity to AG8 in soil. CONCLUSIONS: Our results demonstrated that successive wheat plantings and pathogen infection can shape the rhizosphere microbial communities and specifically accumulate a group of beneficial microbes. Our findings suggest that soil community selection may offer the potential for addressing agronomic concerns associated with plant diseases and crop productivity. Video Abstract.


Assuntos
Rizosfera , Microbiologia do Solo , Bactérias/genética , Basidiomycota , Raízes de Plantas , RNA Ribossômico 16S/genética , Rhizoctonia
6.
Nat Commun ; 12(1): 2261, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33859194

RESUMO

Expanding the portfolio of products that can be made from lignin will be critical to enabling a viable bio-based economy. Here, we engineer Pseudomonas putida for high-yield production of the tricarboxylic acid cycle-derived building block chemical, itaconic acid, from model aromatic compounds and aromatics derived from lignin. We develop a nitrogen starvation-detecting biosensor for dynamic two-stage bioproduction in which itaconic acid is produced during a non-growth associated production phase. Through the use of two distinct itaconic acid production pathways, the tuning of TCA cycle gene expression, deletion of competing pathways, and dynamic regulation, we achieve an overall maximum yield of 56% (mol/mol) and titer of 1.3 g/L from p-coumarate, and 1.4 g/L titer from monomeric aromatic compounds produced from alkali-treated lignin. This work illustrates a proof-of-principle that using dynamic metabolic control to reroute carbon after it enters central metabolism enables production of valuable chemicals from lignin at high yields by relieving the burden of constitutively expressing toxic heterologous pathways.


Assuntos
Lignina/metabolismo , Engenharia Metabólica/métodos , Pseudomonas putida/metabolismo , Succinatos/metabolismo , Álcalis/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Basidiomycota/enzimologia , Basidiomycota/genética , Técnicas Biossensoriais , Burkholderia/enzimologia , Burkholderia/genética , Carbono/metabolismo , Ciclo do Ácido Cítrico/genética , Ácidos Cumáricos/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Microbiologia Industrial/métodos , Lignina/química , Estudo de Prova de Conceito , Pseudomonas putida/genética
7.
Plant Physiol Biochem ; 162: 196-210, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33691250

RESUMO

Carotenoid cleavage oxygenases (CCOs) play crucial roles in plant growth and development, as well as in the response to phytohormonal, biotic and abiotic stresses. However, comprehensive and systematic research on the CCO gene family has not yet been conducted in Saccharum. In this study, 47 SsCCO and 14 ShCCO genes were identified and characterized in Saccharum spontaneum and Saccharum spp. R570 cultivar, respectively. The SsCCOs consisted of 38 SsCCDs and 9 SsNCEDs, while ShCCOs contained 11 ShCCDs and 3 ShNCEDs. The SsCCO family could be divided into 7 groups, while ShCCO family into 5 groups. The genes/proteins contained similar compositions within the same group, and the evolutionary mechanisms differed between S. spontaneum and R570. Gene Ontology annotation implied that CCOs were involved in many physiological and biochemical processes. Additionally, 41 SsCCOs were regulated by 19 miRNA families, and 8 ShCCOs by 9 miRNA families. Cis-regulatory elements analysis suggested that CCO genes functioned in the process of growth and development or under the phytohormonal, biotic and abiotic stresses. qRT-PCR analysis indicated that nine CCO genes from different groups exhibited similar expression patterns under abscisic acid treatment, while more divergent profiles were observed in response to Sporisorium scitamineum and cold stresses. Herein, comparative genomics analysis of the CCO gene family between S. spontaneum and R570 was conducted to investigate its evolution and functions. This is the first report on the CCO gene family in S. spontaneum and R570, thus providing valuable information and facilitating further investigation into its function in the future.


Assuntos
Saccharum , Ácido Abscísico , Basidiomycota , Regulação da Expressão Gênica de Plantas , Oxigenases/metabolismo , Filogenia , Reguladores de Crescimento de Planta , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Saccharum/metabolismo
8.
Plant Dis ; 105(4): 1108-1114, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33749313

RESUMO

The efficacy and timing of eight foliar fungicides to manage southern rust of corn (caused by Puccinia polysora Underwood) was investigated over 4 years in three field experiments. Each experiment consisted of one-, two-, or three-fungicide application timings at tassel, milk, or dent growth stages with quinone outside inhibitor (QoI), demethylation inhibitor (DMI), or QoI + DMI fungicides. Each year trace amounts of southern rust were observed in the field at tassel, except in 2018, when rust was not observed until physiological maturity. Southern rust severity on ear leaf and two leaves above the ear leaf was approximately 50, 35, 75, and 0% at dent in 2015, 2016, 2017, and 2018, respectively. Applications that contained a QoI or QoI + DMI fungicide provided greater southern rust control than DMI fungicides, with little variation within fungicide classes. Applications of QoI or QoI + DMI fungicides applied at tassel provided greater disease control (52.5%) than those applied at milk (5.8%) or dent (1.4%), and greater yield protection (40.4%) than those applied at milk (23.7%) or dent (2.6%) when final rust development was severe (>40%). When rust development increased later in the season, after milk growth stage, a trend of better disease control was observed with fungicides applied at milk (57.8%) compared with tassel (35.2%), but grain yield protection was similar, with an average yield protection of 7.4%. There was no yield benefit with fungicides applied in the absence of disease or at the dent growth stage. Southern rust was most effectively managed with QoI or QoI + DMI fungicides applied at tassel when southern rust was present and environmental conditions favored rust development.


Assuntos
Basidiomycota , Fungicidas Industriais , Arkansas , Fungicidas Industriais/farmacologia , Zea mays
9.
Nat Commun ; 12(1): 1846, 2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33758180

RESUMO

A wide repertoire of genetic switches has accelerated prokaryotic synthetic biology, while eukaryotic synthetic biology has lagged in the model organism Saccharomyces cerevisiae. Eukaryotic genetic switches are larger and more complex than prokaryotic ones, complicating the rational design and evolution of them. Here, we present a robust workflow for the creation and evolution of yeast genetic switches. The selector system was designed so that both ON- and OFF-state selection of genetic switches is completed solely by liquid handling, and it enabled parallel screen/selection of different motifs with different selection conditions. Because selection threshold of both ON- and OFF-state selection can be flexibly tuned, the desired selection conditions can be rapidly pinned down for individual directed evolution experiments without a prior knowledge either on the library population. The system's utility was demonstrated using 20 independent directed evolution experiments, yielding genetic switches with elevated inducer sensitivities, inverted switching behaviours, sensory functions, and improved signal-to-noise ratio (>100-fold induction). The resulting yeast genetic switches were readily integrated, in a plug-and-play manner, into an AND-gated carotenoid biosynthesis pathway.


Assuntos
Evolução Molecular Direcionada/métodos , Genes de Troca , Engenharia Genética/métodos , Técnicas Genéticas , Saccharomyces cerevisiae/genética , Biologia Sintética/métodos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Basidiomycota/genética , Basidiomycota/metabolismo , Citometria de Fluxo , Biblioteca Gênica , Genes Reporter , Floroglucinol/análogos & derivados , Floroglucinol/farmacologia , Regiões Promotoras Genéticas , Proteínas Repressoras/química , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Razão Sinal-Ruído , Tetraciclina/farmacologia , Transativadores/química , Transativadores/genética , Transativadores/metabolismo , beta Caroteno/biossíntese , beta Caroteno/genética , beta Caroteno/metabolismo
10.
Food Chem ; 352: 129456, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-33711727

RESUMO

Release of bioelements and phenolic compounds from edible mushrooms (Agaricus bisporus, Cantharellus cibarius, and Lentinula edodes) enriched with zinc, selenium, l-phenylalanine, alone and as a mixture was examined using a simulated human gastrointestinal digestion method. Due to the extensive amount of data obtained, in order to interpret them more precisely in the work, the methods of chemometric analysis (Cluster Analysis-CA and Principal Compenent Analysis-PCA) were additionally applied. The results showed mycelium of L. edodes has the best health-promoting properties and addition of mixture to the media increased significantly the synthesis of p-hydroxybenzoic and protocatechuic acid (267 and 16.3 mg/100 g d.w.). After extraction into artificial digestive juices, 97.4 mg/100 g d.w. p-hydroxybenzoic acid and 15.6 mg/100 g d.w. of protocatechuic acid were released. The greatest amounts of Se and Zn were extracted from enriched A. bisporus mycelium (32.3 and 342 mg/100 g d.w., respectively). This study confirmed that mycelium might prevent nutritional deficiencies in the diet through use of functional foods.


Assuntos
Agaricus/química , Basidiomycota/química , Micélio/química , Fenóis/análise , Cogumelos Shiitake/química , Disponibilidade Biológica , Digestão , Humanos , Fenóis/metabolismo
11.
J Med Microbiol ; 70(3)2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33688802

RESUMO

Introduction. Trichosporon asahii has been recognized as an opportunistic agent having a limited sensitivity to antifungal treatment.Hypothesis/Gap Statement. Molecular mechanisms of azole resistance have been rarely reported for Trichosproron asahii. Similar to other fungi, we hypothesized that both ERG11 gene mutation and efflux pumps genes hyper-expression were implicated.Aim. The current work aimed to study the sensitivity of clinical T. asahii isolates to different antifungal agents and to explore their resistance mechanisms by molecular methods including real-time PCR and gene sequencing.Methods. The sensitivity of T. asahii isolates to fluconazole, amphotericin B and voriconazole was estimated by the Etest method. Real-time PCR was used to measure the relative expression of Pdr11, Mdr and ERG11 genes via the ACT1 housekeeping gene. Three pairs of primers were also chosen to sequence the ERG11 gene. This exploration was followed by statistical study including the receiver operating characteristic (ROC) curve analysis to identify a relationship between gene mean expression and the sensitivity of isolates.Results. In 31 clinical isolates, the resistance frequencies were 87, 16.1 and 3.2 %, respectively, for amphotericin B, fluconazole and voriconazole. Quantitative real-time PCR demonstrated that only Mdr over-expression was significantly associated with FCZ resistance confirmed by univariate statistical study and the ROC curve analysis (P <0.05). The ERG11 sequencing revealed two mutations H380G and S381A in TN325U11 (MIC FCZ=8 µg ml-1) and H437R in TN114U09 (MIC FCZ=256 µg ml-1) in highly conserved regions (close to the haem-binding domain) but their involvement in the resistance mechanism has not yet been assigned.Conclusion. T. asahii FCZ resistance mechanisms are proven to be much more complex and gene alteration sequence and/or expression can be involved. Only Mdr gene over-expression was significantly associated with FCZ resistance and no good correlation was observed between FCZ and VCZ MIC values and relative gene expression. ERG11 sequence alteration seems to play a major role in T. asahii FCZ resistance mechanism but their involvement needs further confirmation.


Assuntos
Antifúngicos/farmacologia , Basidiomycota , Sistema Enzimático do Citocromo P-450/genética , Farmacorresistência Fúngica/genética , Proteínas Fúngicas/genética , Tricosporonose/microbiologia , Anfotericina B/farmacologia , Basidiomycota/efeitos dos fármacos , Basidiomycota/genética , Fluconazol/farmacologia , Humanos , Voriconazol/farmacologia
12.
Carbohydr Polym ; 260: 117505, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33712177

RESUMO

Exopolysaccharide (EPS) secretion by Sclerotium rolfsii ATCC 201126 in submerged cultures, already identified as high-osmolarity responsive, was assessed by reducing C-source without compromising EPS yields. A designed medium with 80 g sucrose L-1 (MOPT80) was tested at 3 L-bioreactor scale at different temperature, agitation, aeration and pH (uncontrolled vs. controlled) values. Optimal operative conditions (200 rpm, 28 °C, 0.5 vvm and initial pH -pHi- 4.5) were validated, as well as the possibility to work at pHi 5.5 to reduce biomass production. Purified EPSs produced in MOPT80 at optimal and other valid operative conditions exhibited refined grade (<1 % proteins and ash, 3-4 % reducing sugars, 87-99 % total sugars). EPS purity, MW and rheological parameters led to discourage pH controlled at 4.5. Relatively constant MW (6-8 × 106 Da) and outstanding viscosifying ability were found. Polyphasic EPS analysis (titre, purity, macromolecular features and rheological fitness) would support to properly select production conditions.


Assuntos
Basidiomycota/crescimento & desenvolvimento , Reatores Biológicos , Glucanos/metabolismo , Basidiomycota/metabolismo , Biomassa , Reatores Biológicos/economia , Meios de Cultura/química , Concentração de Íons de Hidrogênio , Reologia , Temperatura
13.
Int J Mol Sci ; 22(5)2021 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-33673430

RESUMO

To discover new compounds with broad spectrum and high activity, we designed a series of novel benzamides containing 1,2,4-oxadiazole moiety by bioisosterism, and 28 benzamides derivatives with antifungal activity were synthesized. These compounds were evaluated against four fungi: Botrytis cinereal, FusaHum graminearum, Marssonina mali, and Thanatephorus cucumeris. The results indicated that most of the compounds displayed good fungicidal activities, especially against Botrytis cinereal. For example, 10a (84.4%), 10d (83.6%), 10e (83.3%), 10f (83.1%), 10i (83.3%), and 10l (83.6%) were better than pyraclostrobin (81.4%) at 100 mg/L. In addition, the acute toxicity of 10f to zebrafish embryo was 20.58 mg/L, which was classified as a low-toxicity compound.


Assuntos
Antifúngicos/farmacologia , Benzamidas/farmacologia , Oxidiazóis/farmacologia , Peixe-Zebra/microbiologia , Animais , Ascomicetos/efeitos dos fármacos , Basidiomycota/efeitos dos fármacos , Benzamidas/síntese química , Benzamidas/química , Benzamidas/toxicidade , Botrytis/efeitos dos fármacos , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/microbiologia , Fusarium/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Oxidiazóis/síntese química , Oxidiazóis/química , Oxidiazóis/toxicidade , Peixe-Zebra/embriologia
14.
Mil Med Res ; 8(1): 19, 2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33750466

RESUMO

BACKGROUND: Invasive Trichosporon asahii (T. asahii) infection frequently occurs with a high mortality in immunodeficient hosts, but the pathogenesis of T. asahii infection remains elusive. Circular RNAs (circRNAs) are a type of endogenous noncoding RNA that participate in various disease processes. However, the mechanism of circRNAs in T. asahii infection remains completely unknown. METHODS: RNA sequencing (RNA-seq) was performed to analyze the expression profiles of circRNAs, microRNAs (miRNAs), and mRNAs in THP-1 cells infected with T. asahii or uninfected samples. Some of the RNA-seq results were verified by RT-qPCR. Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were used to analyze the differentially expressed mRNAs. A circRNA-miRNA-mRNA network was constructed and verified by dual-luciferase reporter assay and overexpression experiments. RESULTS: A total of 46 circRNAs, 412 mRNAs and 47 miRNAs were differentially expressed at 12 h after T. asahii infection. GO and KEGG analyses showed that the differentially expressed mRNAs were primarily linked to the leukocyte migration involved in the inflammatory response, the Toll-like receptor signaling pathway, and the TNF signaling pathway. A competing endogenous RNA (ceRNA) network was constructed with 5 differentially expressed circRNAs, 5 differentially expressed miRNAs and 42 differentially expressed mRNAs. Among them, hsa_circ_0065336 was found to indirectly regulate PTPN11 expression by sponging miR-505-3p. CONCLUSIONS: These data revealed a comprehensive circRNA-associated ceRNA network during T. asahii infection, thus providing new insights into the pathogenesis of the T. asahii-host interactions.


Assuntos
Basidiomycota/efeitos dos fármacos , MicroRNAs/farmacologia , RNA Circular/farmacologia , RNA Mensageiro/farmacologia , Tricosporonose/terapia , Basidiomycota/patogenicidade , Humanos , MicroRNAs/uso terapêutico , RNA Circular/uso terapêutico , RNA Mensageiro/uso terapêutico , Transdução de Sinais/efeitos dos fármacos
15.
Zhongguo Zhong Yao Za Zhi ; 46(2): 290-297, 2021 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-33645114

RESUMO

In order to identify the species and biological characteristics of the pathogen of southern blight from three kinds of Chinese medicine of Iridaceae(Belamcanda chinensis, Iris tectorum and I. japonica) in Dabie Mountains, the isolation, identification, pathogenicity and biological characteristics of the pathogens were studied according to Koch's postulates. In addition, 9 chemical fungicides, 3 botanical fungicides and 5 microbial fungicides were used to evaluate their inhibition to the isolates in vitro. The results showed that all the strains(SG-Q, YW-Q, and HDH-Q) isolated and purified from the diseased plants of B. chinensis, I. tectorum and I. japonica, respectively, were identified as Sclerotium rolfsii through morphological observation and sequence aligement of 18 S rDNA, rDNA-ITS and TEF. Field observations showed that the intensity of the disease incidence of three Iridaceae plants was B. chinensis>I. japonica> I. tectorum, and the pathogenicity of the strains was SG-Q>YW-Q>HDH-Q. For biological characteristics, SG-Q strain was suitable for growth under the 12 h light/12 h dark cycle, with the optimal growth temperature of 30 ℃ and pH of 5. Among the 9 tested chemical fungicides, 29% lime sulphure and 10% flusilazole had stronger inhibitory effect on mycelia growth of SG-Q. For 3 botanical fungicides, 1% osthol, 20% eugenol and 0.5% berberine could effectively inhibt the mycelial growth of SG-Q and cause the morphological variation of the pathogen. For 5 microbial fungicides, Trichoderma harzianum and Bacillus subtilis had better inhibition on the mycelium growth of SG-Q.


Assuntos
Basidiomycota , Iridaceae , Medicina , Hypocreales
16.
Adv Exp Med Biol ; 1261: 137-151, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33783736

RESUMO

Xanthophyllomyces dendrorhous (with Phaffia rhodozyma as its anamorphic state) is a basidiomycetous, moderately psychrophilic, red yeast belonging to the Cystofilobasidiales. Its red pigmentation is caused by the accumulation of astaxanthin, which is a unique feature among fungi. The present chapter reviews astaxanthin biosynthesis and acetyl-CoA metabolism in X. dendrorhous and describes the construction of a versatile platform for the production of carotenoids, such as astaxanthin, and other acetyl-CoA-derived compounds including fatty acids by using this fungus.


Assuntos
Basidiomycota , Carotenoides , Acetilcoenzima A , Basidiomycota/genética
17.
Adv Exp Med Biol ; 1261: 153-163, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33783737

RESUMO

Oleaginous yeasts, Yarrowia lipolytica and Lipomyces starkeyi, can synthesize more than 20% of lipids per dry cell weight from a wide variety of substrates. This feature is attractive for cost-efficient production of industrial biodiesel fuel. These yeasts are also very promising hosts for the efficient production of more value-added lipophilic compound carotenoids, e.g., lycopene and astaxanthin, although they cannot naturally biosynthesize carotenoids. Here, we review recent progress in researches on carotenoid production by oleaginous yeasts, which include red yeasts that naturally produce carotenoids, e.g., Rhodotorula glutinis and Xanthophyllomyces dendrorhous. Our new results on pathway engineering of L. starkeyi for lycopene production are also revealed in the present review.


Assuntos
Lipomyces , Basidiomycota , Carotenoides , Rhodotorula , Leveduras/genética
18.
Zhongguo Zhong Yao Za Zhi ; 46(5): 1067-1072, 2021 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-33787098

RESUMO

Coptis chinensis is one of bulk traditional herbal medicines in China. In recent years, the occurrence of various diseases has caused great yield loss and quality reduction of C. chinensis, which has become an important threat of herbal medicine industry. Here we reviewed the symptoms, pathogens, epidemiology and control methods of 6 common diseases of C. chinensis including root rot, southern blight, violet root rot, leaf spot, powdery mildew, and anthracnose. This review aims at providing guidance for the disease diagnostic, pathogen identification, and control strategies of the diseases on C. chinensis, and facilitate the growth of traditional medicine industry.


Assuntos
Coptis , Plantas Medicinais , Basidiomycota , China/epidemiologia
19.
Ecotoxicol Environ Saf ; 213: 112042, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33607336

RESUMO

Aluminum (Al) toxicity severely decreases plant growth and productivity in acidic soil globally. Ectomycorrhizal (ECM) fungi can promote host plant's Al-tolerance by acting as a physical barrier or bio-filter. However, little information is available on the role of ECM fungus on Al immobilization with respect to Al-tolerance. This present study aimed to screen a promising indigenous ECM fungus with high Al-tolerance and to understand its role in Al immobilization related to Al-tolerance. Two ECM fungal strains (Lactarius deliciosus 2 and Pisolithus tinctorius 715) isolated from forest stands in Southwest China were cultured in vitro with 0.0, 1.0 or 2.0 mM Al addition for 21 days to compare their Al accumulation and Al-tolerance. Meanwhile, fungal mycelia were incubated in 0.037 mM Al3+ solutions, and then Al3+ concentrations in the solution were determined at time 2, 5, 10, 20, 40, 60, 120, 180, and 240 min, and the Al3+ immobilization characteristics were evaluated using the pseudo-first order, pseudo-second order and intraparticle diffusion models. Results showed that 1.0 or 2.0 mM Al3+ addition significantly increased fungal biomass production by 23% or 41% in L. deliciosus 2, not in P. tinctorius 715. Fungal Al3+ concentrations in L. deliciosus 2 and P. tinctorius 715 were significantly increased by 293% and 103% under 2.0 mM than under 1.0 mM Al3+ addition. The pH values in the culture solution were significantly decreased by 0.43 after 21 d fungus growth but no changes between these two fungi under the same Al3+ addition. Fungal Al3+ immobilization showed a three-stage trend with initially a rapid rate followed a relatively slower rate until reaching equilibrium. The pseudo-second order model was the best (R2 = 0.98 and 0.99 for L. deliciosus 2 and P. tinctorius 715) to fit the experimentally observed data among the three models. Compared to P. tinctorius 715, L. deliciosus 2 also had greater intercept value, cation exchange capacity (CEC), and extracellular Al3+ proportion in fungal mycelia. Additionally, bio-concentration on Al3+, active site numbers for Al3+, boundary layer thickness, CEC, and immobilization on the cell wall in fungal mycelia were involved in ECM fungal Al-tolerance. These results show that both ECM fungi are Al-tolerant while L. deliciosus 2 is a promising indigenous ECM isolate with higher Al-tolerance in Southwest China, and they can be hence applied to the afforestation and ecological restoration in acidic soil.


Assuntos
Alumínio/metabolismo , Basidiomycota/fisiologia , Poluentes do Solo/metabolismo , Agaricales , Basidiomycota/crescimento & desenvolvimento , Biodegradação Ambiental , Biomassa , China , Florestas , Micélio/crescimento & desenvolvimento , Micorrizas/crescimento & desenvolvimento , Micorrizas/fisiologia , Solo/química , Microbiologia do Solo
20.
Planta ; 253(3): 74, 2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33620564

RESUMO

MAIN CONCLUSION: Manipulation of sugar metabolism upon S. indica root colonization triggers changes in sugar pools and defense responses in A. thaliana. Serendipita indica is an endophytic fungus that establishes mutualistic relationships with many different plants including important crops as well as the model plant A. thaliana. Successful root colonization typically results in growth promotion and enhanced tolerance against various biotic and abiotic stresses. The fungus delivers phosphorus to the host and receives in exchange carbohydrates. There are hints that S. indica prefers hexoses, glucose, and fructose, products of saccharose cleavage driven by invertases (INVs) and sucrose synthases (SUSs). Carbohydrate metabolism in this interaction, however, remains still widely unexplored. Therefore, in this work, the sugar pools as well as the expression of SUSs and cytosolic INVs in plants colonized by S. indica were analyzed. Using sus1/2/3/4 and cinv1/2 mutants the importance of these genes for the induction of growth promotion and proper root colonization was demonstrated. Furthermore, the expression of several defense-related marker genes in both multiple mutants in comparison to the wild-type plants was determined. Our results show that in colonized A. thaliana plants S. indica manipulates the sugar metabolism by altering the expression of host's INV and SUS and modulates both the sugar pools and plant defense in its favor. We conclude that the interaction A. thaliana-S. indica is a balancing act between cooperation and exploitation, in which sugar metabolism plays a crucial role. Small changes in this mechanism can lead to severe disruption resulting in the lack of growth promotion or altered colonization rate.


Assuntos
Arabidopsis/química , Basidiomycota/fisiologia , Metabolismo dos Carboidratos , Açúcares/análise , Arabidopsis/microbiologia , Endófitos/fisiologia , Raízes de Plantas/química , Raízes de Plantas/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...